RAPIDS

cuML: A Library for GPU Accelerated Machine Learning

Onur Yilmaz, Ph.D. | <u>oyilmaz@nvidia.com</u> | Senior ML/DL Scientist and Engineer Corey Nolet | <u>cnolet@nvidia.com</u> | Data Scientist and Senior Engineer

About Us

Onur Yilmaz, Ph.D.

Senior ML/DL Scientist and Engineer on the RAPIDS cuML team at NVIDIA

Focuses on building single and multi GPU machine learning algorithms to support extreme data loads at light-speed

Ph.D. in computer engineering, focusing on ML for finance.

Corey Nolet

Data Scientist & Senior Engineer on the RAPIDS cuML team at NVIDIA

Focuses on building and scaling machine learning algorithms to support extreme data loads at light-speed

Over a decade experience building massive-scale exploratory data science & realtime analytics platforms for HPC environments in the defense industry

Working towards PhD in Computer Science, focused on unsupervised representation learning

Agenda

- Introduction to cuML
- Architecture Overview
- cuML Deep Dive
- Benchmarks
- cuML Roadmap

Introduction

"Details are confusing. It is only by selection, by elimination, by emphasis, that we get to the real meaning of things." ~ Georgia O'Keefe Mother of American Modernism

Realities of Data

Data Growth and Source in Exabytes

Better to start with as much data as possible and explore / preprocess to scale to performance needs.

Dimension Reduction Feature Selection

Remove Outliers

Sampling

Massive Dataset

Histograms / Distributions

Better to start with as much data as possible and explore / preprocess to scale to performance needs.

Dimension Reduction Feature Selection

Remove Outliers

Sampling

Massive Dataset

Massive Dataset

Massive Dataset

Histograms / Distributions Better to start with as much data as possible and explore / preprocess to scale to performance needs.

Dimension Reduction Feature Selection

Remove Outliers

Sampling

Iterate. Cross Validate.

Massive Dataset

ML Workflow Stifles Innovation

It Requires Exploration and Iterations

Accelerating just `Model Training` does have benefit but doesn't address the whole problem

ML Workflow Stifles Innovation

It Requires Exploration and Iterations

Accelerating just `Model Training` does have benefit but doesn't address the whole problem

End-to-End acceleration is needed

Architecture

"More data requires better approaches!" ~ Xavier Amatriain CTO, CurAl

RAPIDS: OPEN GPU DATA SCIENCE

cuDF, cuML, and cuGraph mimic well-known libraries

HIGH-LEVEL APIs

	Python
Dask-CUML	Dask Multi-GPU ML
CuML	Scikit-Learn-Like
libcuml	CUDA/C++
	ML Algorithms
	ML Primitives
	Multi-Node & Multi-GPU Communications
	Host 1 Host 2
	GPU1 GPU3 GPU1 GPU3
	GPU1GPU3GPU1GPU3GPU2GPU4GPU2GPU4

cuML API

GPU-accelerated machine learning at every layer

Scikit-learn-like interface for data scientists utilizing cuDF & Numpy

CUDA C++ API for developers to utilize accelerated machine learning algorithms.

Reusable building blocks for composing machine learning algorithms.

Primitives

GPU-accelerated math optimized for feature matrices

Algorithms GPU-accelerated Scikit-Learn

Classification / Regression Statistical Inference K-Means DBSCAN Clustering Decomposition & Dimensionality Reduction UMAP ARIMA **Timeseries Forecasting**

Recommendations

Decision Trees / Random Forests Linear Regression Logistic Regression **K-Nearest Neighbors** Kalman Filtering **Bayesian Inference Gaussian Mixture Models** Hidden Markov Models Spectral Clustering **Principal Components** Singular Value Decomposition Spectral Embedding Holt-Winters

Implicit Matrix Factorization

Cross Validation

Hyper-parameter Tuning

HIGH-LEVEL APIs

HIGH-LEVEL APIs

Dask cuML Distributed Data-parallelism Layer

- Distributed computation scheduler for Python
- Scales up and out
- Distributes data across processes
- Enables model-parallel cuML algorithms

ML Technology Stack

cuML Deep Dive

"I would posit that every scientist is a data scientist." ~ Arun Subramaniyan V.P. of Data Science & Analytics, Baker Hughes, a GE Company

Linear Regression (OLS)

Pandas
X = pd.read_csv('data.csv')

cuDF

X_cudf = cudf.read_csv('data.csv')

Linear Regression (OLS)

cuDF

X_cudf = cudf.DataFrame.from_pandas(X)
y_cudf = np.array(y.as_matrix())
y_cudf = y_cudf[:,0]
y_cudf = cudf.Series(y_cudf)

Scikit-Learn

from sklearn.linear_model import LinearRegression as sklGLM

cuML

from cuml import LinearRegression as cumlOLS

Scikit-Learn

reg_sk = sklGLM.LinearRegression(fit_intercept=fit_intercept, normalize=normalize)
result_sk = reg_sk.fit(X, y)

cuML

algorithm = "eig" # eig: eigen decomposition based method, svd: singular value decomposition based method.

reg_cuml = cumlOLS(fit_intercept=fit_intercept, normalize=normalize, algorithm=algorithm)
result_cuml = reg_cuml.fit(X_cudf, y_cudf)

Scikit-Learn

y_sk = reg_sk.predict(X)

cuML

y_cuml = reg_cuml.predict(X_cudf)

```
cuML Algorithms CUDA C++ Layer
```

```
void olsFit(math_t *input,
    int n_rows,
    int n_cols,
    math_t *labels,
    math_t *coef,
    math_t *intercept,
    bool fit_intercept,
    bool fit_intercept,
    bool normalize,
    cublasHandle_t cublas_handle,
    cusolverDnHandle_t cusolver_handle,
    int algo = 0)
```

cuML Algorithms CUDA C++ Layer

math_t *S, *V, *U; int U_len = n_rows * n_cols; int V_len = n_cols * n_cols; allocate(U, U_len); allocate(V, V_len); allocate(S, n_cols);

}

```
math_t *S, *V, *U;
int U_len = n_rows * n_cols;
int V_len = n_cols * n_cols;
allocate(U, U_len);
allocate(V, V_len);
allocate(S, n_cols);
```

}

svdEig(A, n_rows, n_cols, S, U, V, true, cublasH, cusolverH, mgr);

```
math_t *S, *V, *U;
int U_len = n_rows * n_cols;
int V_len = n_cols * n_cols;
allocate(U, U_len);
allocate(V, V_len);
allocate(S, n_cols);
```

}

svdEig(A, n_rows, n_cols, S, U, V, true, cublasH, cusolverH, mgr);

gemv(U, n_rows, n_cols, b, w, true, cublasH);

```
math_t *S, *V, *U;
int U_len = n_rows * n_cols;
int V_len = n_cols * n_cols;
allocate(U, U_len);
allocate(V, V_len);
allocate(S, n_cols);
```

}

svdEig(A, n_rows, n_cols, S, U, V, true, cublasH, cusolverH, mgr);

gemv(U, n_rows, n_cols, b, w, true, cublasH);

Matrix::matrixVectorBinaryDivSkipZero(w, S, 1, n_cols, false, true);

```
template<typename math t>
void lstsqEig(math_t *A, int n_rows, int n_cols, math_t *b, math_t *w,
              cusolverDnHandle_t cusolverH, cublasHandle_t cublasH,
              DeviceAllocator \&mgr) {
   math_t *S, *V, *U;
    int U len = n rows * n cols;
    int V_len = n_cols * n_cols;
    allocate(U, U len);
    allocate(V, V len);
    allocate(S, n cols);
    svdEig(A, n rows, n cols, S, U, V, true, cublasH, cusolverH, mgr);
    gemv(U, n_rows, n_cols, b, w, true, cublasH);
   Matrix::matrixVectorBinaryDivSkipZero(w, S, 1, n_cols, false, true);
    gemv(V, n_cols, n_cols, w, w, false, cublasH);
    CUDA CHECK(cudaFree(U));
    CUDA CHECK(cudaFree(V));
    CUDA CHECK(cudaFree(S));
```

}

cuML ML-Prims CUDA C++ Layer

```
LinAlg::matrixVectorOp(data, data, vec, n_col, n_row, rowMajor, bcastAlongRows,
        [] __device__ (Type a, Type b) {
            if (myAbs(b) < Type(1e-10))
                return Type(0);
            else
                return a / b;
        });</pre>
```

}

cuML ML-Prims CUDA C++ Layer

Benchmarks

ALGORITHMS Benchmarked on DGX1

UMAP Released in 0.6!

UMAP Speedup: cuML vs SKLearn

cuDF + XGBoost DGX-2 vs Scale Out CPU Cluster

- Full end to end pipeline ٠
- ٠
- Leveraging Dask + cuDF Store each GPU results in sys mem then read back in ٠
- Arrow to Dmatrix (CSR) for XGBoost •

cuDF + XGBoost Scale Out GPU Cluster vs DGX-2

- Full end to end pipeline
- ٠
- Leveraging Dask for multi-node + cuDF Store each GPU results in sys mem then read back in ٠
- Arrow to Dmatrix (CSR) for XGBoost •

cuDF + XGBoost Fully In- GPU Benchmarks

- Full end to end pipeline
- Leveraging Dask cuDF
- No Data Prep time all in memory
- Arrow to Dmatrix (CSR) for XGBoost

XGBoost Multi-node, Multi-GPU Performance

Single Node Multi-GPU

Will be Released in 0.6

Linear Regression

- Reduction: 40mins -> 1min
- Size: 225gb
- System: DGX2

tSVD

- Reduction: 1.6hrs-> 1.5min
- Size: 220gb
- System: DGX2

Nearest Neighbors

- Reduction: 4+hrs-> 30sec
- Size: 128gb
- System: DGX1

Roadmap

"Data science is the fourth pillar of the scientific method!" ~ Jensen Huang

CUML Single GPU and XGBoost

cuML	SG	MG	MGMN
Gradient Boosted Decision Trees (GBDT)			
GLM			
Logistic Regression			
Random Forest (regression)			
K-Means			
K-NN			
DBSCAN			
UMAP			
ARIMA			
Kalman Filter			
Holts-Winters			
Principal Components			
Singular Value Decomposition			

DASK-CUML OLS, tSVD, and KNN in RAPIDS 0.6

cuML	SG	MG	MGMN
Gradient Boosted Decision Trees (GBDT)			
GLM			
Logistic Regression			
Random Forest (regression)			
K-Means			
K-NN			
DBSCAN			
UMAP			
ARIMA			
Kalman Filter			
Holts-Winters			
Principal Components			
Singular Value Decomposition			

DASK-CUML K-Means*, DBSCAN & PCA in RAPIDS 0.7/0.8

cuML	SG	MG	MGMN
Gradient Boosted Decision Trees (GBDT)			
GLM			
Logistic Regression			
Random Forest (regression)			
K-Means			
K-NN			
DBSCAN			
UMAP			
ARIMA			
Kalman Filter			
Holts-Winters			
Principal Components			
Singular Value Decomposition			

• Deprecating the current K-means in 0.6 for new K-means built on MLPrims

CuML 0.6 Will be released with RAPIDS 0.6 on Friday!

New Algorithms

- Stochastic Gradient Descent [Single GPU]
- UMAP [Single GPU]
- Linear Regression (OLS) [Single Node, Multi-GPU]
- Truncated SVD [Single Node, Multi-GPU]

Notable Improvements

- Exposing support for hyperparsmeter tuning
- Removing external requirement on FAISS
- Lowered Nearest Neighbors memory requirement

Thank you!

Corey Nolet: @cjnolet Onur Yilmaz: @Onur02128993

> https://rapids.ai https://github.com/cuml https://github.com/dask-cuml

