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TODAY’S TALK
How to handle heterogeneity in training large 

graph embedding models
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Who we are

Bayan Bruss Anish Khazane
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SECTION ONE: OVERVIEW
A quick background on graph embeddings & some of the issues related to 
scaling them
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People are can be 
disproportionately attracted to 
content that is sensational or 

provocative. 
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Machine learning systems 
that learn how to serve 

content are prone to 
optimizing towards these 

types of content.
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Some common problems and solutions

1. If this is a problem with content (spam, 
violent, racist, homophobic, etc.)

2. If this is a problem with users (fake 
accounts, malicious actors)

->  Flag & demote content that is deemed objectionable

->  Eliminate fraudulent accounts



8

What’s missing?
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Basic mechanics of a neural network recommender

User Article
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Basic mechanics of a neural network recommender

User ArticleClicks On
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Basic mechanics of a neural network recommender

User Article
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Basic mechanics of a neural network recommender

User ArticleRecommended to
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How can we add more fidelity to these models?

1. Treat heterogeneous graphs as containing distinct element types

2. Model interactions depending what type of entity is involved
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A brief history of graph embeddings

Most Common Objective:

- Learn a continuous vector for each node in a graph that preserves some local or global 
topological features about the neighborhood of that node

Early Efforts Focused on Explicit Matrix Factorization

- Not very scalable
- Highly tuned to specific topological attributes
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Meanwhile over in the language modeling world

Word2Vec world blows things open

Y Bengio, R Ducharme, P Vincent, C Jauvin. A neural probabilistic 
language model.  Journal of machine learning research, 2003

Mikolov, Tomas, et al. "Distributed representations of words 
and phrases and their compositionality." Advances in neural 
information processing systems. 2013.
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Quickly ported to graph embeddings

Walks on a graph can be likened to sentences in a document
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Quickly ported to graph embeddings

Walks on a graph can be likened to sentences in a document
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[“D”, “B”, “A”, “F”]

[“F”, “C”, “F”, “E”] 
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Walks on graphs can be treated as sentences

[“D”, “B”, “A”, “F”]

[“F”, “C”, “F”, “E”] 
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Graphs are different from language
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Graphs are different from language
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Graphs are different from language
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Graphs can be heterogeneous

HeatCavs Lakers
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All this makes scale an 
even bigger challenge
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Homogeneous graphs are difficult

Dimensionality: Millions or even billions of nodes

Sparsity: Each node only interacts with a small subset of other nodes
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Quickly hit limits on all resources

1) An embedding space is a N X D dimensional matrix where each row corresponds to a row.
2) D is typically 100 - 200 (an arbitrary hyperparameter)
3) A 500M node graph would be 200 - 400 GB
4) Cannot hold in GPU memory
5) Quickly exceeds limits of a single worker
6) Lots of little vector multiplication ideal for GPUs
7) Sharding because of connectedness - sharding the matrix is challenging
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Heterogeneous graphs are even harder

Have to keep K possible embedding spaces with N nodes for each

Have to have an architecture that routes to the right embedding space 
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We’re working on this too but not the focus of today’s talk

See interesting articles 

- Metapath2Vec: Scalable Representation Learning for Heterogeneous Networks
- CARL: Content-Aware representation Learning for Heterogeneous Graphs

It’s also hard from an algorithmic perspective
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SECTION TWO: OUR APPROACH
Applied Research: An architecture for handling heterogeneity at scale
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Quick Primer on Negative Sampling

Original SkipGram Model

Need to compute 
softmax over entire 
vocabulary for each 
input
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Quick Primer on Negative Sampling

Original SkipGram Model

VERY EXPENSIVE!
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Softmax can be approximated by binary classification task

Original SkipGram Model

Binary Discriminator
w(t-2) vs negative samples

w(t-1) vs negative samples

w(t+1) vs negative samples

w(t+2) vs negative samples
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Use non-edges to generate negative samples

Negatives for B

BA C

D E

F

[“D”, “B”, “A”, “F”]

[“F”, “C”, “F”, “E”] 

[“F”, “C”, “F”]

Context for B
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Walking on heterogeneous graph
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How to distribute (parallelize) training

1. Split the training set across a number of workers that execute in parallel 
asynchronously and unaware of the existence of each other. 

2. Create some form of centralized parameter repository that allows learning to 
be shared across all the workers.
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Parameter server partitioning

● A parameter server can hold the embeddings table which contains the 
vectors corresponding to each node in the graph.

● The embeddings table is a N x M table, where N is the number of nodes in 
the graph and M is a hyperparameter that denotes the number of 
embedding dimensions.
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Variable Tensorflow Computational Graphs
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SECTION THREE: RESULTS
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Capital One Heterogeneous Data

Node Type A: 18, 856, 021

Node Type B:  32, 107, 404

Total Nodes: 50, 963, 425

Edges: 280, 422, 628

Train Time: 3 Days on 28 workers
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Friendster Graph

Publicly available dataset

68,349,466 vertices (users)

2,586,147,869 edges (friendships)

Sampled 80 positive and 5 * 80 negative edges per node as training data.

The data was shuffled, split into chunks and distributed across workers
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Friendster Graph
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Friendster Graph
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Implications

Scalability:

- More nodes per entity type
- More entity types

Convergence:

- Faster as number of workers increases



Confidential 53

Limitations and Future Directions

Limitations

• Python performance

• Not partitioning the embedding space

• Recomputing the computational graph for 
each batch could be optimized

Future Directions

• Evaluate c++ variant of architecture

• Intelligent partitioning of graph so that 
each worker gets a component of the 
graph and only has to go to the server for 
small subset of nodes in other 
components
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