
C. Bayan Bruss

Anish Khazane

A Massively Scalable Architecture for Learning
Representations from Heterogeneous Graphs
NVIDIA GPU Technology Conference 2019 - San Jose, CA

2

1. Overview & Background

2. Our Approach

3. Results

TODAY’S TALK
How to handle heterogeneity in training large

graph embedding models

3

Who we are

Bayan Bruss Anish Khazane

4

SECTION ONE: OVERVIEW
A quick background on graph embeddings & some of the issues related to
scaling them

5

People are can be
disproportionately attracted to
content that is sensational or

provocative.

6

Machine learning systems
that learn how to serve

content are prone to
optimizing towards these

types of content.

7

Some common problems and solutions

1. If this is a problem with content (spam,
violent, racist, homophobic, etc.)

2. If this is a problem with users (fake
accounts, malicious actors)

-> Flag & demote content that is deemed objectionable

-> Eliminate fraudulent accounts

8

What’s missing?

9

Basic mechanics of a neural network recommender

User Article

10

Basic mechanics of a neural network recommender

User Article

11

Basic mechanics of a neural network recommender

User ArticleClicks On

12

Basic mechanics of a neural network recommender

User Article

13

Basic mechanics of a neural network recommender

User Article

14

Basic mechanics of a neural network recommender

User Article

15

Basic mechanics of a neural network recommender

User ArticleRecommended to

16

How can we add more fidelity to these models?

1. Treat heterogeneous graphs as containing distinct element types

2. Model interactions depending what type of entity is involved

17

A brief history of graph embeddings

Most Common Objective:

- Learn a continuous vector for each node in a graph that preserves some local or global
topological features about the neighborhood of that node

Early Efforts Focused on Explicit Matrix Factorization

- Not very scalable
- Highly tuned to specific topological attributes

18

Meanwhile over in the language modeling world

Word2Vec world blows things open

Y Bengio, R Ducharme, P Vincent, C Jauvin. A neural probabilistic
language model. Journal of machine learning research, 2003

Mikolov, Tomas, et al. "Distributed representations of words
and phrases and their compositionality." Advances in neural
information processing systems. 2013.

19

Quickly ported to graph embeddings

Walks on a graph can be likened to sentences in a document

BA C

D E

F

20

Quickly ported to graph embeddings

Walks on a graph can be likened to sentences in a document

BA C

D E

F

21

Quickly ported to graph embeddings

Walks on a graph can be likened to sentences in a document

BA C

D E

F

22

Quickly ported to graph embeddings

Walks on a graph can be likened to sentences in a document

BA C

D E

F

23

Quickly ported to graph embeddings

Walks on a graph can be likened to sentences in a document

BA C

D E

F

24

Quickly ported to graph embeddings

Walks on a graph can be likened to sentences in a document

BA C

D E

F

25

Quickly ported to graph embeddings

Walks on a graph can be likened to sentences in a document

BA C

D E

F

26

Quickly ported to graph embeddings

Walks on a graph can be likened to sentences in a document

BA C

D E

F

[“D”, “B”, “A”, “F”]

[“F”, “C”, “F”, “E”]

27

Walks on graphs can be treated as sentences

[“D”, “B”, “A”, “F”]

[“F”, “C”, “F”, “E”]

28

Graphs are different from language

29

Graphs are different from language

30

Graphs are different from language

Confidential 31

Graphs can be heterogeneous

HeatCavs Lakers

Lebron
James

Steph
Curry

Kevin
Durant

Thunder Rockets Warriors

James
Harden

JaVale
McGee

Dion
Waiters

Confidential 32

All this makes scale an
even bigger challenge

Confidential 33

Homogeneous graphs are difficult

Dimensionality: Millions or even billions of nodes

Sparsity: Each node only interacts with a small subset of other nodes

34

Quickly hit limits on all resources

1) An embedding space is a N X D dimensional matrix where each row corresponds to a row.
2) D is typically 100 - 200 (an arbitrary hyperparameter)
3) A 500M node graph would be 200 - 400 GB
4) Cannot hold in GPU memory
5) Quickly exceeds limits of a single worker
6) Lots of little vector multiplication ideal for GPUs
7) Sharding because of connectedness - sharding the matrix is challenging

Confidential 35

Heterogeneous graphs are even harder

Have to keep K possible embedding spaces with N nodes for each

Have to have an architecture that routes to the right embedding space

Confidential 36

We’re working on this too but not the focus of today’s talk

See interesting articles

- Metapath2Vec: Scalable Representation Learning for Heterogeneous Networks
- CARL: Content-Aware representation Learning for Heterogeneous Graphs

It’s also hard from an algorithmic perspective

37

SECTION TWO: OUR APPROACH
Applied Research: An architecture for handling heterogeneity at scale

38

Quick Primer on Negative Sampling

Original SkipGram Model

Need to compute
softmax over entire
vocabulary for each
input

39

Quick Primer on Negative Sampling

Original SkipGram Model

VERY EXPENSIVE!

40

Softmax can be approximated by binary classification task

Original SkipGram Model

Binary Discriminator
w(t-2) vs negative samples

w(t-1) vs negative samples

w(t+1) vs negative samples

w(t+2) vs negative samples

41

Use non-edges to generate negative samples

Negatives for B

BA C

D E

F

[“D”, “B”, “A”, “F”]

[“F”, “C”, “F”, “E”]

[“F”, “C”, “F”]

Context for B

Confidential 42

Walking on heterogeneous graph

HeatCavs Lakers

Lebron
James

Steph
Curry

Kevin
Durant

Thunder Rockets Warriors

James
Harden

JaVale
McGee

Dion
Waiters

43

How to distribute (parallelize) training

1. Split the training set across a number of workers that execute in parallel
asynchronously and unaware of the existence of each other.

2. Create some form of centralized parameter repository that allows learning to
be shared across all the workers.

44

Parameter server partitioning

● A parameter server can hold the embeddings table which contains the
vectors corresponding to each node in the graph.

● The embeddings table is a N x M table, where N is the number of nodes in
the graph and M is a hyperparameter that denotes the number of
embedding dimensions.

Confidential 45

Variable Tensorflow Computational Graphs

47

SECTION THREE: RESULTS

Confidential 48

Capital One Heterogeneous Data

Node Type A: 18, 856, 021

Node Type B: 32, 107, 404

Total Nodes: 50, 963, 425

Edges: 280, 422, 628

Train Time: 3 Days on 28 workers

49

Friendster Graph

Publicly available dataset

68,349,466 vertices (users)

2,586,147,869 edges (friendships)

Sampled 80 positive and 5 * 80 negative edges per node as training data.

The data was shuffled, split into chunks and distributed across workers

50

Friendster Graph

51

Friendster Graph

52

Implications

Scalability:

- More nodes per entity type
- More entity types

Convergence:

- Faster as number of workers increases

Confidential 53

Limitations and Future Directions

Limitations

• Python performance

• Not partitioning the embedding space

• Recomputing the computational graph for
each batch could be optimized

Future Directions

• Evaluate c++ variant of architecture

• Intelligent partitioning of graph so that
each worker gets a component of the
graph and only has to go to the server for
small subset of nodes in other
components

THANK YOU

