Scaling RAPIDS with Dask
Matthew Rocklin, Systems Software Manager
GTC San Jose 2019
PyData is Pragmatic, but Limited
How do we accelerate an existing software stack?

The PyData Ecosystem
- NumPy: Arrays
- Pandas: Dataframes
- Scikit-Learn: Machine Learning
- Jupyter: Interaction
- ... (many other projects)

Is well loved
- Easy to use
- Broadly taught
- Community Governed

But sometimes slow
- Single CPU core
- In-memory data
95% of the time, PyData is great
(and you can ignore the rest of this talk)

5% of the time, you want more performance
Scale up and out with RAPIDS and Dask

RAPIDS and Others
- Accelerated on single GPU
- NumPy -> CuPy/PyTorch/...
- Pandas -> cuDF
- Scikit-Learn -> cuML
- Numba -> Numba

Dask + RAPIDS
- Multi-GPU
- On single Node (DGX)
- Or across a cluster

PyData
- NumPy, Pandas, Scikit-Learn
- and many more
- Single CPU core
- In-memory data

Dask
- Multi-core and Distributed PyData
- NumPy -> Dask Array
- Pandas -> Dask DataFrame
- Scikit-Learn -> Dask-ML
- ... -> Dask Futures
Scale up and out with RAPIDS and Dask

RAPIDS and Others
Accelerated on single GPU
- NumPy -> CuPy/PyTorch/...
- Pandas -> cuDF
- Scikit-Learn -> cuML
- Numba -> Numba

PyData
NumPy, Pandas, Scikit-Learn and many more
- Single CPU core
- In-memory data
RAPIDS: GPU variants of PyData libraries

- **NumPy -> CuPy, PyTorch, TensorFlow**
 - Array computing
 - Mature due to deep learning boom
 - Also useful for other domains
 - Obvious fit for GPUs
- **Pandas -> cuDF**
 - Tabular computing
 - New development
 - Parsing, joins, groupbys
 - Not an obvious fit for GPUs
- **Scikit-Learn -> cuML**
 - Traditional machine learning
 - Somewhere in between
RAPIDS: GPU variants of PyData libraries

- **NumPy -> CuPy, PyTorch, TensorFlow**
 - Array computing
 - Mature due to deep learning boom
 - Also useful for other domains
 - Obvious fit for GPUs

- **Pandas -> cuDF**
 - Tabular computing
 - New development
 - Parsing, joins, groupbys
 - Not an obvious fit for GPUs

- **Scikit-Learn -> cuML**
 - Traditional machine learning
 - Somewhere in between
RAPIDS: GPU variants of PyData libraries

- **NumPy -> CuPy, PyTorch, TensorFlow**
 - Array computing
 - Mature due to deep learning boom
 - Also useful for other domains
 - Obvious fit for GPUs
- **Pandas -> cuDF**
 - Tabular computing
 - New development
 - Parsing, joins, groupbys
 - Not an obvious fit for GPUs
- **Scikit-Learn -> cuML**
 - Traditional machine learning
 - Somewhere in between

```python
[9]:
  %time
  record_data = ([f'fa%{i}i,, data[:,i]) for i in range(data.shape[1]))
  gdf = cudf.DataFrame(record_data)

CPU times: user 4.14 s, sys: 4.2 s, total: 8.34 s
Wall time: 9.7 s

[10]:
  %time
  embedding = umap.UMAP(n_neighbors=5, init="spectral").fit_transform(data)

CPU times: user 4min 34s, sys: 1min 27s, total: 6min 2s
Wall time: 1min 49s

[11]:
  %time
  g_embedding = cumlUMAP(n_neighbors=5, init="spectral").fit_transform(gdf)

CPU times: user 50.9 s, sys: 0 ns, total: 50.9 s
Wall time: 19.5 s

[12]:
  print(f'Size of data in memory: {data.nbytes / 1e6} MB')

Size of data in memory: 439.04 MB
RAPIDS: GPU variants of PyData libraries

- **NumPy -> CuPy, PyTorch, TensorFlow**
  - Array computing
  - Mature due to deep learning boom
  - Also useful for other domains
  - Obvious fit for GPUs
- **Pandas -> cuDF**
  - Tabular computing
  - New development
  - Parsing, joins, groupbys
  - Not an obvious fit for GPUs
- **Scikit-Learn -> cuML**
  - Traditional machine learning
  - Somewhere in between
Scale up and out with RAPIDS and Dask

**RAPIDS and Others**
- Accelerated on single GPU
- NumPy -> CuPy/PyTorch/..  
- Pandas -> cuDF
- Scikit-Learn -> cuML
- Numba -> Numba

**PyData**
- NumPy, Pandas, Scikit-Learn  
  and many more
- Single CPU core
- In-memory data

**Dask + RAPIDS**
- Multi-GPU
- On single Node (DGX)
- Or across a cluster

**Dask**
- Multi-core and Distributed PyData
- NumPy -> Dask Array
- Pandas -> Dask DataFrame
- Scikit-Learn -> Dask-ML
- ... -> Dask Futures
Scale up and out with RAPIDS and Dask

PyData
- NumPy, Pandas, Scikit-Learn
- Single CPU core
- In-memory data

Dask
- Multi-core and Distributed PyData
- NumPy -> Dask Array
- Pandas -> Dask DataFrame
- Scikit-Learn -> Dask-ML
- ... -> Dask Futures

Scale Up / Accelerate

Scale out / Parallelize
Dask Parallelizes PyData Natively

- **PyData Native**
  - Built on top of NumPy, Pandas Scikit-Learn, ... (easy to migrate)
  - With the same APIs (easy to train)
  - With the same developer community (well trusted)

- **Scales**
  - Scales out to thousand-node clusters
  - Easy to install and use on a laptop

- **Popular**
  - Most common parallelism framework today at PyData and SciPy conferences

- **Deployable**
  - HPC: SLURM, PBS, LSF, SGE
  - Cloud: Kubernetes
  - Hadoop/Spark: Yarn
Parallel NumPy
For imaging, simulation analysis, machine learning

- Same API as NumPy
  ```python
 import dask.array as da
 x = da.from_hdf5(...)
 x + x.T - x.mean(axis=0)
  ```
- One Dask Array is built from many NumPy arrays
  Either lazily fetched from disk
  Or distributed throughout a cluster
Parallel Pandas
For ETL, time series, data munging

- Same API as Pandas

```python
import dask.dataframe as dd
df = dd.read_csv(...)
df.groupby('name').balance.max()
```

- One Dask DataFrame is built from many Pandas DataFrames

Either lazily fetched from disk
Or distributed throughout a cluster
Parallel Scikit-Learn
For Hyper-Parameter Optimization, Random Forests, ...

- Same API

```python
estimator = RandomForest()
estimator.fit(data, labels)
```
Parallel Scikit-Learn
For Hyper-Parameter Optimization, Random Forests, ...

- Same API

```python
from scikit_learn.externals import joblib
with joblib.parallel_backend('dask'):
 estimator = RandomForest()
 estimator.fit(data, labels)
```

- Same exact code, just wrap with a decorator
- Replaces default threaded execution with Dask
  Allowing scaling onto clusters
- Available in most Scikit-Learn algorithms where joblib is used
Parallel Python
For custom systems, ML algorithms, workflow engines

- Parallelize existing codebases

```python
results = {}

for x in X:
 for y in Y:
 if x < y:
 result = f(x, y)
 else:
 result = g(x, y)
 results.append(result)
```
Parallel Python
For custom systems, ML algorithms, workflow engines

- Parallelize existing codebases

```python
f = dask.delayed(f)
g = dask.delayed(g)

results = {}

for x in X:
 for y in Y:
 if x < y:
 result = f(x, y)
 else:
 result = g(x, y)
 results.append(result)

result = dask.compute(results)
```

M Tepper, G Sapiro “Compressed nonnegative matrix factorization is fast and accurate”, IEEE Transactions on Signal Processing, 2016
Dask Connects Python users to Hardware
Dask Connects Python users to Hardware

User

Writes high level code (NumPy/Pandas/Scikit-Learn)

Turns into a task graph

Executes on distributed hardware
Example: Dask + Pandas on NYC Taxi

We see how well New Yorkers Tip

```python
import dask.dataframe as dd

df = dd.read_csv('gcs://bucket-name/nyc-taxi-*.csv',
 parse_dates=['pickup_datetime', 'dropoff_datetime'])

df2 = df[(df.tip_amount > 0) & (df.fare_amount > 0)]
df2['tip_fraction'] = df2.tip_amount / df2.fare_amount

hour = df2.groupby(df2.pickup_datetime.dt.hour).tip_fraction.mean()
hour.compute().plot(figsize=(10, 6), title='Tip Fraction by Hour')
```
examples.dask.org
Try live
Dask scales PyData libraries

But is compute-agnostic to those libraries

(A good fit if you’re building a new data science platform)
Scale up and out with RAPIDS and Dask

**RAPIDS and Others**
Accelerated on single GPU
- NumPy -> CuPy/PyTorch/...
- Pandas -> cuDF
- Scikit-Learn -> cuML
- Numba -> Numba

**PyData**
- NumPy, Pandas, Scikit-Learn and many more
- Single CPU core
- In-memory data

**Dask**
- Multi-core and Distributed PyData
- NumPy -> Dask Array
- Pandas -> Dask DataFrame
- Scikit-Learn -> Dask-ML
- ... -> Dask Futures
Scale up and out with RAPIDS and Dask

**RAPIDS and Others**
Accelerated on single GPU
- NumPy -> CuPy/PyTorch/...
- Pandas -> cuDF
- Scikit-Learn -> cuML
- Numba -> Numba

**Dask + RAPIDS**
Multi-GPU
- On single Node (DGX)
- Or across a cluster

**PyData**
NumPy, Pandas, Scikit-Learn and many more
- Single CPU core
- In-memory data

**Dask**
Multi-core and Distributed PyData
- NumPy -> Dask Array
- Pandas -> Dask DataFrame
- Scikit-Learn -> Dask-ML
- ... -> Dask Futures

**Scale up / Accelerate**
**Scale out / Parallelize**
Combine Dask with cuDF

Many GPU DataFrames form a distributed DataFrame
Combine Dask with cuDF
Many GPU DataFrames form a distributed DataFrame
Combine Dask with CuPy

Many GPU arrays form a Distributed GPU array
Combine Dask with CuPy

Many GPU arrays form a Distributed GPU array
Experiments

SVD with Dask Array

NYC Taxi with Dask DataFrame
So what works in DataFrames?

Lots!

- **Read CSV**: `read_csv('s3://bucket/*.csv')`
- **Elementwise operations**: `df + 1`, `df['z'] = df.x + df.y`
- **Reductions**: `df.x.sum()`
- **Groupby Aggregations**: `df.groupby('x').mean()`
- **Joins (hash, sorted, large-to-small)**: `left.merge(right, on='key')`, ...
- ...
So what doesn’t work?

Lots!

- Read Parquet/ORC
- Reductions: `df.sum()`
- Groupby Aggregations: `df.groupby([‘x’, ‘y’]).agg({‘z’: [‘max’, ‘min’]})`
- Rolling window operations
- ...

Leverages Dask DataFrame algorithms (been around for years)
API matches Pandas
So what doesn’t work?

**API Alignment**

- When cuDF and Pandas match, existing Dask algorithms work seamlessly
- But the APIs don’t always match

In [1]: import pandas, cudf

In [2]: cudf.DataFrame.set_index
Out[2]: <function cudf.DataFrame.set_index(self, index)>

In [3]: pandas.DataFrame.set_index
Out[3]: <function pandas.DataFrame.set_index(self, keys, drop=True, append=False, inplace=False, verify_integrity=False)>
So what doesn’t work?

API Alignment

- When cuDF and Pandas match, existing Dask algorithms work seamlessly
- But the APIs don’t always match

In [1]: import pandas, cudf
In [2]: pandas.get_dummies           # These are the same
In [3]: cudf.DataFrame.one_hot_encoding # These are the same
So what works in Arrays?

We genuinely don’t know yet

- This work is much younger, but moving quickly
- CuPy has been around for a while, and is fairly mature
- Most work today happening upstream in NumPy and Dask

Thanks Peter Entschev, Hameer Abbasi, Stephan Hoyer, Marten van Kerkwijk, Eric Wieser

- Ecosystem approach benefits other NumPy-like arrays as well, sparse arrays, Xarray, …
So what’s next?
Lots of issues with Dask, too!

- **High Performance Communication**
  - Today Dask uses in-memory or TCP
  - For Infiniband and NVLink, now integrating OpenUCX with ucx-py
- **Spilling to main memory**
  - Today Dask spills from memory to disk
  - For GPUs, we’d like to spill from device, to host, to disk
- **Mixing CPU and GPU workloads**
  - Today Dask has one thread per core, or one thread per GPU
  - For mixed systems we need to auto-annotate GPU vs CPU tasks
- **Better recipes for deployment**
  - Today Dask deploys on Kubernetes, HPC job schedulers, YARN
  - Today these technologies also support GPU workloads
  - Need better examples using both together
Learn More

Thank you for your time

PyData: pydata.org

RAPIDS: rapids.ai

Dask: dask.org

examples.dask.org