RAPIDS

cuML: A Library for GPU Accelerated Machine Learning

Onur Yilmaz, Ph.D. | <u>oyilmaz@nvidia.com</u> | Senior ML/DL Scientist and Engineer Corey Nolet | <u>cnolet@nvidia.com</u> | Data Scientist and Senior Engineer

About Us

Onur Yilmaz, Ph.D.

Senior ML/DL Scientist and Engineer on the RAPIDS cuML team at NVIDIA

Focuses on building single and multi GPU machine learning algorithms to support extreme data loads at light-speed

Ph.D. in computer engineering, focusing on ML for finance.

Corey Nolet

Data Scientist & Senior Engineer on the RAPIDS cuML team at NVIDIA

Focuses on building and scaling machine learning algorithms to support extreme data loads at light-speed

Over a decade experience building massive-scale exploratory data science & realtime analytics platforms for HPC environments in the defense industry

Working towards PhD in Computer Science, focused on unsupervised representation learning

Agenda

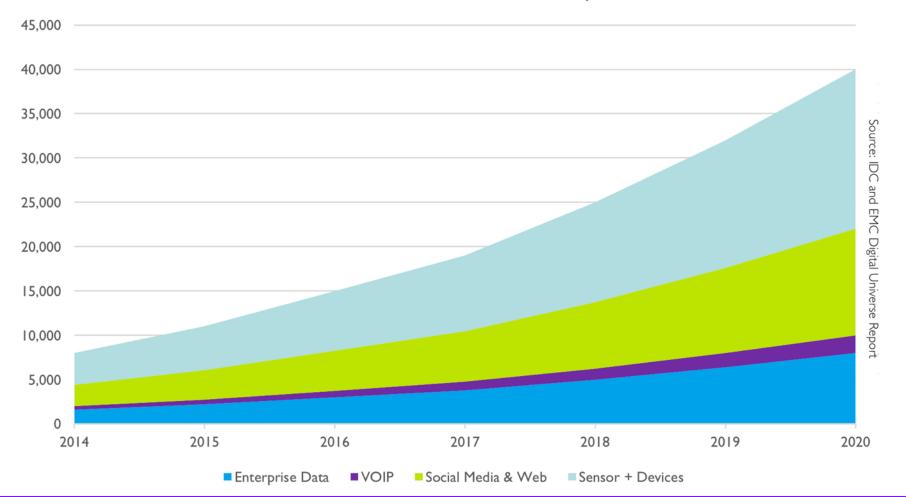
- Introduction to cuML
- Architecture Overview
- cuML Deep Dive
- Benchmarks
- cuML Roadmap

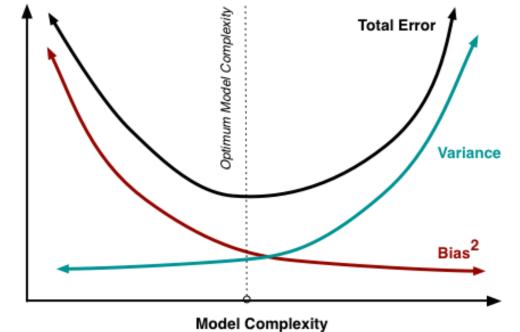
Introduction

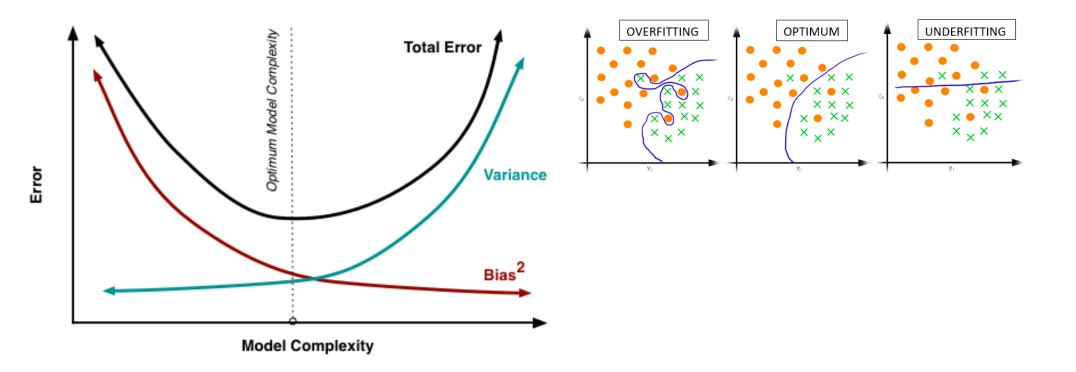
"Details are confusing. It is only by selection, by elimination, by emphasis, that we get to the real meaning of things." ~ Georgia O'Keefe Mother of American Modernism

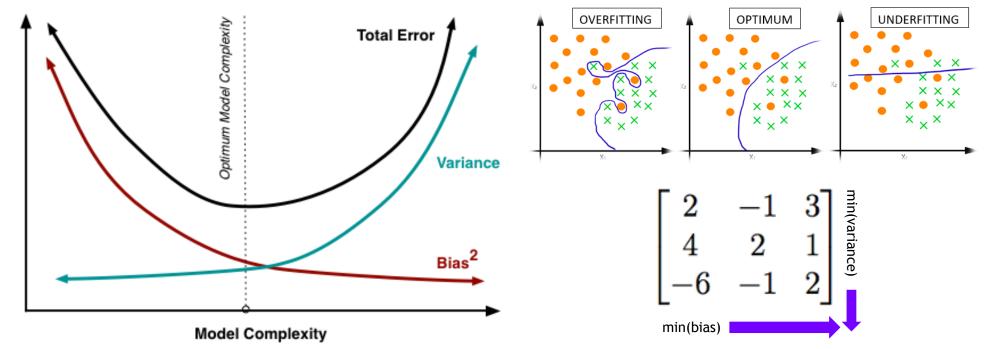
Realities of Data

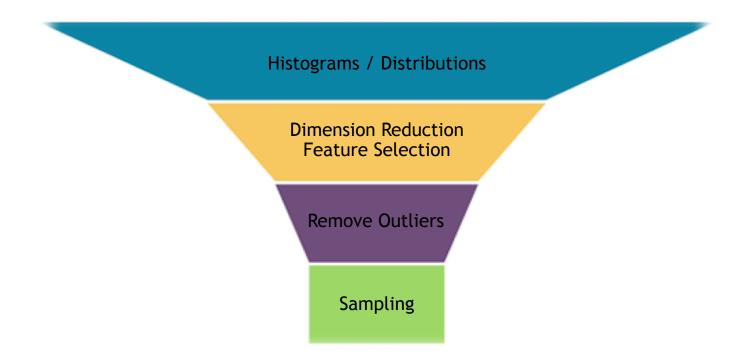
Data Growth and Source in Exabytes

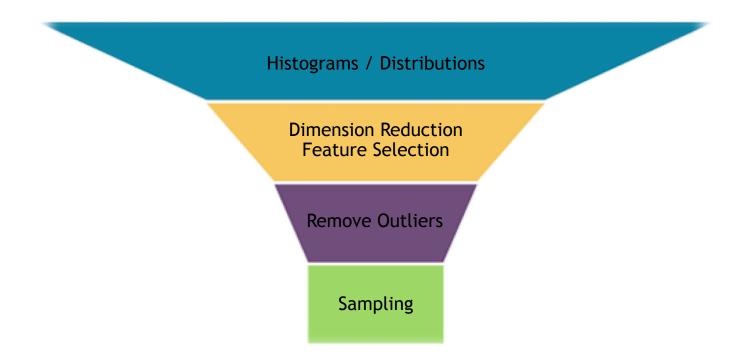




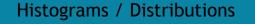








Better to start with as much data as possible and explore / preprocess to scale to performance needs.



Dimension Reduction Feature Selection

Remove Outliers

Sampling

Massive Dataset

Histograms / Distributions

Better to start with as much data as possible and explore / preprocess to scale to performance needs.

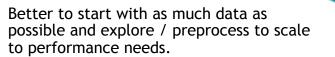
Dimension Reduction Feature Selection

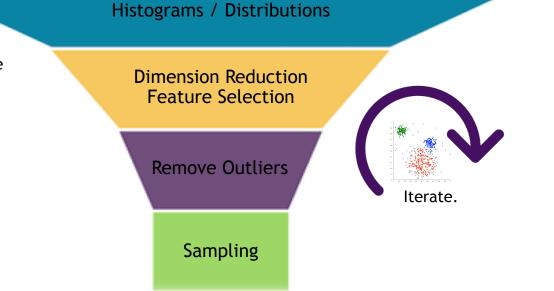
Remove Outliers

Sampling

Massive Dataset

Massive Dataset





Massive Dataset

Histograms / Distributions Better to start with as much data as possible and explore / preprocess to scale to performance needs.

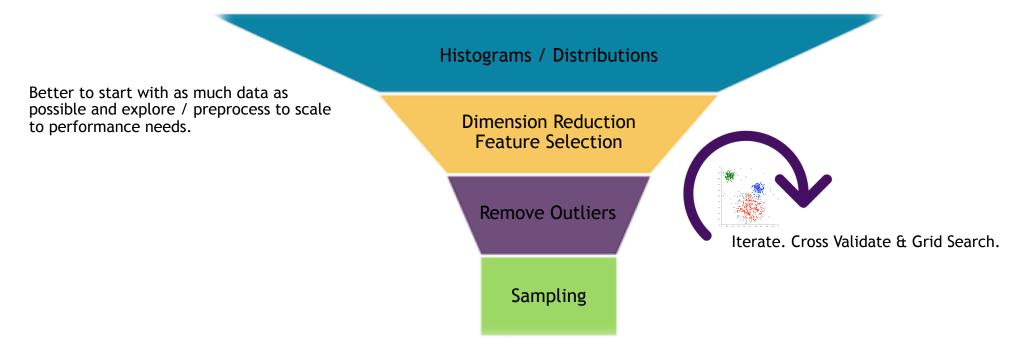
Dimension Reduction Feature Selection

Remove Outliers

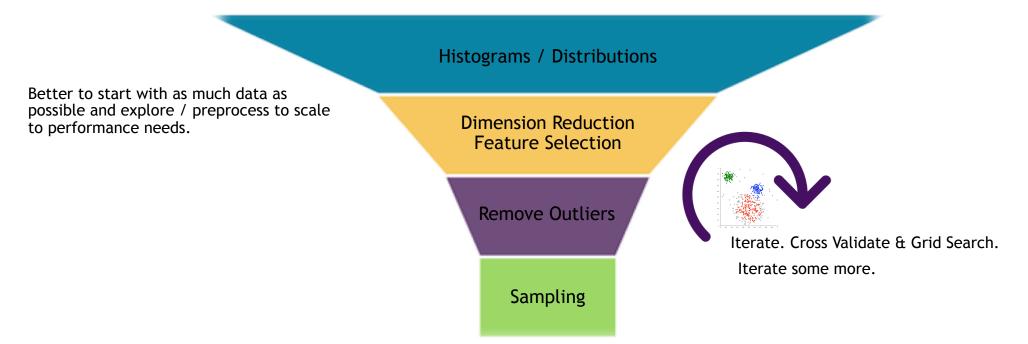
Sampling

Iterate. Cross Validate.

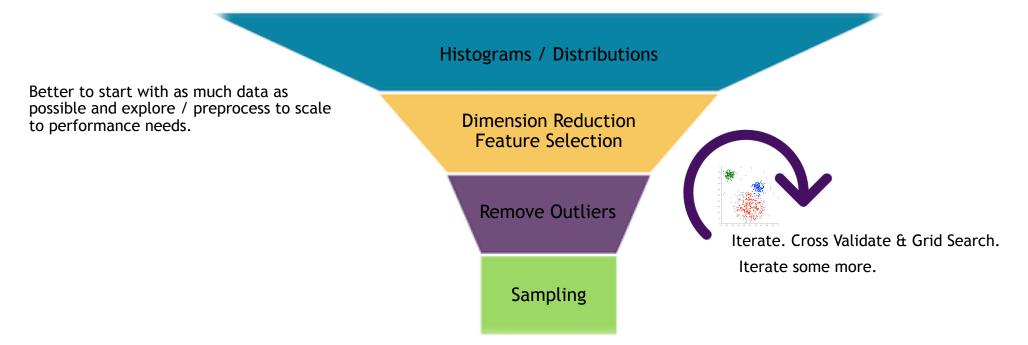
Massive Dataset



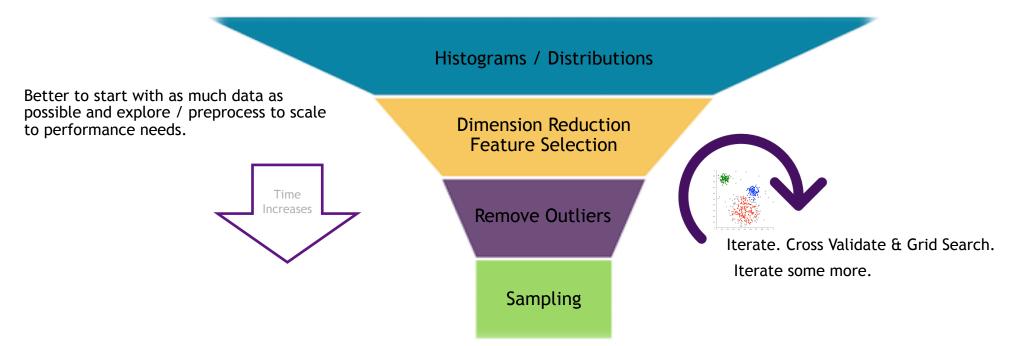
Massive Dataset



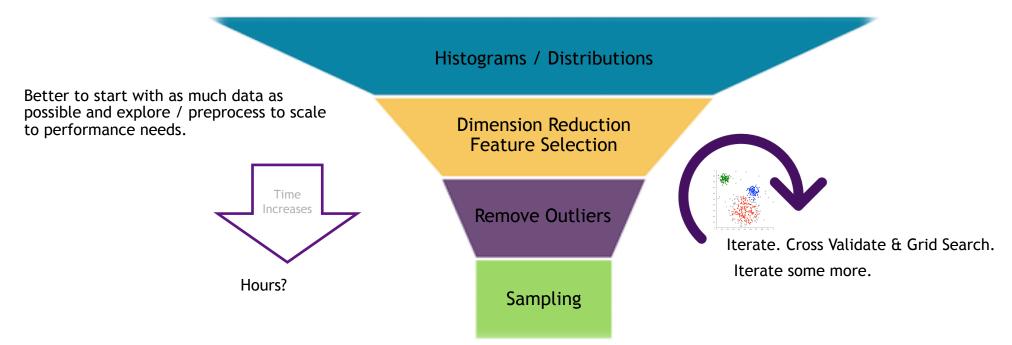
Massive Dataset



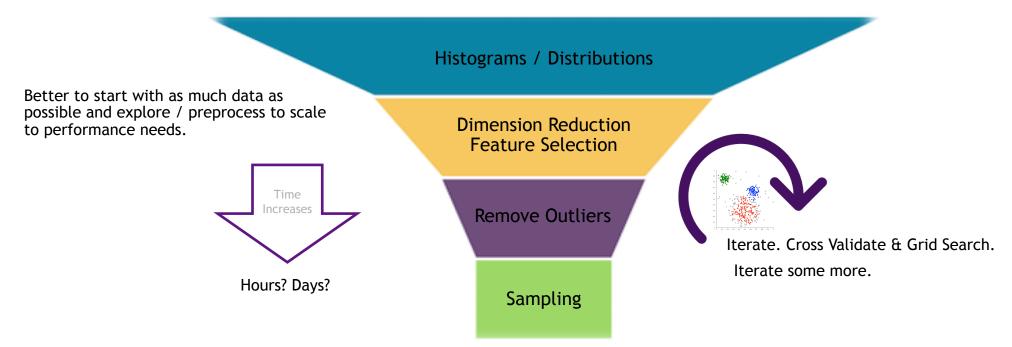
Massive Dataset



Massive Dataset

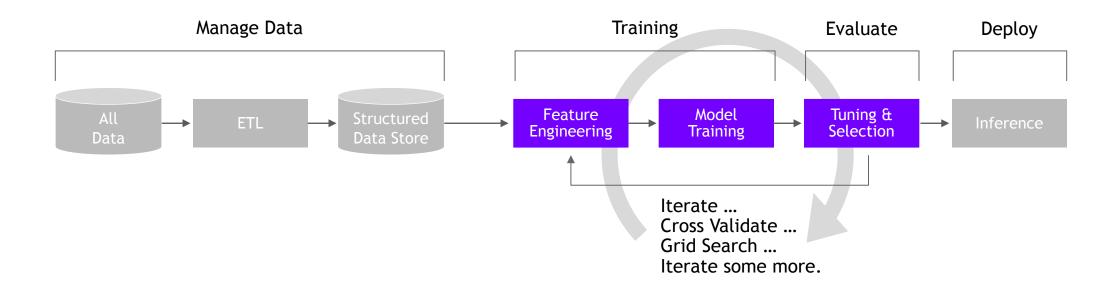


Massive Dataset



ML Workflow Stifles Innovation

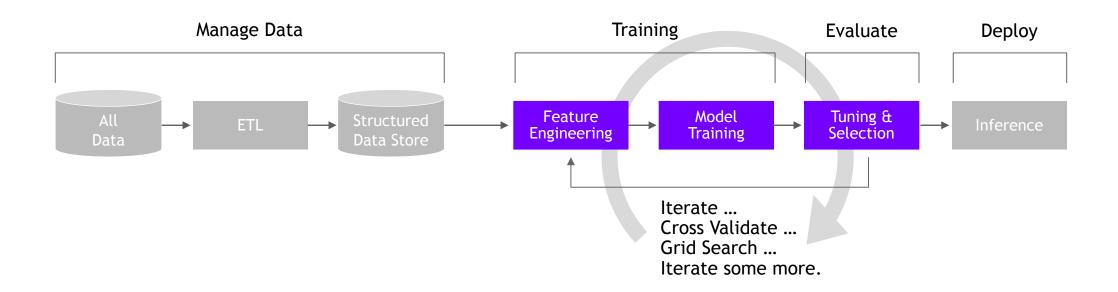
It Requires Exploration and Iterations



Accelerating just `Model Training` does have benefit but doesn't address the whole problem

ML Workflow Stifles Innovation

It Requires Exploration and Iterations



Accelerating just `Model Training` does have benefit but doesn't address the whole problem

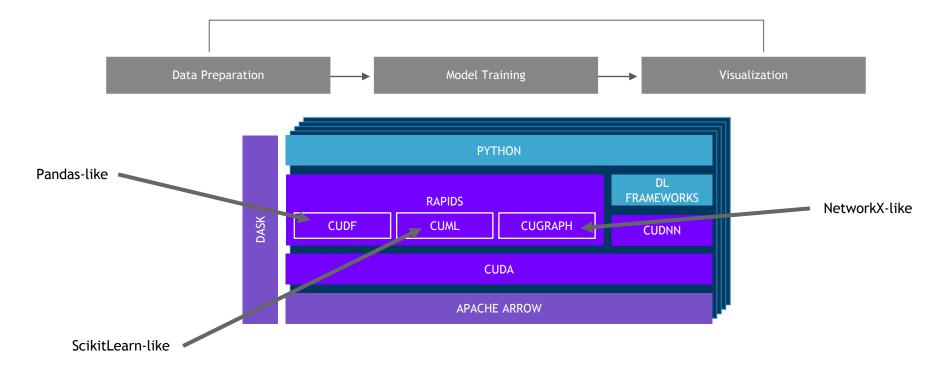
End-to-End acceleration is needed

Architecture

"More data requires better approaches!" ~ Xavier Amatriain CTO, CurAl

RAPIDS: OPEN GPU DATA SCIENCE

cuDF, cuML, and cuGraph mimic well-known libraries

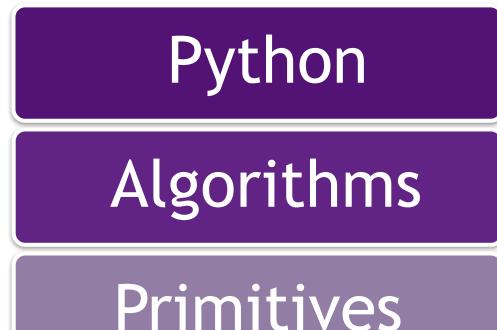


HIGH-LEVEL APIs

	Python
Dask-CUML	Dask Multi-GPU ML
CuML	Scikit-Learn-Like
libcuml	CUDA/C++
	ML Algorithms
	ML Primitives
	Multi-Node & Multi-GPU Communications
	Host 1 Host 2
	GPU1 GPU3 GPU1 GPU3
	GPU1GPU3GPU1GPU3GPU2GPU4GPU2GPU4

cuML API

GPU-accelerated machine learning at every layer



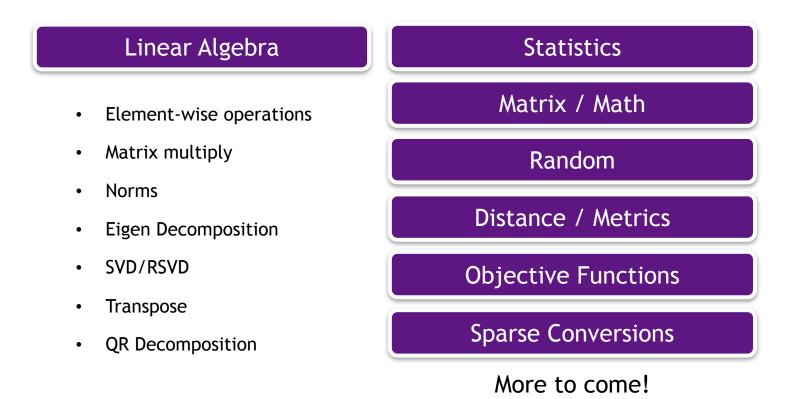
Scikit-learn-like interface for data scientists utilizing cuDF & Numpy

CUDA C++ API for developers to utilize accelerated machine learning algorithms.

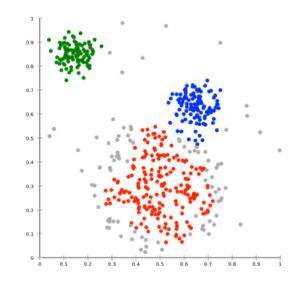
Reusable building blocks for composing machine learning algorithms.

Primitives

GPU-accelerated math optimized for feature matrices



Algorithms GPU-accelerated Scikit-Learn



Classification / Regression Statistical Inference K-Means DBSCAN Clustering Decomposition & Dimensionality Reduction UMAP ARIMA **Timeseries Forecasting**

Recommendations

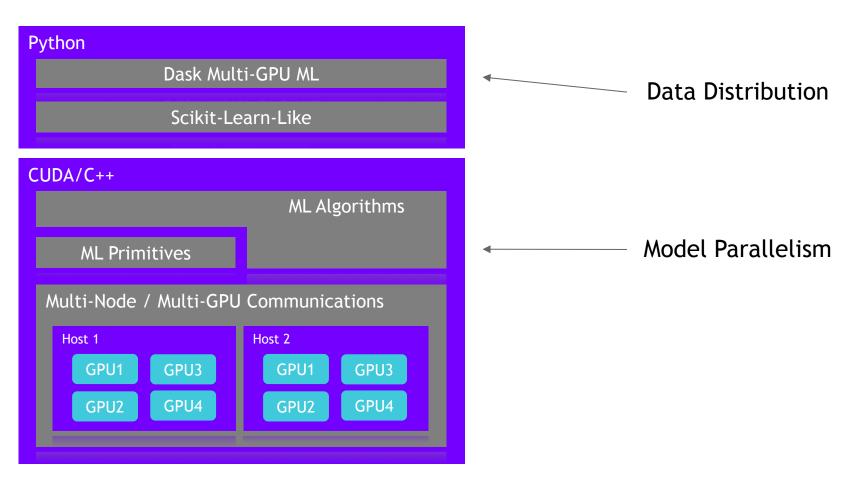
Decision Trees / Random Forests Linear Regression Logistic Regression **K-Nearest Neighbors** Kalman Filtering **Bayesian Inference Gaussian Mixture Models** Hidden Markov Models Spectral Clustering **Principal Components** Singular Value Decomposition Spectral Embedding Holt-Winters

Implicit Matrix Factorization

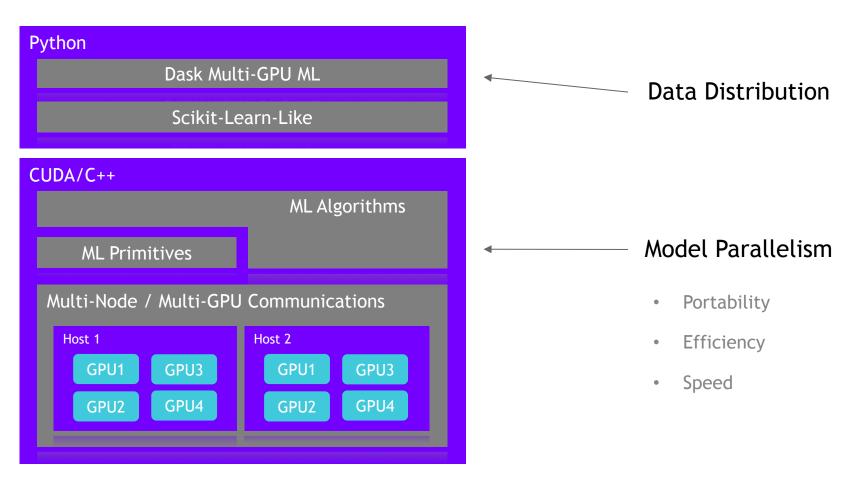
Cross Validation

Hyper-parameter Tuning

HIGH-LEVEL APIs



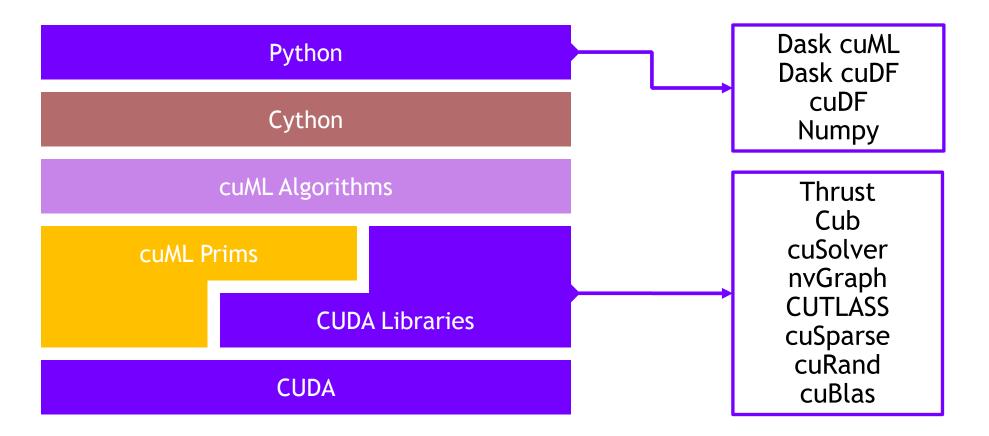
HIGH-LEVEL APIs



Dask cuML Distributed Data-parallelism Layer

- Distributed computation scheduler for Python
- Scales up and out
- Distributes data across processes
- Enables model-parallel cuML algorithms

ML Technology Stack



cuML Deep Dive

"I would posit that every scientist is a data scientist." ~ Arun Subramaniyan V.P. of Data Science & Analytics, Baker Hughes, a GE Company

Linear Regression (OLS)

Pandas
X = pd.read_csv('data.csv')

cuDF

X_cudf = cudf.read_csv('data.csv')

Linear Regression (OLS)

cuDF

X_cudf = cudf.DataFrame.from_pandas(X)
y_cudf = np.array(y.as_matrix())
y_cudf = y_cudf[:,0]
y_cudf = cudf.Series(y_cudf)

Scikit-Learn

from sklearn.linear_model import LinearRegression as sklGLM

cuML

from cuml import LinearRegression as cumlOLS

Scikit-Learn

reg_sk = sklGLM.LinearRegression(fit_intercept=fit_intercept, normalize=normalize)
result_sk = reg_sk.fit(X, y)

cuML

algorithm = "eig" # eig: eigen decomposition based method, svd: singular value decomposition based method.

reg_cuml = cumlOLS(fit_intercept=fit_intercept, normalize=normalize, algorithm=algorithm)
result_cuml = reg_cuml.fit(X_cudf, y_cudf)

Scikit-Learn

y_sk = reg_sk.predict(X)

cuML

y_cuml = reg_cuml.predict(X_cudf)

```
cuML Algorithms CUDA C++ Layer
```

```
void olsFit(math_t *input,
    int n_rows,
    int n_cols,
    math_t *labels,
    math_t *coef,
    math_t *intercept,
    bool fit_intercept,
    bool fit_intercept,
    bool normalize,
    cublasHandle_t cublas_handle,
    cusolverDnHandle_t cusolver_handle,
    int algo = 0)
```

cuML Algorithms CUDA C++ Layer

math_t *S, *V, *U; int U_len = n_rows * n_cols; int V_len = n_cols * n_cols; allocate(U, U_len); allocate(V, V_len); allocate(S, n_cols);

}

```
math_t *S, *V, *U;
int U_len = n_rows * n_cols;
int V_len = n_cols * n_cols;
allocate(U, U_len);
allocate(V, V_len);
allocate(S, n_cols);
```

}

svdEig(A, n_rows, n_cols, S, U, V, true, cublasH, cusolverH, mgr);

```
math_t *S, *V, *U;
int U_len = n_rows * n_cols;
int V_len = n_cols * n_cols;
allocate(U, U_len);
allocate(V, V_len);
allocate(S, n_cols);
```

}

svdEig(A, n_rows, n_cols, S, U, V, true, cublasH, cusolverH, mgr);

gemv(U, n_rows, n_cols, b, w, true, cublasH);

```
math_t *S, *V, *U;
int U_len = n_rows * n_cols;
int V_len = n_cols * n_cols;
allocate(U, U_len);
allocate(V, V_len);
allocate(S, n_cols);
```

}

svdEig(A, n_rows, n_cols, S, U, V, true, cublasH, cusolverH, mgr);

gemv(U, n_rows, n_cols, b, w, true, cublasH);

Matrix::matrixVectorBinaryDivSkipZero(w, S, 1, n_cols, false, true);

```
template<typename math t>
void lstsqEig(math_t *A, int n_rows, int n_cols, math_t *b, math_t *w,
              cusolverDnHandle_t cusolverH, cublasHandle_t cublasH,
              DeviceAllocator \&mgr) {
   math_t *S, *V, *U;
    int U len = n rows * n cols;
    int V_len = n_cols * n_cols;
    allocate(U, U len);
    allocate(V, V len);
    allocate(S, n cols);
    svdEig(A, n rows, n cols, S, U, V, true, cublasH, cusolverH, mgr);
    gemv(U, n_rows, n_cols, b, w, true, cublasH);
   Matrix::matrixVectorBinaryDivSkipZero(w, S, 1, n_cols, false, true);
    gemv(V, n_cols, n_cols, w, w, false, cublasH);
    CUDA CHECK(cudaFree(U));
    CUDA CHECK(cudaFree(V));
    CUDA CHECK(cudaFree(S));
```

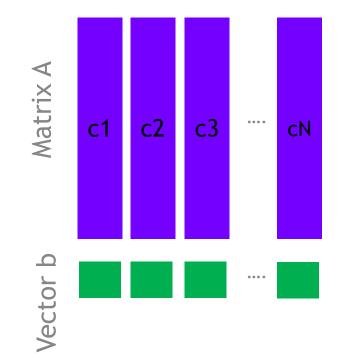
}

cuML ML-Prims CUDA C++ Layer

```
LinAlg::matrixVectorOp(data, data, vec, n_col, n_row, rowMajor, bcastAlongRows,
        [] __device__ (Type a, Type b) {
            if (myAbs(b) < Type(1e-10))
                return Type(0);
            else
                return a / b;
        });</pre>
```

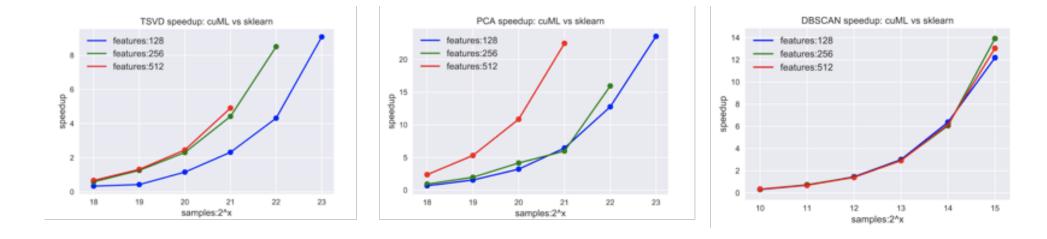
}

cuML ML-Prims CUDA C++ Layer



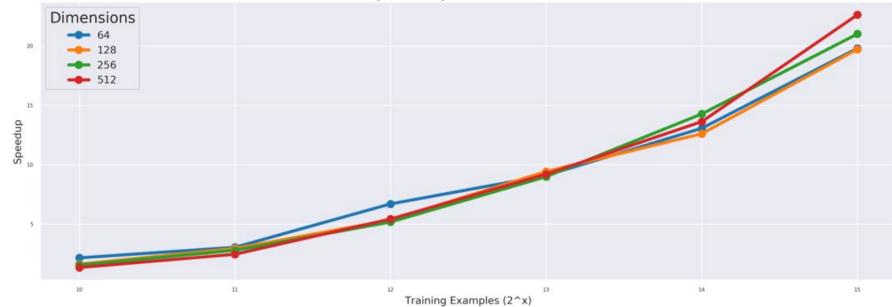
Benchmarks

ALGORITHMS Benchmarked on DGX1

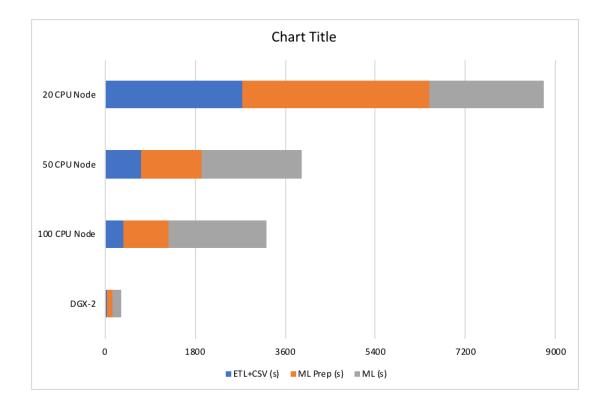


UMAP Released in 0.6!

UMAP Speedup: cuML vs SKLearn

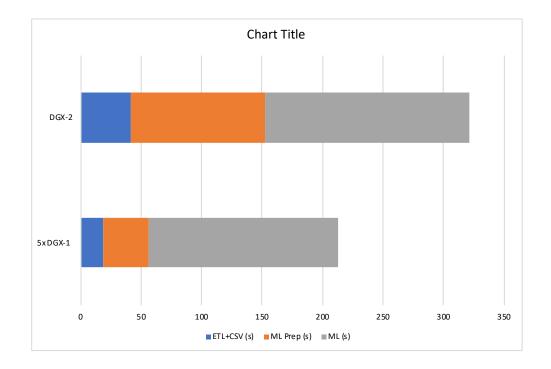


cuDF + XGBoost DGX-2 vs Scale Out CPU Cluster



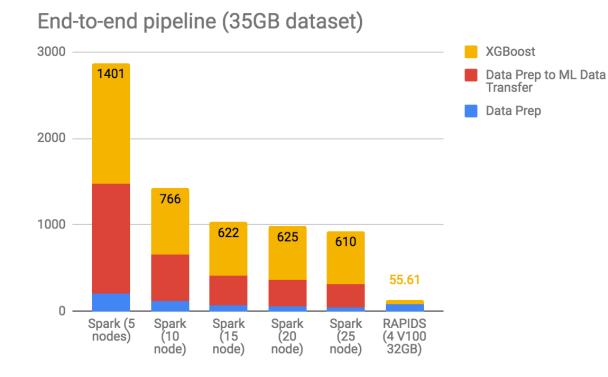
- Full end to end pipeline ٠
- ٠
- Leveraging Dask + cuDF Store each GPU results in sys mem then read back in ٠
- Arrow to Dmatrix (CSR) for XGBoost •

cuDF + XGBoost Scale Out GPU Cluster vs DGX-2



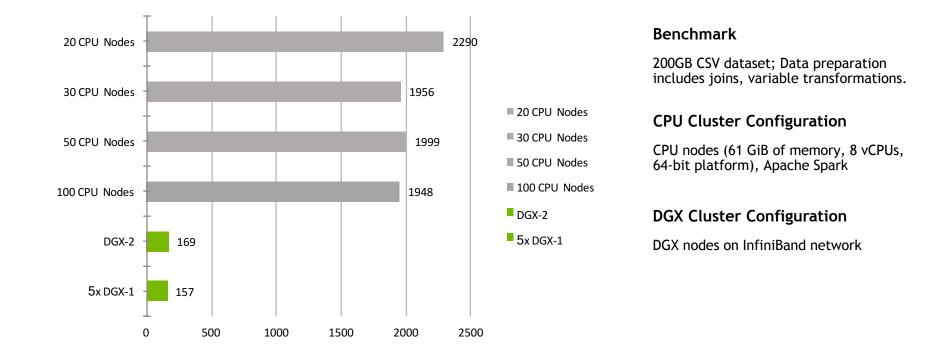
- Full end to end pipeline
- ٠
- Leveraging Dask for multi-node + cuDF Store each GPU results in sys mem then read back in ٠
- Arrow to Dmatrix (CSR) for XGBoost •

cuDF + XGBoost Fully In- GPU Benchmarks



- Full end to end pipeline
- Leveraging Dask cuDF
- No Data Prep time all in memory
- Arrow to Dmatrix (CSR) for XGBoost

XGBoost Multi-node, Multi-GPU Performance



Single Node Multi-GPU

Will be Released in 0.6

Linear Regression

- Reduction: 40mins -> 1min
- Size: 225gb
- System: DGX2

tSVD

- Reduction: 1.6hrs-> 1.5min
- Size: 220gb
- System: DGX2

Nearest Neighbors

- Reduction: 4+hrs-> 30sec
- Size: 128gb
- System: DGX1

Roadmap

"Data science is the fourth pillar of the scientific method!" ~ Jensen Huang

CUML Single GPU and XGBoost

cuML	SG	MG	MGMN
Gradient Boosted Decision Trees (GBDT)			
GLM			
Logistic Regression			
Random Forest (regression)			
K-Means			
K-NN			
DBSCAN			
UMAP			
ARIMA			
Kalman Filter			
Holts-Winters			
Principal Components			
Singular Value Decomposition			

DASK-CUML OLS, tSVD, and KNN in RAPIDS 0.6

cuML	SG	MG	MGMN
Gradient Boosted Decision Trees (GBDT)			
GLM			
Logistic Regression			
Random Forest (regression)			
K-Means			
K-NN			
DBSCAN			
UMAP			
ARIMA			
Kalman Filter			
Holts-Winters			
Principal Components			
Singular Value Decomposition			

DASK-CUML K-Means*, DBSCAN & PCA in RAPIDS 0.7/0.8

cuML	SG	MG	MGMN
Gradient Boosted Decision Trees (GBDT)			
GLM			
Logistic Regression			
Random Forest (regression)			
K-Means			
K-NN			
DBSCAN			
UMAP			
ARIMA			
Kalman Filter			
Holts-Winters			
Principal Components			
Singular Value Decomposition			

• Deprecating the current K-means in 0.6 for new K-means built on MLPrims

CuML 0.6 Will be released with RAPIDS 0.6 on Friday!

New Algorithms

- Stochastic Gradient Descent [Single GPU]
- UMAP [Single GPU]
- Linear Regression (OLS) [Single Node, Multi-GPU]
- Truncated SVD [Single Node, Multi-GPU]

Notable Improvements

- Exposing support for hyperparsmeter tuning
- Removing external requirement on FAISS
- Lowered Nearest Neighbors memory requirement

Thank you!

Corey Nolet: @cjnolet Onur Yilmaz: @Onur02128993

> https://rapids.ai https://github.com/cuml https://github.com/dask-cuml

