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Two Questions

« Can ML be used In
security applications
where malicious patterns
are not predefined?

« Can ML itself be secure In
deployments?
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First Question

« Can ML be used In
security applications
where malicious
patterns are Not  E—  ——

predefined? NLP analysis of cyber data for insider
threat detection

Two Use Cases:

Neural Fuzzing for accelerating
software security assessments
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i nin Domain-specific aggregate
= PCA
features .
Reconstruction
{ Day i, User 402}
(402)
i
User Id PIL1771 I | 402
Day ‘ [
Role Secretary 7 |solation Forest
# of Logons 5 - » J |5
# of Emails 23 23
# of File Deletions | 0 0

PNNL-SA-142069
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Language
Tokenization Model Context

a N a N - N\

Recurrent Neural
Word Network (RNN) Log Entry
A\ / - J \ )
ﬂ ﬂ
@ D a D 4 R
Bidirectional Across Log Entries
Character RNN g

< / \ / - /

PNNL-SA-142069
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Word Based

&J ,C625,U147,] Negotlate Batch LogOn Success
H_____

Character Based

1,C625,U147,Negotiate,Batch,LogOn,Success
I e e 0 0 R R B O SR B

Probabllity distribution over sequences of tokens:

P(Xq X5 ..., X114 X7)

PNNL-SA-142069




7 Network language model

Pacific

Northwest  @xperiments

Fix network

Start of day modetl
parameters

Train model Evaluate day’s
parameters on events using
day’s events fixed model

Flag unlikely
actions

PNNL-SA-142069
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P(x,) P(X;/X4) P(X1lXo, .. X12) | | P(X7[Xq, . Xt.1)
b I ! |
‘__ softmax ‘ softmax softmax softmax
I | 1 |
. LSTM —— LSTM --->» LSTM —— LSTM
1 1 T 1
<s0s> X1 X ‘ XT-1

P(Xq X5 ..., X141 X1) = P(X1) P(X;[X4)... P(X¢[Xq . X74)

Minimize anomaly score: -log P(x; X, ..., X1; Xt)

PNNL-SA-142069
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i i Pr.1 Pr
[ LSTM [ LSTM - -- -+ LSTM ] [ LSTM ]
[ LSTM [ LSTM = LSTM | LS |—
x; X, X; <e0s> = X1, 1
G Forward LSTM Backward LSTM

P(Xy Xp woey X1q, X1) = i1y P;
Minimize anomaly scores: -Y:;_, log(p,)

PNNL-SA-142069
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Ci-1
|
o )-[ Context LSTM )
Mean hri1
t ™\
P1 PT+1
hy 4} —
A A
LSTM — LSTM - - = > LSTM E— LSTM
; A : ; A ! ; A ! ; A i
<sos> | L Xy | { X1 | l xT
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Attention Mechanism

vecsonier (O O O O O O

Hidden States

b oo

Time 1 2 3 4 a i [

PNNL-SA-142069
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e Data
= LANL cyber security data set authentication logs.
= 0.00007% of events are marked as Red Team activities.

* Performance Metric:
= Area under the Receliver Operating Characteristic Curve (AUC)

« Baseline Comparison
= Baseline models use user-day aggregate statistics.
= Use max event anomaly score for user on that day for language models.
= Also evaluate language models on a per-event basis.

PNNL-SA-142069
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1.0 - -
0.8
o
> 0.6 -
W
4
o
2041
b
0.2- —— is0 0.78 AUC
- W-em day 0.88 AUC
0.0 a - C-em event 0.98 Am
|| 1 || 1 || 1
0.0 0.2 04 0.6 0.8 1.0

False positive

PNNL-SA-142069
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Model Mean Max Min Std. Dev.
EM 0.968 0.976 0.964 0.005
BEM 0.976 0.981 0.972 0.003
EM with attention
Fixed 0.974 0.976 0.972 0.001
Syntactic 0.972 0.975 0.967 0.004
Semantic 1 0.980 0.971  0.004
Semantic 2 0.973 0.976 0.968 0.003
Tiered LSTM variants
T-EM 0.984 0.989 0.977 0.005
T-BEM 0.987 0.989 0.985 0.002
TA-EM 0.985 0.991 0.979 0.004
TA-BEM 0.988 0.991 0.984 0.003

PNNL-SA-142069

- Best performing single tier

model: Semantic |

- Higher ROC than the

simple Event Model
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Model Mean Max Min Std. Dev. » Attention models perform
EM 0.968 0.976 0.964 0.005 Only margina”y worse than
BEM 0.976 0.981 0.972 0.003

bidirectional models

EM with attention
Fixed 0.974 0.976 0.972 0.001
Syntactic 0.972 0.975 0.967 0.004

Semantic 1 0.980 0971  0.004

Semantic 2 @973 0.976 0.968  0.003

Tiered LSTM variants
T-EM 0.989 0.977  0.005
T-BEM 0.989 0.985 0.002
TA-EM 0.985 0.991 0.979 0.004

TA-BEM 0.988 0.991 0.984 0.003

PNNL-SA-142069
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Fixed Word Model Syntax Word Model

Attending over token Attending over token

. QN X N 20 o e et
3\(\ < G e (A . e(‘ i) el 0({\ C Q Q (\e,
7 & o™ v ‘e,of“ T % \(\’dQ .\(\’dQ o 057 N Ce,ofc‘ a0 ¢ &R \)@'0! q\{\'ol O
£P7 T HCT ae® et 7 g Y o £ e o ae &€ 2 N 2 \0 2

src domain src domain

dest user dest user

dest domain dest domain
src PC src PC
P
dest PC dest PC
auth type

Input token

auth type

Input token

login type

u2)03 payIpaid

login type
auth orient

auth orient
success/fail

success/fail
eos

eos

U203 paIpaid
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First Question

e Can ML be used In

security applications
where malicious

patterns are not —
predefined? NLP analysis of cyber data for insider
threat detection

Two Use Cases:

Neural Fuzzing for accelerating
software security assessments
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Goal

Accelerate search for unique code paths that could
reveal faults

Assumptions
Faults are more likely to exist on untested /
unexplored code paths

B Shorter paths are easier to test / explore than longer
| paths

Approach
Augment American Fuzzy Lop (AFL) with LSTM and
GANS generated seed files to accelerate search.

PNNL-SA-142069
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Approach

Seed File of Additional Seed
Unique Code 'IAD‘FL (Test File of Unique
Paths TEEJE), Code Paths

AFL (Test

Program)

Training| Data

GAN

.

J

PNNL-SA-142069
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Class (' [C L(C) % Umque wpu(L(C)) o(L(C))
AFL seed 383 31212 0.813 26.068M  33.058M
Rand seed 19824 485 0.024 I 602M  124.67/4K

"LSTM seed 20000 1921 0.096 2 506M RO8TK

GANseed 20000 119 0.006 2.593M 1.841K

 The seed themselves are not what we are interested in measuring
* They only provide a set of initial conditions for AFL

* Interestingly LSTM and GAN do have as much variance as using purely random
seeds

PNNL-SA-142069



. U
FadE d

] Eulc9
1Y 77~
/1Tb
cC-0.

N Pacific

SRRy Nlorthwest Time Analysis of Sustained Run

k;nihW

Class Files % new | sec/path NRate

« Both LSTM and GAN outperform Rand 1231 0.9017 |214.478 1.00

random sampling for discovering new LSTM 1251 08984 | 197.130 @ 1.08

unique code paths.
GAN 1240 0.8694 191.893 | 1.11
 GAN 11 % faster / random

e LSTM 8% faster over random

PNNL-SA-142069
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* length of unique code paths
using GAN was 13.84%
longer than a strategy based Class HL(E))  olL(C))

on randomly sampling. Rand 25.373M 3.339M

_ LSTM 26.541M [3.385M
* length of unique code paths

using LSTM was 4.60% GAN 28.885M |3.456M
longer than a strategy based
on randomly sampling.

PNNL-SA-142069
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Second Question

 Can ML itself be secure In
deployments?




Pacific Adversarial Machine Learning

Northwest
ImageNet Performance
L ~ ---- human performance
" 0.10
- 0 -
Dlgltal AttaCkS 2011 2012 2013 2014 2015 2016 2017
Direct access to maliciously modify A Cambrian Explosion of Machine
model, input features, or database Learning Research Topics
of training examples. *

] Q " Make ML work _
Physical Attacks: S ML meuroscience
A physical object is added or modified Sccurity e Teomeporency
. . RL airness
in the scene being evaluated. Extreme reliabiit e

Domain adaptation

Label _V.
. Privacy
efficiency

(Goodfellow 2018)

PNNL-SA-142069

“The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation” arXiv:1802. 07228 (2018)
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00000 Verizon 7 4:20 PM 76% .

e Known general ML fragilities_" <{ Albums  chihuahua or muffin Select

= Every model has a decision boundary;
manifolds can be wrinkly

= Not enough traininﬂ_data to resolve
boundary cases (chihuahua/muffin)

= Not all classes are separable

= High dimensional space is not intuitive

* Decisions are hard to understand

= Poisoned the training data (GIGO)

= Compromise of privacy in the training data

= Denial of service, output corruption, hacks...

« Additional DL vulnerabilities
= No mystery: DL models are the approach of choice for many problems
» Limited diversity: A few training sets, standard architectures, standard models
= Spotlight: Many researchers are publishing DL-specific attacks

PNNL-SA-142069
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 Data driven models are only as good as their data
* Training data cannot fully define a decision boundary
 What is going on with vulnerability and misclassification:

Detecting Adversarial Samples from Artifacts

Y
‘ j i:{:* - *
.
(a) Two simple 2D submanifolds. (b) One submanifold has a “pocket’. (c) Nearby 2D submanifolds.
| might be a muffin. Definitely a muffin! Not a good Chihuahua,

don’t know what | am.

Feinman et al. "Detecting adversarial samples from artifacts." arXiv preprint arXiv:1703.00410 (2017).

PNNL-SA-142069
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image A

 Adversarial Example - model input an attacker
has intentionally designed to cause the model to
make a mistake.

image B

- Distance in feature space is not always intuitive. &
 Numerous ways to craft adversarial examples. ey aae—

Schoolbus Perturbation Ostrich

Szegedy et. al., “Intriguing properties of neural networks” arXiv preprint arXiv:1312.6199 (2013)
Zheng, Stephan, et al. "Improving the robustness of deep neural networks via stability training." Proceedings of the ieee conference on computer vision and pattern recognition. 2016.

PNNL-SA-142069
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Physical attacks span significant range of perception and detectability
» Targeted attacks
= 2 and 3D object construction
» Digital formulation for
physical world deployment
(White box attacks

Subtle Poster
Right Turn

C. flag C flage At C flage Art
(LISA-CNN)  (GTSRB-CNN)

Distance/Angle Subtle Poster

50 0°

= !
e
i

, "‘; : I
ﬂ#mﬂﬁb n

107 0°

10" 30°

B classified as turtle [ classified as rifle
B classified as other

40 07

Targeted-Attack Success 100% 73.33%

[1]Athalye, Anish, and llya Sutskever. "Synthesizing robust adversarial examples." arXiv preprint arXiv:1707.07397(2017).

[2]Sharif et. al., “Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition” Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 1528-1540.

[3] Evtimov, Ivan, et al. "Robust physical-world attacks on machine learning models." arXiv preprint arXiv:1707.08945(2017).

[4] Brown, Tom B., et al. "Adversarial patch." arXiv preprint arXiv:1712.09665 (2017). PNNL-SA-142069
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NO Yes

« Sometimes examples just transfer!
* Transfer is not guaranteed

= Exploit commonalities in development
v’ <10 large-scale image training libraries
v' <10 major DL generation libraries

 Decision boundaries for models of
the same class are likely to be similar

DMNE 38,27 8.36 20,72

LRl 6,31 11,29

SWME 2, 5.19 15.67 -

DT O

Source Machine Learning Technigue

kMM 82,16 82,95

s . . . . DMNM LR SVM oT KMN Ens.
Papernot et. al. “Transferability in machine learning: from phenomena to black-box attacks using adversarial samples” Target Machine Learning Technigue

COoRR, arXiv:1605.07277 (2016).

PNNL-SA-142069
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Goal 1: Can light cause misclassification of 2D print images
Goal 2: Can light cause misclassification of 3D objects
Goal 3: What Is the stability of this approach.

(a) Printout (b) Photo of printout (c) Cropped image

d Inspired by :
Kurakin, A., Goodfellow, I., and Bengio, S. "Adversarial examples in the physical world." arXiv preprint arXiv:1607.02533 (2016).

PNNL-SA-142069
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= G

Transient physical attacks
B CIFAR10 dataset and pre-trained ResNet38 classifier.
B Non-targeted and false negative attack

B Differential Evolution, white-ish box attack (crafted to the image but without
knowledge of classification model)

Adversarial
Original Object (2D) ML

Optimizer r ~
Original
Image

v

Attack
Feedback

Projected j——=—== l _____ | )
Noise | I Adver.sarlal
————— | o Noise
| —

PNNL-SA-142069
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Prob. p(airplane)  p(aptomobile) p(bird) p(cat) p(deer) p(dog) p(frog) p(horse) p(ship) p(truck)
Original 0 89% 0 0 0 0 0 0 0 11%
Attacked 0 43% 0 0 0 0 0 0 0 57%

3D attacks can be successful
In CFAR1O, trucks are semi-trailers, fire trucks, etc, thus bigger difference to shift.

Non-targeted, transient attack.

PNNL-SA-142069
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E?gﬁﬁf%g 3D CIFAR Experiment
* One example of each CIFAR10 class.
* Environmental control
« Additional Baseline attacks (white light, random square, DE square)
« ImageNet co-classification

- S

e

___‘—\——f'_a_;f_g

|\
L) \ 'L

PNNL-SA-142069
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Results

AR _Lxpeniment Condition | Mean A Mean | 4 Median |

Airplane Baseline 1.000 000 000

White Light 51 849 .890

Random 14 886 .au5

Diff Evolution 133 86/ 388

Automobile Baseline 1.000 000 000

w s, White Light 1.000 000 000

@t“ Random 1.000 000 000

—a Dift Evolution 1.000 000 000

Bird Baseline 1.000 000 000

P White Light 1.000 000 000

@, o Random 1.000 . . 000 .000

e [ )11 ‘o lution [ )W [ M| [ M i i

Cat Baseline 9480 901 004 000 000

White Light 009 008 005 81 983

@ Random 011 007 012 979 U84

Dhiff Evolution ()23 017 10 U6/ yE!

Deer Baseline U9y ] .00 000 .00

White Light A6 Al6 145 A83 483

@ Random 545 SO7 55 A54 492

Diff Evolution 473 467 130 D26 D32

PNNL-SA-142069
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CIFAR Class | Experiment Condition | Mean | Median [ SD) Var bl ] A Mean | A Median
Dog Baseline 003 003 003 | .000 § .08 . | .00U D00
White Light 512 499 088 | .008 | 481 494
% Random 482 497 23 | 496
Dift Evolution 386 I88 LT | 6035
rog paseline Do BEE U2 000
White Light {008 08 003 380
E Random
Dift Evolution )
paseline LN LUK LN LU LN 0N
® ), White Light .04 1.O00 [ 001 | .000 | .993 1.000 000 000
@*‘ Random 1.000 1.000 | .000 | .000 | 1.000 | 1.000 000 000
4 & Daft Evolution 1.000 1.000 | .000 [ .000 | 1.000 | 1.000 000 000
Ship Baseline 1.000 1.000 | .000 [ .000 | 1.000 | 1.000 000 000
White Light 1
]

White Light
Random
Diff Evolution

Table 1: Classification statistics for baseline and attacked CIFAR figures.

PNNL-SA-142069
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« Extreme variability between target class susceptibility to
attack.
« 6 of 10 classes were susceptible to light based attacks.

Ave(A Mean) Ave( A Median)

White Light 0.641 0.651
Random 0.645 0.654
Diff Evolution 0.660 0.668

« White light was similarly effective to random squares and DE.
* Rotation, lighting, and scale invariance of classification
models are significant considerations.

PNNL-SA-142069
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Northwest  Conclusions
ML for Security:

* Deep learning techniques can be used to enhance and accelerate a variety of
security based applications.

* Pre-knowledge of patterns is not necessary in insider threat detection or
software fuzzing.

Security for ML.:
* Most off the shelf models are insufficiently resilient to real world invariance.

* An Increasing range of digital and physical security gaps are being identified
In ML models.

Security of the model itself needs to be considered, particularly when deploying
ML for Security.

PNNL-SA-142069
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Event-Level Cyber Anomaly Detection
https://arxiv.org/pdf/1712.00557.pdf

Deep Learning for Unsupervised Insider Threat Detection in
Structured Cybersecurity Data Streams
https://arxiv.org/pdf/1710.00811.pdf

Faster Fuzzing: Reinitialization with Deep Neural Models
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Projecting Trouble:
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Thank you

PNNL-SA-142069
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