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PyData is Pragmatic, but Limited

The PyData Ecosystem
• NumPy: Arrays
• Pandas: Dataframes
• Scikit-Learn: Machine Learning
• Jupyter: Interaction
• … (many other projects)

Is well loved
• Easy to use
• Broadly taught
• Community Governed

But sometimes slow
• Single CPU core
• In-memory data

How do we accelerate an existing software stack?
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95% of the time, PyData is great

5% of the time, you want more performance
(and you can ignore the rest of this talk)
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Scale up and out with RAPIDS and Dask

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Multi-GPU
On single Node (DGX)
Or across a cluster

Dask + RAPIDS

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures
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RAPIDS: GPU variants of PyData libraries

• NumPy -> CuPy, PyTorch, TensorFlow
• Array computing
• Mature due to deep learning boom
• Also useful for other domains
• Obvious fit for GPUs

• Pandas -> cuDF
• Tabular computing
• New development 
• Parsing, joins, groupbys
• Not an obvious fit for GPUs

• Scikit-Learn -> cuML
• Traditional machine learning
• Somewhere in between
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• PyData Native
• Built on top of NumPy, Pandas Scikit-Learn, … (easy to migrate)
• With the same APIs (easy to train)
• With the same developer community (well trusted)

• Scales
• Scales out to thousand-node clusters
• Easy to install and use on a laptop

• Popular
• Most common parallelism framework today at PyData and SciPy conferences

• Deployable
• HPC: SLURM, PBS, LSF, SGE
• Cloud: Kubernetes
• Hadoop/Spark: Yarn

Dask Parallelizes PyData
Natively
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Parallel NumPy
For imaging, simulation analysis, machine learning

● Same API as NumPy

● One Dask Array is built from 
many NumPy arrays

Either lazily fetched from disk
Or distributed throughout a 
cluster
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Parallel Pandas
For ETL, time series, data munging

● Same API as Pandas

● One Dask DataFrame is built from many 
Pandas DataFrames

Either lazily fetched from disk
Or distributed throughout a cluster
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● Same API

● Same exact code, just wrap with a decorator
● Replaces default threaded execution with Dask

Allowing scaling onto clusters
● Available in most Scikit-Learn algorithms where joblib is 

used

Parallel Scikit-Learn

Thread
Pool

For Hyper-Parameter Optimization, Random Forests, ...
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Parallel Python
For custom systems, ML algorithms, workflow engines

● Parallelize existing codebases
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Parallel Python
For custom systems, ML algorithms, workflow engines

● Parallelize existing codebases

M Tepper, G Sapiro “Compressed nonnegative 
matrix factorization is fast and accurate”, 
IEEE Transactions on Signal Processing, 2016
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Dask Connects Python users to Hardware

User Execute on distributed 
hardware
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Dask Connects Python users to Hardware

User
Writes high level code

(NumPy/Pandas/Scikit-Learn)
Turns into a task graph Executes on distributed 

hardware
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Example: Dask + Pandas on NYC Taxi
We see how well New Yorkers Tip

import dask.dataframe as dd

df = dd.read_csv('gcs://bucket-name/nyc-taxi-*.csv', 
                 parse_dates=['pickup_datetime', 'dropoff_datetime'])

df2 = df[(df.tip_amount > 0) & (df.fare_amount > 0)]
df2['tip_fraction'] = df2.tip_amount / df2.fare_amount

hour = df2.groupby(df2.pickup_datetime.dt.hour).tip_fraction.mean()
hour.compute().plot(figsize=(10, 6), title='Tip Fraction by Hour')
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examples.dask.org 
Try live

https://examples.dask.org
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Dask scales PyData libraries

(A good fit if you’re building a new data science platform)

But is compute-agnostic to those libraries
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Combine Dask with cuDF
Many GPU DataFrames form a distributed DataFrame
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Combine Dask with cuDF
Many GPU DataFrames form a distributed DataFrame

cuDF
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Combine Dask with CuPy
Many GPU arrays form a Distributed GPU array
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Combine Dask with CuPy
Many GPU arrays form a Distributed GPU array

GPU
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Experiments
...

SVD with Dask Array NYC Taxi with Dask DataFrame

http://www.youtube.com/watch?v=R5CiXti_MWo
http://www.youtube.com/watch?v=gV0cykgsTPM
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So what works in DataFrames?

Read CSV: 
Elementwise operations: 
Reductions: 
Groupby Aggregations: 
Joins (hash, sorted, large-to-small): 

Leverages Dask DataFrame algorithms (been around for years)
API matches Pandas

Lots!
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So what doesn’t work?

Read Parquet/ORC

Reductions: 
Groupby Aggregations: 
Rolling window operations

Leverages Dask DataFrame algorithms (been around for years)
API matches Pandas

Lots!
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So what doesn’t work?

• When cuDF and Pandas match, existing Dask algorithms work seamlessly
• But the APIs don’t always match

API Alignment
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So what works in Arrays?

• This work is much younger, but moving quickly

• CuPy has been around for a while, and is fairly mature
• Most work today happening upstream in NumPy and Dask

Thanks Peter Entschev, Hameer Abbasi, Stephan Hoyer, Marten van Kerkwijk, Eric Wieser

• Ecosystem approach benefits other NumPy-like arrays as well, sparse arrays, Xarray, ...

We genuinely don’t know yet
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So what’s next?

• High Performance Communication
• Today Dask uses in-memory or TCP
• For Infiniband and NVLink, now integrating OpenUCX with ucx-py

• Spilling to main memory
• Today Dask spills from memory to disk
• For GPUs, we’d like to spill from device, to host, to disk

• Mixing CPU and GPU workloads
• Today Dask has one thread per core, or one thread per GPU
• For mixed systems we need to auto-annotate GPU vs CPU tasks

• Better recipes for deployment
• Today Dask deploys on Kubernetes, HPC job schedulers, YARN
• Today these technologies also support GPU workloads
• Need better examples using both together

Lots of issues with Dask, too!
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PyData: pydata.org 

RAPIDS: rapids.ai

Dask: dask.org

examples.dask.org

Learn More
Thank you for your time

https://pydata.org
https://rapids.ai
https://dask.org
https://examples.dask.org

