
Dissecting the Turing GPU

Architecture through

Microbenchmarking
Zhe Jia

Marco Maggioni

Jeffrey Smith

Daniele P. Scarpazza

High Performance Computing R&D Team

GTC 2019

Summary

• GPU software performance matters

• performance improvements save money, time and lives

• Sometimes, you can achieve peak performance

only if you understand the architecture in depth

• example 1: increase memory bandwidth by using wider loads

• example 2: increase arithmetic throughput by avoiding register bank conflicts

• … but many micro-architectural details are not disclosed by the manufacturer

• We expose the Turing T4 GPU architecture in depth

• we discovered its details using micro-benchmarks

• we reveal architectural details previously not published

 you can leverage them to improve your software performance

• we compare them quantitatively against previous architectures

 get overview of the GPU evolution across generations

• find all details in our technical report at https://goo.gl/adPpwg... that we announce today!
2

https://goo.gl/adPpwg

GPU Performance improvement reduces cost and offers opportunity

• Helps cost efficiency

• Amazon EC2 p3.16xlarge GPU instance effective hourly costs:

• $15.91 (data of 3/10/2019)

• 10 instances: ~$1.4 M/year

• To reduce this cost:

• Ask one HPC expert, speedup your training tasks by 2~10x

• Save $0.7 M~$1.26 M/year.

• The more you optimize, the more you save!

• Helps capture new opportunity

• explore broader solution spaces for optimization problems

• improve real-time inference throughput

3

GPU Performance improvement saves time

• AI researchers aren’t cheap!

• What helps them to be more productive?

• An infrastructure that trains their models fast

• Choose right devices

• Help them improve the performance of their training code

4

GPU Performance improvement saves lives

• Meteorologists use software to predict weather

• Increasing the compute performance of weather models helps them

• produce warnings of extreme weather more quickly

• improved model resolution provides better accuracy

• Improvement in either direction is crucial in saving lives and protecting property.

• Some meteorology problems are naturally suitable for GPUs

• Meteorologists have succeeded in using GPUs for weather/climate prediction

5The Weather Company TempoQuest

Custom optimization matters, and you can do it too!

• CUDA libraries are fast (>90% theoretical efficiency) and have a lot of

hand-tuned functions, but they can’t possibly cover every single case

• NVCC is flexible, but generated code efficiency is usually closer to 80%

for typical compute-bound kernels.

• Where it truly matters, can we write critical code as well as NVidia?

• YES!

6

Using architectural information to optimize GPU software

• Most inefficiencies in GPU software stem from failures in saturating either

• memory bandwidth

• instruction throughput

• Low-level architecture understanding is crucial

to achieving peak GPU software performance

• Example 1: single-precision a*X plus Y (memory-bound)

• Example 2: simplest matrix-matrix multiplication core (compute-bound)

7

Example 1: single-precision a*X plus Y

• A scaled, element-wise vector-vector sum:

• Implementations for cublasSaxpy in CUDA 10.1:

contain only 32-bit and 64-bit global-memory load/store instructions

• For Turing GPUs, considering:

• T4 has 4 LSUs per scheduler (V100: 8)

• Turing supports 1024 threads per SM (Volta: 2,048)

• It is harder to saturate the available memory bandwidth on Turing by only

increasing block/thread count (TLP).

8

Ԧ𝑦 ≔ 𝛼 ∙ Ԧ𝑥 + Ԧ𝑦

Example 1: 128-bit vectorized memory access

• An effective strategy to increase memory access throughput:

load wider words per instruction

• We use 128-bit vectorized memory access instructions

...
asm volatile("{\t\n"

// registers to store input operands
".reg .f32 a1,b1,c1,d1;\n\t"
".reg .f32 a2,b2,c2,d2;\n\t"
// loading with vectorized, 128-bit inst
"ld.global.v4.f32 {a1,b1,c1,d1},[%0];\n\t"
"ld.global.v4.f32 {a2,b2,c2,d2},[%1];\n\t"
// core math operations
...
// storing with vectorized, 128-bit inst
"st.global.v4.f32 [%1],{a2,b2,c2,d2};\n\t"

"}" :: ...

.headerflags @"EF_CUDA_SM75
EF_CUDA_PTX_SM(EF_CUDA_SM75)"
...

/*00d0*/LDG.E.128.SYS R8, [R8] ;
/*00e0*/LDG.E.128.SYS R4, [R2] ;

...

/*0150*/STG.E.128.SYS [R2], R4 ;

...

9

Example 1: performance improvement

• For arrays of 20 KiB - 2000 KiB

• improved_Saxpy tends to be almost 2x as fast as cublasSaxpy

10

Example 2: simple matrix-matrix multiplication

• 𝑪 += 𝑨𝑩

• Sometimes, we need some variations of this kernel

• Each thread computes a 𝐶_𝑡𝑖𝑙𝑒 (8x8) from an 𝐴_𝑠𝑙𝑖𝑐𝑒 (8x512) and a 𝐵_𝑠𝑙𝑖𝑐𝑒 (512x8)

• matmul is the most expensive kernel in many workloads

11

…

…

…

…

…

…

…

…

… … … … … … … …

float reg_A[8], reg_B[8], reg_C[64];
for (int k=0; k<512; k++) {

// ...
// each thread multiplies one 8-element column vector from
// matrix A_slice against one 8-element row vector from matrix B_slice
for (int i = 0; i<8; i++)

for (int j = 0; j<8; j++)
reg_C[i*8+j] += reg_A[i]*reg_B[j];

// ...
}

𝐶_𝑡𝑖𝑙𝑒𝐴_𝑠𝑙𝑖𝑐𝑒 𝐵_𝑠𝑙𝑖𝑐𝑒

Don’t panic …

• Microarchitectural details are subtle and likely new to many of you

• Fortunately, the key optimization concepts aren’t that many

• Taking the time to digest them provides the critical insights

into optimizing for the architecture

• Don’t worry if you miss any detail

The fully fleshed out example is in our Volta report from last year

Google “Volta Citadel” and click the first result.

(https://arxiv.org/abs/1804.06826)

12

Key register bottleneck mitigation concepts

• Register files are mapped into different banks

• Instructions need source operands, and read them via ports

• An instruction reading more operands from a bank than there are ports

stalls execution!

• To save port accesses, code should employ register reuse caches

• Compilers should leverage reuse caches to avoid conflicts,

but they don’t always succeed!

• NVidia libraries resort to these hand optimizations

and so can you!

13

Example 2: performance improvement

• We found a better register mapping and reuse cache selection than NVCC generated code

• Performance improvement on T4 (128 threads): +12%

The achieved efficiency matches cuBLAS

14

before optimization after reuse cache optimization
FFMA R16, R12, R80, R16 FFMA R17, R12.reuse, R80.reuse, R17
FFMA R17, R80.reuse, R13, R17 FFMA R16, R12, R81.reuse, R16
FFMA R18, R80.reuse, R14, R18 FFMA R25, R13.reuse, R80.reuse, R25
FFMA R19, R80, R15, R19 FFMA R24, R13, R81.reuse, R24
FFMA R20, R80.reuse, R8, R20 FFMA R33, R14.reuse, R80.reuse, R33
FFMA R21, R80.reuse, R9, R21 FFMA R32, R14, R81.reuse, R32
FFMA R22, R80.reuse, R10, R22 FFMA R41, R15.reuse, R80.reuse, R41
FFMA R23, R80, R11, R23 FFMA R40, R15, R81.reuse, R40
FFMA R24, R12, R81.reuse, R24 FFMA R49, R8.reuse, R80.reuse, R49
FFMA R25, R13, R81, R25 FFMA R48, R8, R81.reuse, R48
FFMA R26, R14, R81.reuse, R26 FFMA R57, R9.reuse, R80.reuse, R57
FFMA R27, R15, R81.reuse, R27 FFMA R56, R9, R81.reuse, R56
FFMA R28, R8, R81.reuse, R28 FFMA R65, R10.reuse, R80.reuse, R65
FFMA R29, R9, R81.reuse, R29 FFMA R64, R10.reuse, R81.reuse, R64
FFMA R30, R10, R81.reuse, R30 FFMA R73, R11.reuse, R80, R73

... ...

GPU Manufacturers won’t tell you these architectural details

• Developers cannot exploit these opportunities

without a deep understanding of GPU architecture

• In order to understand GPU architectures, we need to answer

• what does the memory hierarchy look like?

• how are instructions encoded?

• what are the latency and throughput of instructions?

• …

• Collecting architectural details can require heroic efforts, but you don’t need to.

• We have done this work for you!

Technical report

• Download it now
https://goo.gl/adPpwg
also in the process of publishing on arxiv.org

• Covers everything discussed today

• it dissects the GPU architecture completely

• plenty of details never published before
that you won’t find anywhere else

• compares every generation
from Kepler through Turing.

• discusses how GPU architectures interact
with compiled software

• explains the experiments we performed.

• …plus much more!
Covers everything that we can’t fit into today.

https://goo.gl/adPpwg
arxiv.org

Turing’s GPU architecture evolution

• New architectural features on Turing

• better ILP; instruction cache friendly

• Architectural changes on recent GPUs

• changed instruction encoding

• improved instruction and data cache hierarchy

• additional register ports

• reduced native instruction dependent-issue latency

• lower shared memory access latency

• enlarged TLB coverage

• Compared to the P4, the T4 has

• higher L1/L2 cache and global memory bandwidth

• higher arithmetic throughput for matrix math

17

New features

18

Turing introduces a new datapath for integer instructions

• For workloads that occupy the main

datapaths with FP instructions

• Turing introduces a separate uniform

datapath for integer instructions

• Index math and pointer math instructions

can run in parallel with FP instructions

• FP compute-bound kernels can reach peak

efficiency

• Uniform datapath instructions and uniform

registers

• e.g., UMOV UR5, 0x5000 ;

* https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth

The uniform Datapath instructions in CUDA Binary Utilities Document

19

https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth

Turing introduces a new datapath for integer instructions

• most regular instructions can access

both uniform and regular registers

• most uniform datapath instructions

only operate on uniform registers

• Turing supports 64 uniform registers

1 URZ + UR0-UR62

• The upper limit of total registers is

256, including both regular and

uniform registers

* https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth

The uniform Datapath instructions in CUDA Binary Utilities Document

20

https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth

NVCC expresses matrix math more succinctly for Turing

Target Volta

HMMA.884.F32.F32.STEP0 R8, R26.reuse.COL, R16.reuse.COL, R8 ;

HMMA.884.F32.F32.STEP1 R10, R26.reuse.COL, R16.reuse.COL, R10 ;

HMMA.884.F32.F32.STEP2 R4, R26.reuse.COL, R16.reuse.COL, R4 ;

HMMA.884.F32.F32.STEP3 R6, R26.COL, R16.COL, R6 ;

HMMA.884.F32.F32.STEP0 R8, R20.reuse.COL, R18.reuse.COL, R8 ;

HMMA.884.F32.F32.STEP1 R10, R20.reuse.COL, R18.reuse.COL, R10 ;

HMMA.884.F32.F32.STEP2 R4, R20.reuse.COL, R18.reuse.COL, R4 ;

HMMA.884.F32.F32.STEP3 R6, R20.COL, R18.COL, R6 ;

HMMA.884.F32.F32.STEP0 R8, R22.reuse.COL, R12.reuse.COL, R8 ;

HMMA.884.F32.F32.STEP1 R10, R22.reuse.COL, R12.reuse.COL, R10 ;

HMMA.884.F32.F32.STEP2 R4, R22.reuse.COL, R12.reuse.COL, R4 ;

HMMA.884.F32.F32.STEP3 R6, R22.COL, R12.COL, R6 ;

HMMA.884.F32.F32.STEP0 R8, R2.reuse.COL, R14.reuse.COL, R8 ;

HMMA.884.F32.F32.STEP1 R10, R2.reuse.COL, R14.reuse.COL, R10 ;

HMMA.884.F32.F32.STEP2 R4, R2.reuse.COL, R14.reuse.COL, R4 ;

HMMA.884.F32.F32.STEP3 R6, R2.COL, R14.COL, R6 ;

Target Turing

HMMA.1688.F32 R8, R12, R22, R8 ;

HMMA.1688.F32 R4, R12, R23, R4 ;

HMMA.1688.F32 R8, R2, R24, R8 ;

HMMA.1688.F32 R4, R2, R25, R4 ;

• HMMA:

half precision matrix math instruction

• Turing offers new instruction-state options

for HMMA

• NVCC uses fewer instructions to express

some tensor operations

• For the same wmma::mma_sync() in a

same kernel,

NVCC generates 16 HMMAs for Volta,

but only 4 HMMA for Turing

21

Architectural Changes
From Kepler to Turing

22

From Kepler to Turing: better hardware efficiency via software-driven
scheduling

23

Kepler:
/*0008*/
/*0010*/
/*0018*/
/*0020*/
/*0028*/
/*0030*/
/*0038*/

MOV R1, c[0x0][0x44];
S2R R0, SR_CTAID.X;
S2R R3, SR_TID.X;
IMAD R0, R0, c[0x0][0x28], R3;
S2R R4, SR_CLOCKLO;
MEMBAR.CTA;
LOP32I.AND R2, R3, 0xfffffffc;

/* 0x08a0bc80c0a08cc0 */
/* 0x64c03c00089c0006 */
/* 0x86400000129c0002 */
/* 0x86400000109c000e */
/* 0x51080c00051c0002 */
/* 0x86400000281c0012 */
/* 0x7cc00000001c0002 */
/* 0x207ffffffe1c0c08 */

Maxwell
Pascal: /*0008*/

/*0010*/
/*0018*/

MOV R1, c[0x0][0x20];
S2R R0, SR_CTAID.X;
S2R R2, SR_TID.X;

/* 0x001c7c00e22007f6 */
/* 0x4c98078000870001 */
/* 0xf0c8000002570000 */
/* 0xf0c8000002170002 */

Volta
Turing: /*0000*/ @!PT SHFL.IDX PT, RZ, RZ, RZ, RZ; /* 0x000000fffffff389 */

/* 0x000fe200000e00ff */

control for 7 instructions

control for 3 instructions

control for 1 instruction

Width (bits) 4 6 3 3 1 4

Meaning Reuse flags
Wait barrier

mask

Read barrier

index

Write barrier

index
Yield flag Stall cycles

From Maxwell to Turing: control information is organized as below:

Turing’s memory hierarchy

T4 P100

Turing has the similar memory hierarchy as Volta, and they have

• a new L0 instruction cache

• an unified shared and L1 data cache (low latency, high bandwidth; configurable)

• a new replacement policy for L1 cache to preserve large arrays

Turing and Volta have a new level of instruction cache

• We found one scheduler-private L0 instruction cache on Turing and Volta, by detecting

• the size of each cache level

• how cache levels are distributed within the architectural blocks

• We also found

• on all GPUs considered

• each L1 instruction cache is private to an SM

• the L2 cache is unified (instructions, data, and constants) and shared across all SMs

• on Pascal, Maxwell and Kepler, each L1.5 instruction cache is private to one SM

25

Redesigned register ports

• Turing and Volta have the same register

bank/port design

2 banks with dual 32-bit ports

• On Pascal, Maxwell and Kepler

4 single-ported banks

• Experiment

• elapsed time of identical FFMA sequences

• vary one source register index (RX) in two

instruction sequences to cause conflict

• In sequences of “FFMA R6, R97,R99,RX”, the

choice of X can cause zero or one conflict

• In sequence of “FFMA R6, R98,R99,RX”, the

choice of X cannot cause conflicts

26

Turing changed native instruction latency

27

• On Turing and Volta,

integer and single

precision instructions have

4-cycle latency

• On Turing, double

precision instructions have

highest latency among

three generations

• On Pascal, instructions

IMAD and IMUL have long

latency because they are

emulated

• Turing does not seem to

offer any latency

improvement over Volta

Turing and Volta have lower shared memory access latency

28

• The T4 and V100 GPUs

provide lowest latency

among all the examined

GPUs

• The measured average

access latency increases

with the number of bank

conflicts (except Kepler)

Turing and Volta enlarged TLB coverage

29

• On Turing and Volta, we detected

• 2 TLB levels

• L1 TLB: 2-MiB entries, 32-MiB coverage

• L2 TLB: 32-MiB entries, 8192-MiB coverage

Turing and Volta enlarged TLB coverage

• On Pascal:

• 2 TLB levels

• L1 TLB: 2-MiB entries, 32-MiB coverage

• L2 TLB: 32-MiB entries 2048-MiB coverage

• On Kepler and Maxwell:

• 3 TLB levels

• L1 TLB: 128-KiB entries, 2-MiB coverage

• L2 TLB: 2-MiB entries, 128-MiB coverage

• L3 TLB: 2-MiB entries, 2048-MiB coverage

• On all architectures examined:

• L1D is virtually indexed

• L2 is physically indexed

P4 vs. T4

31

The L1 cache on T4 enjoys lower latency than P4

32

• We measured L1D cache latency for all considered
devices

• fine-grained p-chase method by Mei and Chu*

• We found T4 and V100 have lower latency than
P100, P4 and M60

• Experiment:
• 32-cycle: warmed line access

• 188-cycle: L1 miss and L2 hit

• 296-cycle: L2 miss and TLB hit

• 616-cycle latency: cache and TLB miss

*X. Mei and X. Chu, “Dissecting GPU memory hierarchy through microbenchmarking,” IEEE Transactions on Parallel and Distributed Systems,

vol. 28, no. 1, pp. 72–86, Jan 2017

• We measured ~3x higher L1D bandwidth on T4 than on P4

• Experiment:

• Scans an array in L1D cache, accesses as many lines as possible

from every thread

• Theoretical upper bound: 𝑛𝐿𝑆𝑈 × 𝑁𝐵𝐿𝑆𝑈
𝑛𝐿𝑆𝑈: LSU count per SM

𝑁𝐵𝐿𝑆𝑈: the number of bytes that each LSU can load per cycle per instruction

The L1D cache on T4 enjoys higher bandwidth than P4

33

The L2 cache on T4 enjoys higher bandwidth than P4

• We measured ~1.3x higher L2 bandwidth on T4 than on P4

• The L2 cache on T4:

• unified for data, instruction and constant memory (as previous GPUs)

• A 16-way, set-associative cache

capacity: 4,096 KiB

cache line: 64 B

average latency: 188 clock cycles

load throughput: 1,270 GB/s

34

T4 has higher global memory bandwidth than P4

35

• The global mem bandwidth benchmark:

• loads and stores global memory arrays

• We found

• T4 enjoys a higher bandwidth than P4

due to GDDR6 memory

• The actual-to-theoretical ratio on the T4

(68.8%) is lower than P4 (84.4%)

• GPUs with HBM2 (V100 and P100) have

higher bandwidth than those with GDDR

(K80, M60, P4 and T4)

Arithmetic performance on T4

• cuBLAS 10.1 vs. CUTLASS 1.2 GEMM

• Arithmetic throughput:

• half, single and double precision

cuBLAS > CUTLASS

• int8 precision

CUTLASS > cuBLAS

cuBLAS kernels don’t use tensor cores

• only CUTLASS support int4 and int1

• Except in double precision,

all benchmarks don’t achieve near-peak

performance

Comparing arithmetic performance on T4 and P4

• Inference-oriented, same number of CUDA cores, similar max graphics frequencies

• Arithmetic throughput

• single and double: very similar throughput

• half and int8 precision:

T4 has 6.3x more throughput than P4, thanks to tensor cores

• int4 and int1:

novel support on the T4!

37

T4 P4

Max graphics frequency (MHz) 1,590 1,531

N of CUDA cores 2560 2560

Power and thermal limits

38

Clock throttling causes T4 cannot achieve peak performance

39

• Clock throttling reported from both:

• Reduced silicon efficiency under rising temps

• Max operating temperature limit

• Experiment:

• Set initial clock frequency to 1,590 MHz

• Repeated 4096x4096 cublasSgemm

• Record both temperature and frequency

• Warmer transistors leak, so less power

(and clocks) is available for computation

• Thermal limits are enforced by sharp

intermittent clock frequency reductions.

Power-limit throttling relates to matrix size

40

• On T4, the power-limit throttling hurts overall

arithmetic throughput

• Clock throttling with variable matrix sizes:

• input matrices of progressively increased size

• similar temperatures

• bigger matrices → lower clocks/throughput

T4 and P4 boards are more prone to power throttling

41

• Reason:

• smaller die and cooler sizes

• lower power limit

• Clock throttling on different devices:

• input matrices of the same size

• GPU limited by Max Operating Temps

• on T4 and P4, power-limit throttling triggers

immediately

• on other GPUs, we observed barely any

power limit throttling

Thank you!

42

This presentation solely reflects the analyses and views of the authors. No recipient should interpret this presentation to represent

the general views of Citadel or its personnel. Facts, analyses, and views presented herein have not been reviewed by, and may not

reflect information known to other Citadel professionals

• Download Now at:

https://goo.gl/adPpwg

Also in the process of publishing on

arxiv.org

• Questions?

https://goo.gl/adPpwg
arxiv.org

