
Onur Yilmaz, Ph.D. | oyilmaz@nvidia.com | Senior ML/DL Scientist and Engineer
Corey Nolet | cnolet@nvidia.com | Data Scientist and Senior Engineer

cuML: A Library for GPU Accelerated
Machine Learning

2

About Us

Corey Nolet

Data Scientist & Senior Engineer on the RAPIDS cuML team at NVIDIA

Focuses on building and scaling machine learning algorithms to support extreme
data loads at light-speed

Over a decade experience building massive-scale exploratory data science & real-
time analytics platforms for HPC environments in the defense industry

Working towards PhD in Computer Science, focused on unsupervised
representation learning

Onur Yilmaz, Ph.D.

Senior ML/DL Scientist and Engineer on the RAPIDS cuML team at NVIDIA

Focuses on building single and multi GPU machine learning algorithms to support
extreme data loads at light-speed

Ph.D. in computer engineering, focusing on ML for finance.

3

Agenda

• Introduction to cuML

• Architecture Overview

• cuML Deep Dive

• Benchmarks

• cuML Roadmap

4

Introduction

“Details are confusing. It is only by selection, by elimination, by emphasis,
that we get to the real meaning of things.”

~ Georgia O'Keefe
Mother of American Modernism

5

Realities of Data

6

Problem
Data sizes continue to grow

7

Problem
Data sizes continue to grow

8

Problem
Data sizes continue to grow

m
in(variance)

min(bias)

9

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

10

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

11

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

12

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

13

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

14

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate.

15

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate.

16

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

17

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

Iterate some more.

18

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

Iterate some more.

Meet reasonable speed vs accuracy tradeoff

19

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

Iterate some more.

Meet reasonable speed vs accuracy tradeoff

Time
Increases

20

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

Iterate some more.

Meet reasonable speed vs accuracy tradeoff

Hours?

Time
Increases

21

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

Iterate some more.

Meet reasonable speed vs accuracy tradeoff

Hours? Days?

Time
Increases

22

ML Workflow Stifles Innovation
It Requires Exploration and Iterations

All
Data

ETL

Manage Data

Structured
Data Store

Feature
Engineering

Training

Model
Training

Tuning &
Selection

Evaluate

Inference

Deploy

Accelerating just `Model Training` does have benefit but doesn’t address the whole problem

Iterate …
Cross Validate …
Grid Search …
Iterate some more.

23

ML Workflow Stifles Innovation
It Requires Exploration and Iterations

All
Data

ETL

Manage Data

Structured
Data Store

Feature
Engineering

Training

Model
Training

Tuning &
Selection

Evaluate

Inference

Deploy

Accelerating just `Model Training` does have benefit but doesn’t address the whole problem

End-to-End acceleration is needed

Iterate …
Cross Validate …
Grid Search …
Iterate some more.

24

Architecture

“More data requires better approaches!”
~ Xavier Amatriain

CTO, CurAI

25

RAPIDS: OPEN GPU DATA SCIENCE
cuDF, cuML, and cuGraph mimic well-known libraries

Data Preparation VisualizationModel Training

CUDA

PYTHON

D
AS

K

DL
FRAMEWORKS

CUDNN

RAPIDS

CUMLCUDF CUGRAPH

APACHE ARROW

Pandas-like

ScikitLearn-like

NetworkX-like

26

HIGH-LEVEL APIs

CUDA/C++

Multi-Node & Multi-GPU Communications

ML Primitives

ML Algorithms

Python

Dask Multi-GPU ML

Scikit-Learn-Like

Host 2

GPU1 GPU3

GPU2 GPU4

Host 1

GPU1 GPU3

GPU2 GPU4

Dask-CUML

CuML

libcuml

27

cuML API

Python

Algorithms

Primitives

GPU-accelerated machine learning at every layer

Scikit-learn-like interface for data scientists utilizing
cuDF & Numpy

CUDA C++ API for developers to utilize accelerated machine
learning algorithms.

Reusable building blocks for composing machine learning
algorithms.

28

Linear Algebra

Primitives
GPU-accelerated math optimized for feature matrices

Statistics

Matrix / Math

Random

Distance / Metrics

Objective Functions

More to come!

• Element-wise operations

• Matrix multiply

• Norms

• Eigen Decomposition

• SVD/RSVD

• Transpose

• QR Decomposition Sparse Conversions

29

Algorithms
GPU-accelerated Scikit-Learn

Classification / Regression

Statistical Inference

Clustering

Decomposition & Dimensionality Reduction

Timeseries Forecasting

Recommendations

Decision Trees / Random Forests
Linear Regression
Logistic Regression
K-Nearest Neighbors
Kalman Filtering
Bayesian Inference
Gaussian Mixture Models
Hidden Markov Models
K-Means
DBSCAN
Spectral Clustering
Principal Components
Singular Value Decomposition
UMAP
Spectral Embedding
ARIMA
Holt-Winters

Implicit Matrix Factorization

Cross Validation

More to come!

Hyper-parameter Tuning

30

HIGH-LEVEL APIs

CUDA/C++

Multi-Node / Multi-GPU Communications

ML Primitives

ML Algorithms

Python

Dask Multi-GPU ML

Scikit-Learn-Like

Host 2

GPU1 GPU3

GPU2 GPU4

Host 1

GPU1 GPU3

GPU2 GPU4

Data Distribution

Model Parallelism

31

HIGH-LEVEL APIs

CUDA/C++

Multi-Node / Multi-GPU Communications

ML Primitives

ML Algorithms

Python

Dask Multi-GPU ML

Scikit-Learn-Like

Host 2

GPU1 GPU3

GPU2 GPU4

Host 1

GPU1 GPU3

GPU2 GPU4

Data Distribution

Model Parallelism

• Portability

• Efficiency

• Speed

32

Dask cuML
Distributed Data-parallelism Layer

• Distributed computation scheduler for Python

• Scales up and out

• Distributes data across processes

• Enables model-parallel cuML algorithms

33

ML Technology Stack

Python

Cython

cuML Algorithms

cuML Prims

CUDA Libraries

CUDA

Dask cuML
Dask cuDF

cuDF
Numpy

Thrust
Cub

cuSolver
nvGraph
CUTLASS
cuSparse
cuRand
cuBlas

34

cuML Deep Dive

“I would posit that every scientist is a data scientist.”
~ Arun Subramaniyan

V.P. of Data Science & Analytics, Baker Hughes, a GE Company

35

Linear Regression (OLS)
Python Layer

cuDF

Pandas

36

Linear Regression (OLS)
Python Layer

cuDF

37

Linear Regression (OLS)
Python Layer

cuML

Scikit-Learn

38

Linear Regression (OLS)
Python Layer

cuML

Scikit-Learn

39

Linear Regression (OLS)
Python Layer

cuML

Scikit-Learn

40

Linear Regression (OLS)
cuML Algorithms CUDA C++ Layer

41

Linear Regression (OLS)
cuML Algorithms CUDA C++ Layer

42

Linear Regression (OLS)
cuML ML-Prims CUDA C++ Layer

43

Linear Regression (OLS)
cuML ML-Prims CUDA C++ Layer

44

Linear Regression (OLS)
cuML ML-Prims CUDA C++ Layer

45

Linear Regression (OLS)
cuML ML-Prims CUDA C++ Layer

46

Linear Regression (OLS)
cuML ML-Prims CUDA C++ Layer

47

Linear Regression (OLS)
cuML ML-Prims CUDA C++ Layer

48

Linear Regression (OLS)
cuML ML-Prims CUDA C++ Layer

c1 c2 c3 ….
cN

M
at

ri
x

A
Ve

ct
or

 b ….

49

Benchmarks

50

ALGORITHMS
Benchmarked on DGX1

51

UMAP
Released in 0.6!

52

cuDF + XGBoost
DGX-2 vs Scale Out CPU Cluster

• Full end to end pipeline
• Leveraging Dask + cuDF
• Store each GPU results in sys mem then read back in
• Arrow to Dmatrix (CSR) for XGBoost

53

cuDF + XGBoost
Scale Out GPU Cluster vs DGX-2

0 50 100 150 200 250 300 350

5x DGX-1

DGX-2

Chart Title

ETL+CSV (s) ML Prep (s) ML (s)

• Full end to end pipeline
• Leveraging Dask for multi-node + cuDF
• Store each GPU results in sys mem then read back in
• Arrow to Dmatrix (CSR) for XGBoost

54

cuDF + XGBoost
Fully In- GPU Benchmarks

• Full end to end pipeline
• Leveraging Dask cuDF
• No Data Prep time all in memory
• Arrow to Dmatrix (CSR) for XGBoost

55

XGBoost
Multi-node, Multi-GPU Performance

2290

1956

1999

1948

169

157

0 500 1000 1500 2000 2500

20	CPU	 Nodes

30	CPU	 Nodes

50	CPU	 Nodes

100	CPU	 Nodes

DGX-2

5x	DGX-1

20	CPU	 Nodes

30	CPU	 Nodes

50	CPU	 Nodes

100	CPU	 Nodes

DGX-2
5x	DGX-1

Benchmark

200GB CSV dataset; Data preparation
includes joins, variable transformations.

CPU Cluster Configuration

CPU nodes (61 GiB of memory, 8 vCPUs,
64-bit platform), Apache Spark

DGX Cluster Configuration

DGX nodes on InfiniBand network

56

Single Node Multi-GPU

Linear Regression

• Reduction: 40mins -> 1min
• Size: 225gb
• System: DGX2

tSVD

• Reduction: 1.6hrs-> 1.5min
• Size: 220gb
• System: DGX2

Nearest Neighbors

• Reduction: 4+hrs-> 30sec
• Size: 128gb
• System: DGX1

Will be Released in 0.6

57

Roadmap

“Data science is the fourth pillar of the scientific method!”
~ Jensen Huang

58

CUML
Single GPU and XGBoost

cuML SG MG MGMN
Gradient	Boosted	Decision	Trees	

(GBDT)

GLM

Logistic	Regression

Random	Forest	(regression)

K-Means

K-NN

DBSCAN

UMAP

ARIMA

Kalman	Filter

Holts-Winters

Principal	Components

Singular	Value	Decomposition

59

DASK-CUML
OLS, tSVD, and KNN in RAPIDS 0.6

cuML SG MG MGMN
Gradient	Boosted	Decision	Trees	

(GBDT)

GLM

Logistic	Regression

Random	Forest	(regression)

K-Means

K-NN

DBSCAN

UMAP

ARIMA

Kalman	Filter

Holts-Winters

Principal	Components

Singular	Value	Decomposition

60

DASK-CUML
K-Means*, DBSCAN & PCA in RAPIDS 0.7/0.8

cuML SG MG MGMN
Gradient	Boosted	Decision	Trees	

(GBDT)

GLM

Logistic	Regression

Random	Forest	(regression)

K-Means

K-NN

DBSCAN

UMAP

ARIMA

Kalman	Filter

Holts-Winters

Principal	Components

Singular	Value	Decomposition
• Deprecating the current K-means in 0.6 for new K-means built on MLPrims

61

CuML 0.6

New Algorithms

• Stochastic Gradient Descent [Single GPU]

• UMAP [Single GPU]

• Linear Regression (OLS) [Single Node, Multi-GPU]

• Truncated SVD [Single Node, Multi-GPU]

Will be released with RAPIDS 0.6 on Friday!

Notable Improvements

• Exposing support for hyperparsmeter tuning

• Removing external requirement on FAISS

• Lowered Nearest Neighbors memory requirement

Thank you!

https://rapids.ai
https://github.com/cuml

https://github.com/dask-cuml

Corey Nolet: @cjnolet
Onur Yilmaz: @Onur02128993

