
Taking Advantage of Low Precision
to Accelerate Training and
Inference Using PyTorch
Presented by:
Myle Ott and Sergey Edunov
Facebook AI Research (FAIR)

Talk ID: S9832

Overview

 2

Mixed precision training in PyTorch:
• 3-4x speedups in training wall time
• Reduced memory usage ==> bigger batch sizes
• No architecture changes required

Case study: Neural Machine Translation
• Train models in 30 minutes instead of 1 day+
• Semi-supervised training over much larger datasets

What are Tensor Cores?
• Optimized hardware units for mixed precision matrix-multiply-and-

accumulate: D = A * B + C

 3

Slide credit: Nvidia

 4

Slide credit: Nvidia

If only it were this easy…

model.half()

 5

Why not pure FP16?

FP16 has insufficient range/precision for some ops

Better to leave some ops in FP32:
• Large reductions, e.g., norms, softmax, etc.
• Pointwise ops where |f(x)| >> |x|, e.g., exp, pow, log, etc.

 6

Why not pure FP16?

In practice, pure FP16 hurts optimization.

According to Nvidia:
• Sum of FP16 values whose ratio is >211 is just the larger value

• Weight update: if w >> lr*dw then update doesn’t change w

 7

Why not pure FP16?

Solution: mixed precision training

Optimize in FP32 and use FP16 for almost* everything else

* Some operations should still happen in FP32:
• Large reductions, e.g., norms, softmax, etc.
• Pointwise ops where |f(x)| >> |x|, e.g., exp, pow, log, etc.

 8

Optimizing in FP32

 9

FP16  
Weights

FP16 Loss

FP16 
Gradients

Forward Pass
Backprop

FP16  
Weights

FP16 Loss

FP32 Master 
Gradients

FP16 
Gradients

Forward Pass
Backprop

Copy

Optimizing in FP32

 10

Optimizing in FP32

 11

FP16  
Weights

FP16 Loss

FP32 Master 
Gradients

FP16 
Gradients

FP32 Master 
Weights

Forward Pass
Backprop

Copy

Apply

Optimizing in FP32

 12

FP16  
Weights

FP16 Loss

FP32 Master 
Gradients

FP16 
Gradients

FP32 Master 
Weights

Forward Pass
Backprop

Copy

Apply

Copy

Optimizing in FP32

 13

FP16  
Weights

FP16 Loss

FP32 Master 
Gradients

FP16 
Gradients

FP32 Master 
Weights

Forward Pass
Backprop

Copy

Apply

Copy

This adds overhead! 
 

It’s only worth it because of the
Tensor Cores. Don’t use mixed

precision without Tensor Cores!

Gradient underflow

• FP16 has a smaller representable
range than FP32 (shown in blue)

• In practice gradient are quite small, so
there’s a risk of underflow

 14

Gradient underflow

 150

Gradients
Underflow can
not be detected

But if we scale
loss up

If we scale the loss up by K,
by the chain rule of derivatives,
gradients will be K times bigger

Gradient overflow

 16Inf

If overflow
detected

Scale the
loss down

Gradients

Avoiding under/overflow by loss scaling

 17

FP16  
Weights

FP16 Loss

Scaled 
FP16 

Gradients

Forward Pass
Backprop

Loss Scaling

Scaled FP16 
Loss

Avoiding under/overflow by loss scaling

 18

FP16  
Weights

FP16 Loss

Scaled 
FP16 

Gradients

Forward Pass
Backprop

Loss Scaling

Scaled FP16 
Loss

If gradients overflow (inf), throw away the batch

Avoiding under/overflow by loss scaling

 19

FP16  
Weights

FP16 Loss

Scaled 
FP16 

Gradients

Forward Pass
Backprop

Copy

Loss Scaling

Scaled FP16 
Loss

Scaled FP32 
Gradients

If gradients overflow (inf), throw away the batch

Avoiding under/overflow by loss scaling

 20

FP16  
Weights

FP16 Loss

FP32 Gradients

Scaled 
FP16 

Gradients

Forward Pass
Backprop

Copy

Loss Scaling

Scaled FP16 
Loss

Scaled FP32 
Gradients

Remove scale

If gradients overflow (inf), throw away the batch

Avoiding under/overflow by loss scaling

 21

FP16  
Weights

FP16 Loss

FP32 Gradients

Scaled 
FP16 

Gradients

FP32 Master 
Weights

Forward Pass
Backprop

Copy

Apply

Copy

Loss Scaling

Scaled FP16 
Loss

Scaled FP32 
Gradients

If gradients overflow (inf), throw away the batch

Remove scale

How to pick the scaling constant (K)

• Too small and gradient will underflow

• Too big and we’ll waste compute due to overflow

• In practice the optimal scaling constant changes during training

• We can adjust it dynamically!

 22

Dynamic loss scaling

• Every time the gradient overflows (inf), reduce the scaling
constant by a factor of 2

• If the gradients haven’t overflowed in the last N updates (~1000),
then increase the scaling constant by a factor of 2

 23

Dynamic loss scaling

 24

So far…

Tensor Cores make FP16 ops 4-9x faster

Mixed precision training:
• Forward/backward in FP16

• Optimize in FP32

• Requires maintaining two copies of the model weights

• Dynamically scale the loss to avoid gradient under/overflow

 25

One more thing about FP16…

For maximal safety, perform ops that sum many values in FP32
• e.g., normalization layers, softmax, L1 or L2 norm, etc.
• This includes most Loss layers, e.g., CrossEntropyLoss

General advice: compute your loss in FP32 too

 26

The full picture

 27

FP16  
Weights

FP32 Loss

Forward Pass

The full picture

 28

FP16  
Weights

FP32 Loss

Scaled 
FP16 

Gradients

Forward Pass
Backprop

Loss Scaling

Scaled FP32 
Loss

The full picture

 29

FP16  
Weights

FP32 Loss

Scaled 
FP16 

Gradients

Forward Pass
Backprop

Loss Scaling

Scaled FP32 
Loss

If gradients overflow (inf), throw away the batch

The full picture

 30

FP16  
Weights

FP32 Loss

Scaled 
FP16 

Gradients

Forward Pass
Backprop

Copy

Loss Scaling

Scaled FP32 
Loss

Scaled FP32 
Gradients

If gradients overflow (inf), throw away the batch

The full picture

 31

FP16  
Weights

FP32 Loss

FP32 Gradients

Scaled 
FP16 

Gradients

Forward Pass
Backprop

Copy

Loss Scaling

Scaled FP32 
Loss

Scaled FP32 
Gradients

Remove scale

If gradients overflow (inf), throw away the batch

The full picture

 32

FP16  
Weights

FP32 Loss

FP32 Gradients

Scaled 
FP16 

Gradients

FP32 Master 
Weights

Forward Pass
Backprop

Copy

Apply

Copy

Loss Scaling

Scaled FP32 
Loss

Scaled FP32 
Gradients

Remove scale

If gradients overflow (inf), throw away the batch

The full picture

 33

FP16  
Weights

FP32 Loss

FP32 Gradients

Scaled 
FP16 

Gradients

FP32 Master 
Weights

Forward Pass
Backprop

Copy

Apply

Copy

Loss Scaling

Scaled FP32 
Loss

Scaled FP32 
Gradients

Remove scale

If gradients overflow (inf), throw away the batch

Distributed gradient accumulation / all-reduce

option 1 (slower) option 2 (faster)

In PyTorch

To automate the recipe, start with Nvidia’s apex.amp library:
 
from apex import amp

optim = torch.optim.Adam(…)

model, optim = amp.initialize(model, optim, opt_level="O1")

(…)

with amp.scale_loss(loss, optim) as scaled_loss: 
 scaled_loss.backward()

optim.step()

 34

Making it even faster

apex.amp supports different optimization levels

opt_level="O1" is conservative and keeps many ops in FP32

opt_level="O2" is faster, but may require manually converting some
ops to FP32 to achieve good results

More details at: https://nvidia.github.io/apex/

 35

Making it even faster
A useful pattern:

 

x = torch.nn.functional.softmax(x, dtype=torch.float32).type_as(x)

When x is FP16 (i.e., a torch.HalfTensor):
• Computes the softmax in FP32 and casts back to FP16

When x is FP32 (i.e., a torch.FloatTensor):
• No impact on speed or memory

 36

One more thing…
Must have GPU with Tensor Cores (Volta+), CUDA 9.1 or newer

Additionally:
• Batch size should be a multiple of 8
• M, N and K for matmul should be multiples of 8
• Dictionaries/embed layers should be padded to be a multiple of 8

 37

Summary
Mixed precision training gives:

• Tensor Cores make FP16 ops 4-9x faster
• No architecture changes required
• Use Nvidia's apex library

Tradeoffs:
• Some extra bookkeeping required (mostly handled by apex)
• Best perf requires manual fixes for softmax, layernorm, etc.

 38

Scaling  
Machine Translation

 39

Teng Li Ailing Zhang Shubho SenguptaMyle Ott Sergey Edunov David Grangier Michael Auli

Sequence to Sequence Learning

Bonjour à tous ! Hello everybody!

• Sequence to sequence mapping
• Input = sequence, output = sequence
• Structured prediction problem

• machine translation
• text summarization
• writing stories
• question generation
• dialogue, chatbots
• paraphrasing
• ...

Sequence to Sequence Learning

 41

Why do we need to scale?

• Large benchmark ~2.4 billion words  
+ much more unlabeled data

• Training time: CNNs up to 38 days on 8 M40 GPUs (Gehring et al., 2017)

• Train many models

• Support Multilingual training

 42

Reducing training time

Tr
ai

n
Ti

m
e

(M
in

ut
es

)

0

400

800

1200

1600

Original +16-bit + cumul +2x lr 16 nodes +overlap

1,429

 43

Time in minutes to train "Transformer" translation
model on Volta V100 GPUs (WMT En-De)

Reducing training time

Tr
ai

n
Ti

m
e

(M
in

ut
es

)

0

400

800

1200

1600

Original +16-bit + cumul +2x lr 16 nodes +overlap

495

1,429

 44

Time in minutes to train "Transformer" translation
model on Volta V100 GPUs (WMT En-De)

3x faster (wall time) using the same
hardware, model architecture and bsz!

Reducing training time

Tr
ai

n
Ti

m
e

(M
in

ut
es

)

0

400

800

1200

1600

Original +16-bit + cumul +2x lr 16 nodes +overlap

447495

1,429

 45

Gradient

Forward/Backward

IdleGPU 1

GPU 2

GPU 3

GPU 4

Sync After 1

Sync After 2

Time

GPU 1

GPU 2

GPU 3

GPU 4

Time in minutes to train "Transformer" translation
model on Volta V100 GPUs (WMT En-De)

Reducing training time

Tr
ai

n
Ti

m
e

(M
in

ut
es

)

0

400

800

1200

1600

Original +16-bit + cumul +2x lr 16 nodes +overlap

311
447495

1,429

 46

Time in minutes to train "Transformer" translation
model on Volta V100 GPUs (WMT En-De)

Reducing training time

Tr
ai

n
Ti

m
e

(M
in

ut
es

)

0

400

800

1200

1600

Original +16-bit + cumul +2x lr 16 nodes +overlap

37

311
447495

1,429

 47

Time in minutes to train "Transformer" translation
model on Volta V100 GPUs (WMT En-De)

Reducing training time

Tr
ai

n
Ti

m
e

(M
in

ut
es

)

0

400

800

1200

1600

Original +16-bit + cumul +2x lr 16 nodes +overlap

3237

311
447495

1,429

 48

Gradient Sync

Forward

Idle

Backward
GPU 1

GPU 2

GPU 3

GPU 4

Sync After Backward

Overlap Sync with Backward

GPU 1

GPU 2

GPU 3

GPU 4

Time

Implemented in PyTorch's
DistributedDataParallel

Time in minutes to train "Transformer" translation
model on Volta V100 GPUs (WMT En-De)

Semi-supervised  
machine translation

 49

Myle OttSergey Edunov David GrangierMichael Auli

Bilingual

German

English

=

German

English

=

Intermediate
Model

Data augmentation for Translation
Back-translation (Bojar & Tamchyna, 2011; Sennrich et al., 2016)

Bilingual

German

English

= GermanEnglish=

Intermediate
Model

Data augmentation for Translation
Back-translation (Bojar & Tamchyna, 2011; Sennrich et al., 2016)

Monolingual Source

GermanGermanGerman

Bilingual

German

English

=

Intermediate
Model

Monolingual Generated

EnglishEnglish

Monolingual Source

German

GermanGerman

Bilingual
Intermediate

Model

German

English

=

Monolingual Generated

EnglishEnglish

Monolingual Source

German

GermanGerman

Bilingual

German

English

=

Intermediate
Model

German

English

=

Model

Monolingual Generated

EnglishEnglishEnglishEnglish

Bilingual

Monolingual Source

German

German

English

=

German

German

English

=

Final
Model

Bilingual

Monolingual Source

Monolingual Generated

German

EnglishEnglish

GermanEnglishEnglish=

Final
Model

German

English

=

Scaling from 100M to 5.8B words

 57

BL
EU

 (A
cc

ur
ac

y)

0

9

18

27

36

fairse
q &  

sampled BT DeepL 

(2017)

SAtt +
 RPR 

(Google, 2018)

WTra
nsfo

rmer 

(Salesfo
rce, 2017)

Tra
nsfo

rmer 

(Google, 2017)
ConvS2S 

(2017)
GNMT  

(RNN, 2016)

Phrase-based 

(2014)

20.7
24.625.2

28.428.929.2
33.335

WMT'14 English-GermanHigh quality, non-benchmark data

Only benchmark
bilingual +

monolingual data

Model trains in 22.5h  
on 128 V100

WMT'18 Human evaluations

 58

Ranked #1 in the human
evaluation of the WMT'18
English-German translation task

Conclusion

 59

Mixed precision training in PyTorch:
• 3-4x speedups in training wall time
• No architecture changes required
• Use Nvidia's apex library

Case study: Neural Machine Translation
• Train models in 30 minutes instead of 1 day+
• State-of-the-art translation quality using semi-supervised learning

Thank you! Questions?

 60

Contact Us
 Myle Ott Sergey Edunov  

myleott@fb.com edunov@fb.com
References
• Scaling Neural Machine Translation: arxiv.org/abs/1806.00187
• Understanding Back-translation at Scale: arxiv.org/abs/1808.09381
• apex: nvidia.github.io/apex

Acknowledgements: Nvidia and PyTorch teams for helping us
implement and optimize mixed precision training.

