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About Us

Corey Nolet

Data Scientist & Senior Engineer on the RAPIDS cuML team at NVIDIA

Focuses on building and scaling machine learning algorithms to support extreme 
data loads at light-speed

Over a decade experience building massive-scale exploratory data science & real-
time analytics platforms for HPC environments in the defense industry

Working towards PhD in Computer Science, focused on unsupervised 
representation learning

Onur Yilmaz, Ph.D.

Senior ML/DL Scientist and Engineer on the RAPIDS cuML team at NVIDIA

Focuses on building single and multi GPU machine learning algorithms to support 
extreme data loads at light-speed

Ph.D. in computer engineering, focusing on ML for finance.
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Agenda

• Introduction to cuML

• Architecture Overview

• cuML Deep Dive

• Benchmarks

• cuML Roadmap
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Introduction

“Details are confusing. It is only by selection, by elimination, by emphasis, 
that we get to the real meaning of things.”

~ Georgia O'Keefe
Mother of American Modernism
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Realities of Data
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Problem
Data sizes continue to grow



7

Problem
Data sizes continue to grow



8

Problem
Data sizes continue to grow

m
in(variance)

min(bias)



9

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling



10

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling



11

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.



12

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.



13

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.



14

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. 



15

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate.



16

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.



17

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

Iterate some more.



18

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

Iterate some more.

Meet reasonable speed vs accuracy tradeoff



19

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

Iterate some more.

Meet reasonable speed vs accuracy tradeoff

Time
Increases



20

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

Iterate some more.

Meet reasonable speed vs accuracy tradeoff

Hours?

Time
Increases



21

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

Iterate some more.

Meet reasonable speed vs accuracy tradeoff

Hours? Days?

Time
Increases
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ML Workflow Stifles Innovation
It Requires Exploration and Iterations
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Deploy

Accelerating just `Model Training` does have benefit but doesn’t address the whole problem

Iterate …
Cross Validate …
Grid Search …
Iterate some more.
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ML Workflow Stifles Innovation
It Requires Exploration and Iterations

All 
Data

ETL

Manage Data

Structured 
Data Store

Feature 
Engineering

Training

Model 
Training

Tuning & 
Selection

Evaluate

Inference

Deploy

Accelerating just `Model Training` does have benefit but doesn’t address the whole problem

End-to-End acceleration is needed

Iterate …
Cross Validate …
Grid Search …
Iterate some more.
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Architecture

“More data requires better approaches!”
~ Xavier Amatriain

CTO, CurAI
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RAPIDS: OPEN GPU DATA SCIENCE
cuDF, cuML, and cuGraph mimic well-known libraries

Data Preparation VisualizationModel Training

CUDA

PYTHON

D
AS

K

DL 
FRAMEWORKS

CUDNN

RAPIDS

CUMLCUDF CUGRAPH

APACHE ARROW

Pandas-like

ScikitLearn-like

NetworkX-like
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HIGH-LEVEL APIs

CUDA/C++

Multi-Node & Multi-GPU Communications

ML Primitives

ML Algorithms

Python

Dask Multi-GPU ML

Scikit-Learn-Like

Host 2

GPU1 GPU3

GPU2 GPU4

Host 1

GPU1 GPU3

GPU2 GPU4

Dask-CUML

CuML

libcuml
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cuML API

Python

Algorithms

Primitives

GPU-accelerated machine learning at every layer

Scikit-learn-like interface for data scientists utilizing 
cuDF & Numpy

CUDA C++ API for developers to utilize accelerated machine 
learning algorithms.

Reusable building blocks for composing machine learning 
algorithms.
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Linear Algebra

Primitives
GPU-accelerated math optimized for feature matrices

Statistics

Matrix / Math

Random

Distance / Metrics

Objective Functions

More to come!

• Element-wise operations

• Matrix multiply

• Norms

• Eigen Decomposition

• SVD/RSVD

• Transpose

• QR Decomposition Sparse Conversions
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Algorithms
GPU-accelerated Scikit-Learn

Classification / Regression

Statistical Inference

Clustering

Decomposition & Dimensionality Reduction

Timeseries Forecasting

Recommendations

Decision Trees / Random Forests
Linear Regression
Logistic Regression
K-Nearest Neighbors
Kalman Filtering
Bayesian Inference
Gaussian Mixture Models
Hidden Markov Models
K-Means
DBSCAN
Spectral Clustering
Principal Components
Singular Value Decomposition
UMAP
Spectral Embedding
ARIMA
Holt-Winters

Implicit Matrix Factorization

Cross Validation

More to come!

Hyper-parameter Tuning
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HIGH-LEVEL APIs

CUDA/C++

Multi-Node / Multi-GPU Communications

ML Primitives

ML Algorithms

Python

Dask Multi-GPU ML

Scikit-Learn-Like

Host 2

GPU1 GPU3

GPU2 GPU4

Host 1

GPU1 GPU3

GPU2 GPU4

Data Distribution

Model Parallelism

• Portability

• Efficiency

• Speed
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Dask cuML
Distributed Data-parallelism Layer

• Distributed computation scheduler for Python

• Scales up and out

• Distributes data across processes

• Enables model-parallel cuML algorithms
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ML Technology Stack

Python

Cython

cuML Algorithms

cuML Prims

CUDA Libraries

CUDA

Dask cuML
Dask cuDF

cuDF
Numpy

Thrust
Cub

cuSolver
nvGraph
CUTLASS
cuSparse
cuRand
cuBlas
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cuML Deep Dive

“I would posit that every scientist is a data scientist.”
~ Arun Subramaniyan

V.P. of Data Science & Analytics, Baker Hughes, a GE Company
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Linear Regression (OLS)
Python Layer

cuDF

Pandas
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Linear Regression (OLS)
Python Layer

cuDF
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Linear Regression (OLS)
Python Layer

cuML

Scikit-Learn
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Linear Regression (OLS)
Python Layer

cuML

Scikit-Learn
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Linear Regression (OLS)
Python Layer

cuML

Scikit-Learn
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Linear Regression (OLS)
cuML Algorithms CUDA C++ Layer
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Linear Regression (OLS)
cuML Algorithms CUDA C++ Layer
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Linear Regression (OLS)
cuML ML-Prims CUDA C++ Layer
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Linear Regression (OLS)
cuML ML-Prims CUDA C++ Layer
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Linear Regression (OLS)
cuML ML-Prims CUDA C++ Layer
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Benchmarks
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ALGORITHMS
Benchmarked on DGX1
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UMAP
Released in 0.6!
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cuDF + XGBoost
DGX-2 vs Scale Out CPU Cluster

• Full end to end pipeline
• Leveraging Dask + cuDF
• Store each GPU results in sys mem then read back in
• Arrow to Dmatrix (CSR) for XGBoost
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cuDF + XGBoost
Scale Out GPU Cluster vs DGX-2

0 50 100 150 200 250 300 350

5x DGX-1

DGX-2

Chart Title

ETL+CSV (s) ML Prep (s) ML (s)

• Full end to end pipeline
• Leveraging Dask for multi-node + cuDF
• Store each GPU results in sys mem then read back in
• Arrow to Dmatrix (CSR) for XGBoost
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cuDF + XGBoost
Fully In- GPU Benchmarks

• Full end to end pipeline
• Leveraging Dask cuDF
• No Data Prep time all in memory
• Arrow to Dmatrix (CSR) for XGBoost
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XGBoost
Multi-node, Multi-GPU Performance

2290

1956

1999

1948

169

157

0 500 1000 1500 2000 2500

20	CPU	 Nodes

30	CPU	 Nodes

50	CPU	 Nodes

100	CPU	 Nodes

DGX-2 

5x	DGX-1 

20	CPU	 Nodes

30	CPU	 Nodes

50	CPU	 Nodes

100	CPU	 Nodes

DGX-2 
5x	DGX-1 

Benchmark

200GB CSV dataset; Data preparation 
includes joins, variable transformations.

CPU Cluster Configuration 

CPU nodes (61 GiB of memory, 8 vCPUs, 
64-bit platform), Apache Spark

DGX Cluster Configuration

DGX nodes on InfiniBand network
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Single Node Multi-GPU

Linear Regression

• Reduction: 40mins -> 1min
• Size: 225gb
• System: DGX2

tSVD

• Reduction: 1.6hrs-> 1.5min
• Size: 220gb
• System: DGX2

Nearest Neighbors

• Reduction: 4+hrs-> 30sec
• Size: 128gb
• System: DGX1

Will be Released in 0.6
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Roadmap

“Data science is the fourth pillar of the scientific method!”
~ Jensen Huang
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CUML
Single GPU and XGBoost

cuML SG MG MGMN
Gradient	Boosted	Decision	Trees	

(GBDT)

GLM

Logistic	Regression

Random	Forest	(regression)

K-Means

K-NN

DBSCAN

UMAP

ARIMA

Kalman	Filter

Holts-Winters

Principal	Components

Singular	Value	Decomposition
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DASK-CUML
OLS, tSVD, and KNN in RAPIDS 0.6

cuML SG MG MGMN
Gradient	Boosted	Decision	Trees	

(GBDT)

GLM

Logistic	Regression

Random	Forest	(regression)

K-Means

K-NN

DBSCAN

UMAP

ARIMA

Kalman	Filter

Holts-Winters

Principal	Components

Singular	Value	Decomposition
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DASK-CUML
K-Means*, DBSCAN & PCA in RAPIDS 0.7/0.8

cuML SG MG MGMN
Gradient	Boosted	Decision	Trees	

(GBDT)

GLM

Logistic	Regression

Random	Forest	(regression)

K-Means

K-NN

DBSCAN

UMAP

ARIMA

Kalman	Filter

Holts-Winters

Principal	Components

Singular	Value	Decomposition
• Deprecating the current K-means in 0.6 for new K-means built on MLPrims
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CuML 0.6

New Algorithms

• Stochastic Gradient Descent [Single GPU]

• UMAP [Single GPU]

• Linear Regression (OLS) [Single Node, Multi-GPU]

• Truncated SVD [Single Node, Multi-GPU]

Will be released with RAPIDS 0.6 on Friday!

Notable Improvements

• Exposing support for hyperparsmeter tuning

• Removing external requirement on FAISS

• Lowered Nearest Neighbors memory requirement



Thank you!

https://rapids.ai
https://github.com/cuml

https://github.com/dask-cuml

Corey Nolet: @cjnolet
Onur Yilmaz: @Onur02128993


