

# A Massively Scalable Architecture for Learning Representations from Heterogeneous Graphs

NVIDIA GPU Technology Conference 2019 - San Jose, CA

C. Bayan Bruss

Anish Khazane

#### 1. Overview & Background

2. Our Approach

3. Results

## TODAY'S TALK

How to handle heterogeneity in training large graph embedding models



Who we are



Bayan Bruss



#### Anish Khazane



# **SECTION ONE: OVERVIEW**

A quick background on graph embeddings & some of the issues related to scaling them



People are can be disproportionately attracted to content that is sensational or provocative.



Machine learning systems that learn how to serve content are prone to optimizing towards these types of content.



#### Some common problems and solutions

- 1. If this is a problem with content (spam, violent, racist, homophobic, etc.)
  - 2. If this is a problem with users (fake accounts, malicious actors)
- -> Flag & demote content that is deemed objectionable
- -> Eliminate fraudulent accounts



# What's missing?









































#### How can we add more fidelity to these models?

- 1. Treat heterogeneous graphs as containing distinct element types
- 2. Model interactions depending what type of entity is involved



#### A brief history of graph embeddings

Most Common Objective:

 Learn a continuous vector for each node in a graph that preserves some local or global topological features about the neighborhood of that node

Early Efforts Focused on Explicit Matrix Factorization

- Not very scalable
- Highly tuned to specific topological attributes



#### Meanwhile over in the language modeling world

#### Word2Vec world blows things open



Y Bengio, R Ducharme, P Vincent, C Jauvin. A neural probabilistic language model. Journal of machine learning research, 2003



Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." *Advances in neural information processing systems*. 2013.































Walks on a graph can be likened to sentences in a document



["D", "B", "A", "F"]

["F", "C", "F", "E"]



#### Walks on graphs can be treated as sentences





## Graphs are different from language

#### Graph's can be much bigger





## Graphs are different from language

#### Graph's can be much bigger





## Graphs are different from language

#### Graph's can be much bigger





#### Graphs can be heterogeneous





All this makes scale an even bigger challenge



#### Homogeneous graphs are difficult

<u>Dimensionality</u>: Millions or even billions of nodes

<u>Sparsity</u>: Each node only interacts with a small subset of other nodes



#### Quickly hit limits on all resources

- 1) An embedding space is a N X D dimensional matrix where each row corresponds to a row.
- 2) D is typically 100 200 (an arbitrary hyperparameter)
- 3) A 500M node graph would be 200 400 GB
- 4) Cannot hold in GPU memory
- 5) Quickly exceeds limits of a single worker
- 6) Lots of little vector multiplication ideal for GPUs
- 7) Sharding because of connectedness sharding the matrix is challenging



#### Heterogeneous graphs are even harder

Have to keep K possible embedding spaces with N nodes for each

Have to have an architecture that routes to the right embedding space



## It's also hard from an algorithmic perspective

We're working on this too but not the focus of today's talk

See interesting articles

- Metapath2Vec: Scalable Representation Learning for Heterogeneous Networks
- CARL: Content-Aware representation Learning for Heterogeneous Graphs



# **SECTION TWO: OUR APPROACH**

Applied Research: An architecture for handling heterogeneity at scale



## Quick Primer on Negative Sampling

### Original SkipGram Model



Need to compute softmax over entire vocabulary for each input



## Quick Primer on Negative Sampling

### Original SkipGram Model



#### **VERY EXPENSIVE!**



## Softmax can be approximated by binary classification task

#### Original SkipGram Model



Binary Discriminator w(t-2) vs negative samples w(t-1) vs negative samples w(t+1) vs negative samples w(t+2) vs negative samples



### Use non-edges to generate negative samples



## Negatives for B ["F", "C", "F"] ["D", "B", "A", "F"] Context for B

["F", "C", "F", "E"]



## Walking on heterogeneous graph





### How to distribute (parallelize) training

1. Split the training set across a number of workers that execute in parallel asynchronously and unaware of the existence of each other.

2. Create some form of centralized parameter repository that allows learning to be shared across all the workers.



### Parameter server partitioning

• A parameter server can hold the embeddings table which contains the vectors corresponding to each node in the graph.

• The embeddings table is a N x M table, where N is the number of nodes in the graph and M is a hyperparameter that denotes the number of embedding dimensions.



### Variable Tensorflow Computational Graphs







# SECTION THREE: RESULTS



### Capital One Heterogeneous Data

Node Type A: 18, 856, 021

Node Type B: 32, 107, 404

Total Nodes: 50, 963, 425

Edges: 280, 422, 628



Train Time: 3 Days on 28 workers



### Friendster Graph

- Publicly available dataset
- 68,349,466 vertices (users)
- 2,586,147,869 edges (friendships)
- Sampled 80 positive and 5 \* 80 negative edges per node as training data.
- The data was shuffled, split into chunks and distributed across workers



## Friendster Graph





### Friendster Graph





## Implications

### Scalability:

- More nodes per entity type
- More entity types

### Convergence:

- Faster as number of workers increases



## Limitations and Future Directions

### <u>Limitations</u>

- Python performance
- Not partitioning the embedding space
- Recomputing the computational graph for each batch could be optimized

### **Future Directions**

- Evaluate c++ variant of architecture
- Intelligent partitioning of graph so that each worker gets a component of the graph and only has to go to the server for small subset of nodes in other components



# Capital One®

## THANK YOU