Taking Advantage of Low Precision to Accelerate Training and Inference Using PyTorch

Presented by: Myle Ott and Sergey Edunov Facebook AI Research (FAIR)

Talk ID: S9832

Overview

Mixed precision training in PyTorch:

- 3-4x speedups in training wall time
- Reduced memory usage ==> bigger batch sizes
- No architecture changes required

Case study: Neural Machine Translation

- Train models in 30 minutes instead of 1 day+
- Semi-supervised training over much larger datasets

What are Tensor Cores?

 Optimized hardware units for mixed precision matrix-multiply-andaccumulate: D = A * B + C

Slide credit: Nvidia

cuBLAS Mixed-Precision GEMM (FP16 Input, FP32 Compute)

If only it were this easy...

model.half()

Why not pure FP16?

FP16 has insufficient range/precision for some ops

Better to leave some ops in FP32:

- Large reductions, e.g., norms, softmax, etc.
- Pointwise ops where |f(x)| >> |x|, e.g., exp, pow, log, etc.

Why not pure FP16?

In practice, **pure FP16 hurts optimization**.

According to Nvidia:

- Sum of FP16 values whose ratio is >2¹¹ is just the larger value
- Weight update: if w >> lr*dw then update doesn't change w

Why not pure FP16?

Solution: mixed precision training

Optimize in FP32 and use FP16 for almost* everything else

* Some operations should still happen in FP32:

- Large reductions, e.g., norms, softmax, etc.
- Pointwise ops where |f(x)| >> |x|, e.g., exp, pow, log, etc.

Gradient underflow

- FP16 has a smaller representable range than FP32 (shown in blue)
- In practice gradient are quite small, so there's a risk of underflow

Gradient underflow

If we scale the loss up by K, by the chain rule of derivatives, gradients will be K times bigger

Gradient overflow

How to pick the scaling constant (K)

- Too small and gradient will underflow
- Too big and we'll waste compute due to overflow
- In practice the optimal scaling constant changes during training
- We can adjust it dynamically!

Dynamic loss scaling

- Every time the gradient overflows (inf), reduce the scaling constant by a factor of 2
- If the gradients haven't overflowed in the last N updates (~1000), then increase the scaling constant by a factor of 2

Dynamic loss scaling

So far...

Tensor Cores make FP16 ops 4-9x faster

Mixed precision training:

- Forward/backward in FP16
- Optimize in FP32
- Requires maintaining two copies of the model weights
- Dynamically scale the loss to avoid gradient under/overflow

One more thing about FP16...

For maximal safety, perform ops that sum many values in FP32

- e.g., normalization layers, softmax, L1 or L2 norm, etc.
- This includes most Loss layers, e.g., CrossEntropyLoss

General advice: compute your loss in FP32 too

In PyTorch

To automate the recipe, start with Nvidia's apex. amp library:

```
from apex import amp
optim = torch.optim.Adam(...)
model, optim = amp.initialize(model, optim, opt_level="01")
(...)
with amp.scale_loss(loss, optim) as scaled_loss:
        scaled_loss.backward()
optim.step()
```

Making it even faster

apex.amp supports different optimization levels

opt level="01" is conservative and keeps many ops in FP32

opt_level="02" is faster, but may require manually converting some ops to FP32 to achieve good results

More details at: https://nvidia.github.io/apex/

Making it even faster

A useful pattern:

x = torch.nn.functional.softmax(x, dtype=torch.float32).type_as(x)

When x is FP16 (i.e., a torch.HalfTensor):

• Computes the softmax in FP32 and casts back to FP16

When x is FP32 (i.e., a torch. FloatTensor):

• No impact on speed or memory

One more thing...

Must have GPU with Tensor Cores (Volta+), CUDA 9.1 or newer

Additionally:

- Batch size should be a multiple of 8
- M, N and K for matmul should be multiples of 8
- Dictionaries/embed layers should be padded to be a multiple of 8

Summary

Mixed precision training gives:

- Tensor Cores make FP16 ops 4-9x faster
- No architecture changes required
- Use Nvidia's apex library

Tradeoffs:

- Some extra bookkeeping required (mostly handled by apex)
- Best perf requires manual fixes for softmax, layernorm, etc.

Scaling Machine Translation

Myle Ott

Sergey Edunov

David Grangier

Michael Auli

Teng Li

Shubho Sengupta

Sequence to Sequence Learning

Bonjour à tous ! ---> Hello everybody!

- Sequence to sequence mapping
- Input = sequence, output = sequence
- Structured prediction problem

Sequence to Sequence Learning

- machine translation
- text summarization
- writing stories
- question generation
- dialogue, chatbots
- paraphrasing

• ...

Why do we need to scale?

- Large benchmark ~2.4 billion words
 + much more unlabeled data
- Training time: CNNs up to 38 days on 8 M40 GPUs (Gehring et al., 2017)
- Train many models
- Support Multilingual training

Semi-supervised machine translation

Sergey Edunov

Myle Ott

Michael Auli

David Grangier

49

Data augmentation for Translation

Back-translation (Bojar & Tamchyna, 2011; Sennrich et al., 2016)

Data augmentation for Translation

Back-translation (Bojar & Tamchyna, 2011; Sennrich et al., 2016)

Monolingual Generated

Monolingual Generated

Monolingual Source

Monolingual Source

Scaling from 100M to 5.8B words

Model trains in 22.5h on 128 V100

WMT'18 Human evaluations

		English→German		
		Ave. %	Ave. z	System
Ranked #1 in the human evaluation of the WMT'18 English-German translation task	1	85.5	0.653	FACEBOOK-FAIR \star
	2	82.2	0.561	ONLINE-B
		81.9	0.551	MICROSOFT-MARIAN
		81.6	0.539	MMT-PRODUCTION
		82.3	0.537	UCAM
		80.2	0.491	NTT
		79.3	0.454	KIT
	8	77.7	0.396	ONLINE-Y
		76.7	0.377	JHU
		76.3	0.352	UEDIN
	11	71.8	0.213	LMU-NMT
	12	67.4	0.060	ONLINE-A
	13	53.2	-0.385	ONLINE-F
		53.8	-0.416	ONLINE-G
	15	36.7	-0.966	RWTH-UNSUPER

16

32.6

-1.122

LMU-UNSUP

Conclusion

Mixed precision training in PyTorch:

- 3-4x speedups in training wall time
- No architecture changes required
- Use Nvidia's apex library

Case study: Neural Machine Translation

- Train models in 30 minutes instead of 1 day+
- State-of-the-art translation quality using semi-supervised learning

Thank you! Questions?

Contact Us

Myle Ott myleott@fb.com Sergey Edunov edunov@fb.com

References

- Scaling Neural Machine Translation: arxiv.org/abs/1806.00187
- Understanding Back-translation at Scale: arxiv.org/abs/1808.09381
- apex:nvidia.github.io/apex

Acknowledgements: Nvidia and PyTorch teams for helping us implement and optimize mixed precision training.