
Machine Learning for 
Security and Security 
for Machine Learning

Nicole Nichols**
Pacific Northwest National Lab

WWU*, joint appointee WWU / PNNL**

Co-Authors: Rob Jasper, Mark Raugas, Nathan Hilliard,  Sean 

Robinson, Sam Kaplan*  Andy Brown*, Aaron Tuor, Nick Knowles*, 

Ryan Baerwolf*,  and Brian Hutchinson**

PNNL-SA-142069



Two Questions

• Can ML be used in 
security applications 
where malicious patterns 
are not predefined?

• Can ML itself be secure in 
deployments?
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First Question

• Can ML be used in 
security applications 
where malicious 
patterns are not 
predefined?

• Can ML itself be 
secure in 
deployments?

Two Use Cases:

NLP analysis of cyber data for insider 

threat detection

Neural Fuzzing for accelerating 

software security assessments
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Common Approaches to Insider Threat
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Tokenization methods

Probability distribution over sequences of tokens:

P(x1, x2, …, xT-1, xT)
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Network language model
experiments 

Fix network 
model 

parameters

Evaluate day’s 
events using 
fixed model

Flag unlikely 
actions

Train model 
parameters on 
day’s events 

Start of day

PNNL-SA-142069



RNN Event Model (EM)

P(x1, x2, …, xT-1, xT) = P(x1 ) P(x2|x1)… P(xT|x0, …,xT-1)

Minimize anomaly score: -log P(x1, x2, …, xT-1, xT) 

P(x2|x1) P(xT-1|x0, …,xT-2)P(x1 ) P(xT|x0, …,xT-1)
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Bidirectional RNN Event Model (BEM)
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𝑡 log(p𝑖)
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Tiered Event Models (T-EM/T-BEM)
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Attention
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Experiment Setup

• Data
▪ LANL cyber security data set authentication logs.

▪ 0.00007% of events are marked as Red Team activities.

• Performance Metric:
▪ Area under the Receiver Operating Characteristic Curve (AUC)

• Baseline Comparison
▪ Baseline models use user-day aggregate statistics.

▪ Use max event anomaly score for user on that day for language models.

▪ Also evaluate language models on a per-event basis.
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Experiment Results Vs Baseline
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Word Models

 Best performing single tier 

model: Semantic I

 Higher ROC than the 

simple Event Model
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Word Models

 Attention models perform 

only marginally worse than 

bidirectional models
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Syntax Word ModelFixed Word Model
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Global Average Importance of Fields



First Question

• Can ML be used in 
security applications 
where malicious 
patterns are not 
predefined?

• Can ML itself be 
secure in 
deployments?

Two Use Cases:

NLP analysis of cyber data for insider 

threat detection

Neural Fuzzing for accelerating 

software security assessments
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Goal

Accelerate search for  unique code paths that could 
reveal faults

Faults are more likely to exist on untested / 
unexplored code paths

Shorter paths are easier to test / explore than longer 
paths

Augment American Fuzzy Lop (AFL) with LSTM and 
GANS generated seed files to accelerate search.

Assumptions
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Approach
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Analysis of Seed Files

• The seed themselves are not what we are interested in measuring

• They only provide a set of initial conditions for AFL 

• Interestingly LSTM and GAN do have as much variance as using purely random 
seeds
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Time Analysis of Sustained Run

• Both LSTM and GAN outperform 
random sampling for discovering new 
unique code paths. 

• GAN 11 % faster / random 

• LSTM 8% faster over random

Class Files % new sec/path NRate

Rand 1231 0.9017 214.478 1.00 

LSTM 1251 0.8984 197.130 1.08 

GAN 1240 0.8694 191.893 1.11 
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Code Path Length of Sustained Run

• length of unique code paths 
using GAN was 13.84% 
longer than a strategy based 
on randomly sampling.

• length of unique code paths 
using LSTM was 4.60% 
longer than a strategy based 
on randomly sampling. 

Class μ(L(C )) σ(L(C)) 

Rand 25.373M 3.339M 

LSTM 26.541M 3.385M 

GAN 28.885M 3.456M 
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Second Question

• Can ML detect malicious 
behavior without 
predefined patterns?

• Can ML itself be secure in 
deployments?
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Adversarial Machine Learning

PNNL-SA-142069

Digital Attacks:

Direct access to maliciously modify

model, input features, or database 

of training examples.

Physical Attacks:

A physical object is added or modified 

in the scene being evaluated. 

(Goodfellow 2018)

ImageNet Performance

---- human performance

“The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation” arXiv:1802. 07228 (2018)



Why is Machine Learning Vulnerable?

• Known general ML fragilities…
▪ Every model has a decision boundary; 

manifolds can be wrinkly
▪ Not enough training data to resolve 

boundary cases (chihuahua/muffin)
▪ Not all classes are separable
▪ High dimensional space is not intuitive
▪ Decisions are hard to understand
▪ Poisoned the training data (GIGO)
▪ Compromise of privacy in the training data
▪ Denial of service, output corruption, hacks…

• Additional DL vulnerabilities
▪ No mystery:  DL models are the approach of choice for many problems
▪ Limited diversity:  A few training sets, standard architectures, standard models
▪ Spotlight:  Many researchers are publishing DL-specific attacks
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Decision Boundaries

• Data driven models are only as good as their data 

• Training data cannot fully define a decision boundary

• What is going on with vulnerability and misclassification:
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Feinman et al. "Detecting adversarial samples from artifacts." arXiv preprint arXiv:1703.00410 (2017).

I might be a muffin.           Definitely a muffin! Not a good Chihuahua, 

don’t know what I am.   



Attacks in the Digital Domain

• Adversarial Example - model input an attacker 
has intentionally designed to cause the model to 
make a mistake.

• Distance in feature space is not always intuitive. 

• Numerous ways to craft adversarial examples.

Szegedy et. al., “Intriguing properties of neural networks” arXiv preprint arXiv:1312.6199 (2013)

Zheng, Stephan, et al. "Improving the robustness of deep neural networks via stability training." Proceedings of the ieee conference on computer vision and pattern recognition. 2016.
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Attacks in the Physical World

Physical attacks span significant range of perception and detectability

▪ Targeted attacks

▪ 2 and 3D object construction

▪ Digital formulation for

physical world deployment

(White box attacks)
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Transferability of Adversarial Examples

• Sometimes examples just transfer!

▪ Transfer is not guaranteed

▪ Exploit commonalities in development

✓ <10 large-scale image training libraries

✓ <10 major DL generation libraries

• Decision boundaries for models of 
the same class are likely to be similar

Access to 

target model 

judgements?
Build ensembles of private 

models with same/similar 

training data

Build ensembles of private 

models trained on target 

model decisions

No Yes

Generate Adversarial Examples

Papernot et. al.  “Transferability in machine learning: from phenomena to black-box attacks using adversarial samples” 

CoRR, arXiv:1605.07277 (2016).
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Experiment Inception
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Goal 1: Can light cause misclassification of 2D print images

Goal 2: Can light cause misclassification of 3D objects

Goal 3: What is the stability of this approach. 

Inspired by :

Kurakin, A., Goodfellow, I., and Bengio, S. "Adversarial examples in the physical world." arXiv preprint arXiv:1607.02533 (2016).



Projecting Trouble- 2D Experiments
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Transient physical attacks

CIFAR10 dataset and pre-trained ResNet38 classifier. 

Non-targeted and false negative attack

Differential Evolution, white-ish box attack (crafted to the image but without 

knowledge of classification model)



3D Presentation Experiment 
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• 3D attacks can be successful

• In CFAR10, trucks are semi-trailers, fire trucks, etc, thus bigger difference to shift.

• Non-targeted, transient attack. 



3D CIFAR Experiment 
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• One example of each CIFAR10 class. 

• Environmental control

• Additional Baseline attacks (white light, random square, DE square)

• ImageNet co-classification



Results
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Results

PNNL-SA-142069



Results
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• Extreme variability between target class susceptibility to 

attack. 

• 6 of 10 classes were susceptible to light based attacks.

• White light was similarly effective to random squares and DE. 

• Rotation, lighting, and scale invariance of classification 

models are significant considerations. 

Ave(Δ Mean) Ave( Δ Median)

White Light 0.641 0.651

Random 0.645 0.654

Diff Evolution 0.660 0.668



Conclusions

ML for Security:

• Deep learning techniques can be used to enhance and accelerate a variety of 
security based applications.

• Pre-knowledge of patterns is not necessary in insider threat detection or 
software fuzzing.  

Security for ML:

• Most off the shelf models are insufficiently resilient to real world invariance. 

• An increasing range of digital and physical security gaps are being identified 
in ML models. 

Security of the model itself needs to be considered, particularly when deploying 
ML for Security. 
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