Deep Dive into Space and Time

Deep Learning for Spatiotemporal Data

Rose Yu Assistant Professor Northeastern University

NVIDIA GTC S9806

Predicting Global Climate

100,000 stations, 180 countries

credit: NASA

Forecasting Daily Traffic

35,000 detectors, every 30 seconds

credit: Waze

Modeling Basketball Play

2,000 events, 1.5 million data points

credit: STATS

Spatiotemporal Learning

- Make sense of large amount of data collected over **space** and **time**
- Enable **AI** systems to understand and reason in space and time
- Critical to real-time decision making in science and engineering

Technical Challenges

nonlinear dynamics

- sensitive to initial conditions
- hard to simulate

- sensors deployed on an irregular grid
- hard to represent
- players/teams/game are correlated
- hard to learn

Technical Challenges

error cascading

missing values

multi-resolution

- predictions are sequential
- error propagate

- sensors failure, transmission problem
- space and time at different scales

• dirty data

complex hierarchy

Traditional Methods

Feature engineering

Simple models

Small data

expensive, requires domain knowledge autoregressive (AR) model, ARIMA, etc

Discrete Fourier Transformation

Linear Models

Univariate Time Series

Promise of Deep Learning

Feature learning

Complex models

nonlinear, deep

neural networks

Big data

cheap, no domain knowledge

Automatic Feature Learning

Nonlinear Models

Multivariate Time Series

Spatiotemporal Forecasting

Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu. *International Conference on Learning Representations* (ICLR), 2018

Introduction

- Spatiotemporal forecasting
 - Input: history from P locations X_0, \ldots, X_t
 - Output: future values over H time steps x_{t+1}, \dots, x_{t+H}
- Various applications

activity recognition

Internet of Things

autonomous fleets

Traffic Forecasting

 Spatiotemporal forecasting problem requires modeling complex spatial and temporal dynamics

Spatial Dependence

- Image data = a regular grid
- Model with convolutional neural networks

- Model the traffic flow as a diffusion process on an irregular grid
- Generalize convolutional operation to directed graphs

Diffusion Convolution

- Adjacency matrix $\mathbf{A}_{ij} = \exp\left(-\frac{\operatorname{dist}_{net}(v_i, v_j)^2}{\sigma^2}\right)$
- In/Out degree Matrix $\mathbf{D}_{Ii} = \sum_{i} \mathbf{A}_{ij} \mathbf{D}_{Oj} = \sum_{i} \mathbf{A}_{ij}$

$$f_{\theta} \star_{g} \mathbf{x}_{t} = \sum_{k=0}^{K} (\theta_{I,k} (\mathbf{D}_{I}^{-1} \mathbf{A}^{\top})^{k} + \theta_{O,k} (\mathbf{D}_{O}^{-1} \mathbf{A})^{k}) \mathbf{x}_{t}$$
weights inputs

DCRNN

• Input state \mathbf{x}_t , hidden state \mathbf{h}_t , output \mathbf{y}_t

Temporal Dependence

- Encoder-decoder architecture in sequence to sequence
- Mitigate error propagation with scheduled sampling *

Model Architecture

- **Input**: a sequence of history graphs
- **Output**: a sequence of future graphs
- Diffusion Convolutional Gated Recurrent Unit (**DCGRU**) in Seq2Seq framework

Forecasting Accuracy

METR-LA: 207 sensors in Los Angeles, 4 months, 6.5 M observations **PEMS-BAY**: 345 sensors in Bay Area, 6 months, 17 M observations

Prediction Visualizations

- Learned convolutional filter with weights localized around the center, and diffuse alongside the road network.
- More likely to accurately predict abrupt changes in the traffic speed

Spatiotemporal Imputation

NAOMI: Non-Autoregressive Multiresolution Sequence Imputation Yukai Liu, Stephan Zheng, Rose Yu, Yisong Yue *Arxiv Preprint <u>https://arxiv.org/abs/1901.10946</u>*

Introduction

- Real-world applications often have missing data
- Hard to impute due to infinite number of possibilities

Spatiotemporal Sequences

- Correlated at multiple spatial and temporal resolutions
- RNNs only operate on a single temporal resolution
- Autoregressive models are susceptible to error propagation

- Encoding the sequence with a forward and backward RNN
- Decoding using a divide-and-conquer strategy at multiple resolutions

Non-Autoregressive Generator

backward RNN

sequence

forward RNN

NAOMI Model Architecture

- Adversarial training: distinguish between real/fake trajectories
- Multi-resolution non-autoregressive generator
- Recursive imputation: divide and conquer strategy

Trajectory Turing Test

Quantitative Performance

- 5 metrics: movement consistency, length, regularity, variance, team coordination
- Statistics closer to the expert data indicate better performance

Interpolation Comparison

NAOMI produces trajectories mostly consistent with the expert data, with realistic player movements

Spatiotemporal Dynamics

Neural Lander: Stable Drone Landing Control using Learned Dynamics Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree Anandkumar, Yisong Yue, and Soon-Jo Chung International Conference on Robotics and Automation (ICRA), 2019

Introduction

- Ground effects: disturbance during landing/taking off
- Complex nonlinear aerodynamics
- Impossible to simulate accurately or find analytical solutions

Hybrid Learning Framework

Learn this part

Learning Stable Control

- Dynamics approximated by a DNN can lead to unstable control
- Constrain the Lipschitz constant of the DNN estimator with spectral normalization

Lipschitz constant: upper limit of the slope

$$L = \sup \frac{|f(z) - f(x)|}{|z - x|}$$

Spectral Normalization

Constrain the Lipschitz constant $\|f\|_{Lip} \le \|g^L\|_{Lip} \cdot \|\phi\|_{Lip} \cdots \|g^1\|_{Lip}(\mathbf{x}) = \prod_{l=1}^L \sigma(W^l)$

Normalize the weights of a DNN by their singular values

Largest Singular Value

Neural Lander

- First DNN-based nonlinear feedback linearization controller
- Solved with a fixed point iteration method
- Guaranteed stability in feedback control loop

Combat Ground Effect

Neural Lander

Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree Anandkumar, Yisong Yue, and Soon-Jo Chung "Time and space are not conditions of existence, time and space is a model of thinking."

-Albert Einstein

Anima Anandkumar Caltech/NVIDIA

Kamyar Azizzadenesheli UCI

Soon-Jo Chung Caltech

Yaguang Li USC

Yan Liu USC/DiDi

Yukai Liu Caltech

USC

Cyrus Shahabi

Guanya Shi Caltech

Yisong Yue Caltech

Stephan Zheng Salesforce

roseyu@northeastern.edu

