
Matthew Rocklin, Systems Software Manager
GTC San Jose 2019

Scaling RAPIDS with Dask

2

PyData is Pragmatic, but Limited

The PyData Ecosystem
• NumPy: Arrays
• Pandas: Dataframes
• Scikit-Learn: Machine Learning
• Jupyter: Interaction
• … (many other projects)

Is well loved
• Easy to use
• Broadly taught
• Community Governed

But sometimes slow
• Single CPU core
• In-memory data

How do we accelerate an existing software stack?

3

95% of the time, PyData is great

5% of the time, you want more performance
(and you can ignore the rest of this talk)

4

Scale up and out with RAPIDS and Dask

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Multi-GPU
On single Node (DGX)
Or across a cluster

Dask + RAPIDS

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

Sc
al

e
U

p
/

Ac
ce

le
ra

te

Scale out / Parallelize

5

Scale up and out with RAPIDS and Dask

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Sc
al

e
U

p
/

Ac
ce

le
ra

te

Scale out / Parallelize

6

RAPIDS: GPU variants of PyData libraries

• NumPy -> CuPy, PyTorch, TensorFlow
• Array computing
• Mature due to deep learning boom
• Also useful for other domains
• Obvious fit for GPUs

• Pandas -> cuDF
• Tabular computing
• New development
• Parsing, joins, groupbys
• Not an obvious fit for GPUs

• Scikit-Learn -> cuML
• Traditional machine learning
• Somewhere in between

7

RAPIDS: GPU variants of PyData libraries

• NumPy -> CuPy, PyTorch, TensorFlow
• Array computing
• Mature due to deep learning boom
• Also useful for other domains
• Obvious fit for GPUs

• Pandas -> cuDF
• Tabular computing
• New development
• Parsing, joins, groupbys
• Not an obvious fit for GPUs

• Scikit-Learn -> cuML
• Traditional machine learning
• Somewhere in between

8

RAPIDS: GPU variants of PyData libraries

• NumPy -> CuPy, PyTorch, TensorFlow
• Array computing
• Mature due to deep learning boom
• Also useful for other domains
• Obvious fit for GPUs

• Pandas -> cuDF
• Tabular computing
• New development
• Parsing, joins, groupbys
• Not an obvious fit for GPUs

• Scikit-Learn -> cuML
• Traditional machine learning
• Somewhere in between

9

RAPIDS: GPU variants of PyData libraries

• NumPy -> CuPy, PyTorch, TensorFlow
• Array computing
• Mature due to deep learning boom
• Also useful for other domains
• Obvious fit for GPUs

• Pandas -> cuDF
• Tabular computing
• New development
• Parsing, joins, groupbys
• Not an obvious fit for GPUs

• Scikit-Learn -> cuML
• Traditional machine learning
• Somewhere in between

10

Scale up and out with RAPIDS and Dask

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Multi-GPU
On single Node (DGX)
Or across a cluster

Dask + RAPIDS

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

Sc
al

e
U

p
/

Ac
ce

le
ra

te

Scale out / Parallelize

11

Scale up and out with RAPIDS and Dask

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData
Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

Sc
al

e
U

p
/

Ac
ce

le
ra

te

Scale out / Parallelize

12

• PyData Native
• Built on top of NumPy, Pandas Scikit-Learn, … (easy to migrate)
• With the same APIs (easy to train)
• With the same developer community (well trusted)

• Scales
• Scales out to thousand-node clusters
• Easy to install and use on a laptop

• Popular
• Most common parallelism framework today at PyData and SciPy conferences

• Deployable
• HPC: SLURM, PBS, LSF, SGE
• Cloud: Kubernetes
• Hadoop/Spark: Yarn

Dask Parallelizes PyData
Natively

13

Parallel NumPy
For imaging, simulation analysis, machine learning

● Same API as NumPy

● One Dask Array is built from
many NumPy arrays

Either lazily fetched from disk
Or distributed throughout a
cluster

14

Parallel Pandas
For ETL, time series, data munging

● Same API as Pandas

● One Dask DataFrame is built from many
Pandas DataFrames

Either lazily fetched from disk
Or distributed throughout a cluster

15

● Same API

● Same exact code, just wrap with a decorator
● Replaces default threaded execution with Dask

Allowing scaling onto clusters
● Available in most Scikit-Learn algorithms where joblib is

used

Parallel Scikit-Learn

Thread
Pool

For Hyper-Parameter Optimization, Random Forests, ...

16

● Same API

● Same exact code, just wrap with a decorator
● Replaces default threaded execution with Dask

Allowing scaling onto clusters
● Available in most Scikit-Learn algorithms where joblib is

used

Parallel Scikit-Learn

Thread
Pool

For Hyper-Parameter Optimization, Random Forests, ...

17

Parallel Python
For custom systems, ML algorithms, workflow engines

● Parallelize existing codebases

18

Parallel Python
For custom systems, ML algorithms, workflow engines

● Parallelize existing codebases

M Tepper, G Sapiro “Compressed nonnegative
matrix factorization is fast and accurate”,
IEEE Transactions on Signal Processing, 2016

19

Dask Connects Python users to Hardware

User Execute on distributed
hardware

20

Dask Connects Python users to Hardware

User
Writes high level code

(NumPy/Pandas/Scikit-Learn)
Turns into a task graph Executes on distributed

hardware

21

Example: Dask + Pandas on NYC Taxi
We see how well New Yorkers Tip

import dask.dataframe as dd

df = dd.read_csv('gcs://bucket-name/nyc-taxi-*.csv',
 parse_dates=['pickup_datetime', 'dropoff_datetime'])

df2 = df[(df.tip_amount > 0) & (df.fare_amount > 0)]
df2['tip_fraction'] = df2.tip_amount / df2.fare_amount

hour = df2.groupby(df2.pickup_datetime.dt.hour).tip_fraction.mean()
hour.compute().plot(figsize=(10, 6), title='Tip Fraction by Hour')

22

examples.dask.org
Try live

https://examples.dask.org

23

Dask scales PyData libraries

(A good fit if you’re building a new data science platform)

But is compute-agnostic to those libraries

24

Scale up and out with RAPIDS and Dask

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData
Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

Sc
al

e
U

p
/

Ac
ce

le
ra

te

Scale out / Parallelize

25

Scale up and out with RAPIDS and Dask

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Multi-GPU
On single Node (DGX)
Or across a cluster

Dask + RAPIDS

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

Sc
al

e
U

p
/

Ac
ce

le
ra

te

Scale out / Parallelize

26

Combine Dask with cuDF
Many GPU DataFrames form a distributed DataFrame

27

Combine Dask with cuDF
Many GPU DataFrames form a distributed DataFrame

cuDF

28

Combine Dask with CuPy
Many GPU arrays form a Distributed GPU array

29

Combine Dask with CuPy
Many GPU arrays form a Distributed GPU array

GPU

30

Experiments
...

SVD with Dask Array NYC Taxi with Dask DataFrame

http://www.youtube.com/watch?v=R5CiXti_MWo
http://www.youtube.com/watch?v=gV0cykgsTPM

31

So what works in DataFrames?

Read CSV:
Elementwise operations:
Reductions:
Groupby Aggregations:
Joins (hash, sorted, large-to-small):

Leverages Dask DataFrame algorithms (been around for years)
API matches Pandas

Lots!

32

So what doesn’t work?

Read Parquet/ORC

Reductions:
Groupby Aggregations:
Rolling window operations

Leverages Dask DataFrame algorithms (been around for years)
API matches Pandas

Lots!

33

So what doesn’t work?

• When cuDF and Pandas match, existing Dask algorithms work seamlessly
• But the APIs don’t always match

API Alignment

34

So what doesn’t work?

• When cuDF and Pandas match, existing Dask algorithms work seamlessly
• But the APIs don’t always match

API Alignment

35

So what works in Arrays?

• This work is much younger, but moving quickly

• CuPy has been around for a while, and is fairly mature
• Most work today happening upstream in NumPy and Dask

Thanks Peter Entschev, Hameer Abbasi, Stephan Hoyer, Marten van Kerkwijk, Eric Wieser

• Ecosystem approach benefits other NumPy-like arrays as well, sparse arrays, Xarray, ...

We genuinely don’t know yet

36

So what’s next?

• High Performance Communication
• Today Dask uses in-memory or TCP
• For Infiniband and NVLink, now integrating OpenUCX with ucx-py

• Spilling to main memory
• Today Dask spills from memory to disk
• For GPUs, we’d like to spill from device, to host, to disk

• Mixing CPU and GPU workloads
• Today Dask has one thread per core, or one thread per GPU
• For mixed systems we need to auto-annotate GPU vs CPU tasks

• Better recipes for deployment
• Today Dask deploys on Kubernetes, HPC job schedulers, YARN
• Today these technologies also support GPU workloads
• Need better examples using both together

Lots of issues with Dask, too!

37

PyData: pydata.org

RAPIDS: rapids.ai

Dask: dask.org

examples.dask.org

Learn More
Thank you for your time

https://pydata.org
https://rapids.ai
https://dask.org
https://examples.dask.org

