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Overview
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Mixed precision training in PyTorch: 
• 3-4x speedups in training wall time 
• Reduced memory usage ==> bigger batch sizes 
• No architecture changes required 

Case study: Neural Machine Translation 
• Train models in 30 minutes instead of 1 day+ 
• Semi-supervised training over much larger datasets



What are Tensor Cores? 
• Optimized hardware units for mixed precision matrix-multiply-and-

accumulate: D = A * B + C
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Slide credit: Nvidia
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If only it were this easy… 

model.half()
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Why not pure FP16?

FP16 has insufficient range/precision for some ops 

Better to leave some ops in FP32: 
• Large reductions, e.g., norms, softmax, etc. 
• Pointwise ops where |f(x)| >> |x|, e.g., exp, pow, log, etc.
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Why not pure FP16?

In practice, pure FP16 hurts optimization. 

According to Nvidia: 
• Sum of FP16 values whose ratio is >211 is just the larger value 

• Weight update: if w >> lr*dw then update doesn’t change w
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Why not pure FP16?

Solution: mixed precision training 

Optimize in FP32 and use FP16 for almost* everything else 

* Some operations should still happen in FP32: 
• Large reductions, e.g., norms, softmax, etc. 
• Pointwise ops where |f(x)| >> |x|, e.g., exp, pow, log, etc.

 8



Optimizing in FP32
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Optimizing in FP32
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Gradient underflow

• FP16 has a smaller representable 
range than FP32 (shown in blue) 

• In practice gradient are quite small, so 
there’s a risk of underflow
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Gradient underflow

 150
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Avoiding under/overflow by loss scaling
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Avoiding under/overflow by loss scaling
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Avoiding under/overflow by loss scaling
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Avoiding under/overflow by loss scaling
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Avoiding under/overflow by loss scaling
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How to pick the scaling constant (K)

• Too small and gradient will underflow 

• Too big and we’ll waste compute due to overflow 

• In practice the optimal scaling constant changes during training 

• We can adjust it dynamically!
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Dynamic loss scaling

• Every time the gradient overflows (inf), reduce the scaling 
constant by a factor of 2 

• If the gradients haven’t overflowed in the last N updates (~1000), 
then increase the scaling constant by a factor of 2
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Dynamic loss scaling
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So far…

Tensor Cores make FP16 ops 4-9x faster 

Mixed precision training: 
• Forward/backward in FP16 

• Optimize in FP32 

• Requires maintaining two copies of the model weights 

• Dynamically scale the loss to avoid gradient under/overflow
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One more thing about FP16…

For maximal safety, perform ops that sum many values in FP32 
• e.g., normalization layers, softmax, L1 or L2 norm, etc. 
• This includes most Loss layers, e.g., CrossEntropyLoss 

General advice: compute your loss in FP32 too

 26



The full picture
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The full picture
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The full picture
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The full picture
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The full picture
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The full picture
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The full picture

 33

FP16  
Weights

FP32 Loss

FP32 Gradients

Scaled 
FP16 

Gradients

FP32 Master 
Weights

Forward Pass
Backprop

Copy

Apply

Copy

Loss Scaling

Scaled FP32 
Loss

Scaled FP32 
Gradients

Remove scale

If gradients overflow (inf), throw away the batch

Distributed gradient accumulation / all-reduce

option 1 (slower) option 2 (faster)



In PyTorch

To automate the recipe, start with Nvidia’s apex.amp library: 
 
from apex import amp 

optim = torch.optim.Adam(…) 

model, optim = amp.initialize(model, optim, opt_level="O1") 

(…) 

with amp.scale_loss(loss, optim) as scaled_loss: 
     scaled_loss.backward() 

optim.step()
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Making it even faster

apex.amp supports different optimization levels 

opt_level="O1" is conservative and keeps many ops in FP32 

opt_level="O2" is faster, but may require manually converting some 
ops to FP32 to achieve good results 

More details at: https://nvidia.github.io/apex/
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Making it even faster
A useful pattern: 

 

x = torch.nn.functional.softmax(x, dtype=torch.float32).type_as(x) 

When x is FP16 (i.e., a torch.HalfTensor): 
• Computes the softmax in FP32 and casts back to FP16 

When x is FP32 (i.e., a torch.FloatTensor): 
• No impact on speed or memory
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One more thing…
Must have GPU with Tensor Cores (Volta+), CUDA 9.1 or newer 

Additionally: 
• Batch size should be a multiple of 8 
• M, N and K for matmul should be multiples of 8 
• Dictionaries/embed layers should be padded to be a multiple of 8
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Summary
Mixed precision training gives: 

• Tensor Cores make FP16 ops 4-9x faster 
• No architecture changes required 
• Use Nvidia's apex library 

Tradeoffs: 
• Some extra bookkeeping required (mostly handled by apex) 
• Best perf requires manual fixes for softmax, layernorm, etc.
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Scaling  
Machine Translation
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Sequence to Sequence Learning

Bonjour à tous ! Hello everybody!

• Sequence to sequence mapping 
• Input = sequence, output = sequence 
• Structured prediction problem 



• machine translation 
• text summarization 
• writing stories 
• question generation 
• dialogue, chatbots 
• paraphrasing 
• ...

Sequence to Sequence Learning
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Why do we need to scale?

• Large benchmark ~2.4 billion words  
+ much more unlabeled data 

• Training time: CNNs up to 38 days on 8 M40 GPUs (Gehring et al., 2017) 

• Train many models 

• Support Multilingual training
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Reducing training time
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Time in minutes to train "Transformer" translation 
model on Volta V100 GPUs (WMT En-De)
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Time in minutes to train "Transformer" translation 
model on Volta V100 GPUs (WMT En-De)

3x faster (wall time) using the same 
hardware, model architecture and bsz!
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Time in minutes to train "Transformer" translation 
model on Volta V100 GPUs (WMT En-De)
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Time in minutes to train "Transformer" translation 
model on Volta V100 GPUs (WMT En-De)
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Semi-supervised  
machine translation
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Scaling from 100M to 5.8B words
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WMT'18 Human evaluations 

 58

Ranked #1 in the human 
evaluation of the WMT'18 
English-German translation task



Conclusion
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Mixed precision training in PyTorch: 
• 3-4x speedups in training wall time 
• No architecture changes required 
• Use Nvidia's apex library 

Case study: Neural Machine Translation 
• Train models in 30 minutes instead of 1 day+ 
• State-of-the-art translation quality using semi-supervised learning



Thank you! Questions?
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Contact Us 
     Myle Ott                      Sergey Edunov  

myleott@fb.com              edunov@fb.com 
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