
Keith Kraus 3-18-2019
Dante Gama Dessavre

RAPIDS: PYTHON GPU-ACCELERATED DATA SCIENCE



2

Faster Data Access Less Data Movement
DATA PROCESSING EVOLUTION

HDFS 
Read

HDFS 
Write

HDFS 
Read

HDFS 
Write

HDFS 
ReadQuery ETL ML Train

Hadoop Processing, Reading from disk



3

Faster Data Access Less Data Movement
DATA PROCESSING EVOLUTION

HDFS 
Read

HDFS 
Write

HDFS 
Read

HDFS 
Write

HDFS 
ReadQuery ETL ML Train

HDFS 
Read Query ETL ML Train

Hadoop Processing, Reading from disk

25-100x 
Improvement

Less code
Language flexible

Primarily In-Memory

Spark In-Memory Processing



4

WE NEED MORE COMPUTE!
Basic workloads are bottlenecked by the CPU

Source: Mark Litwintschik’s blog: 1.1 Billion Taxi Rides: EC2 versus EMR

• In a simple benchmark consisting of 
aggregating data, the CPU is the 
bottleneck

• This is after the data is parsed and 
cached into memory which is 
another common bottleneck

• The CPU bottleneck is even worse 
in more complex workloads!

SELECT cab_type, count(*) FROM 
trips_orc GROUP BY cab_type;

http://tech.marksblogg.com/billion-nyc-taxi-rides-ec2-versus-emr.html


5

HOW CAN WE DO BETTER?
• Focus on the full Data Science workflow

• Data Loading

• Data Transformation

• Data Analytics

• Python

• Provide as close to a drop-in replacement for existing tools

• Performance - Leverage GPUs



6

APP A

DATA MOVEMENT AND TRANSFORMATION
What if we could keep data on the GPU?

APP B

Copy & Convert

Copy & Convert

Copy & Convert

APP A GPU 
Data

APP B
GPU 
Data

Read Data

Load Data

APP B

CPU GPU

APP A



7

LEARNING FROM APACHE ARROW

From Apache Arrow Home Page - https://arrow.apache.org/



8

cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> Kepler.gl
Visualization

RAPIDS
End to End Accelerate GPU Data Science



9

Faster Data Access Less Data Movement
DATA PROCESSING EVOLUTION

25-100x Improvement
Less code

Language flexible
Primarily In-Memory

HDFS 
Read

HDFS 
Write

HDFS 
Read

HDFS 
Write

HDFS 
ReadQuery ETL ML Train

HDFS 
Read Query ETL ML Train

HDFS 
Read

GPU 
ReadQuery CPU

Write
GPU 
Read ETL CPU

Write
GPU 
Read

ML
Train

Arrow
Read Query ETL ML

Train

5-10x Improvement
More code

Language rigid
Substantially on GPU

50-100x Improvement
Same code

Language flexible
Primarily on GPU

RAPIDS

GPU/Spark In-Memory Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing



10

THE NEED FOR SPEED
RAPIDS is fast… but could be even faster!



11

WITHOUT SACRIFICING USABILITY
RAPIDS needs to be friendly for every data scientist

Python

CUDA

C/C++

GPU

ARCHITECTURE

• RAPIDS delivers the performance of GPU-
Accelerated CUDA

• RAPIDS delivers the ease of use of the Python data 
science ecosystemPerformance

Ease of Use



12

• https://ngc.nvidia.com/registry/nvidia-
rapidsai-rapidsai

• https://hub.docker.com/r/rapidsai/rapidsai/

• https://github.com/rapidsai

• https://anaconda.org/rapidsai/

• https://pypi.org/project/cudf
• https://pypi.org/project/cuml
• https://pypi.org/project/cugraph (coming soon)

RAPIDS
Install anywhere and everywhere

https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
https://hub.docker.com/r/rapidsai/rapidsai/
https://github.com/rapidsai
https://anaconda.org/rapidsai/
https://pypi.org/project/cudf
https://pypi.org/project/cuml
https://pypi.org/project/cugraph


13

GPU Memory

cuDF
Analytics

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> Kepler.gl
Visualization

RAPIDS
End to End Accelerate GPU Data Science



14

GPU-ACCELERATED ETL
Is GPU-acceleration really needed?



15

GPU-ACCELERATED ETL
The average data scientist spends 90+% of their time in ETL as opposed 

to training models



16

CUDF
GPU DataFrame library

• Apache Arrow data format
• Pandas-like API

• Unary and Binary Operations
• Joins / Merges
• GroupBys
• Filters
• User-Defined Functions (UDFs)
• Accelerated file readers
• Etc.



17

libcudf (CUDA C++) cudf (Python)

• Low level library containing function 
implementations and C/C++ API

• Importing/exporting a GDF using the CUDA IPC 
mechanism

• CUDA kernels to perform element-wise math 
operations on GPU DataFrame columns

• CUDA sort, join, groupby, and reduction 
operations on GPU DataFrames

• A Python library for manipulating GPU 
DataFrames

• Python interface to libcudf library with 
additional functionality

• Creating GDFs from Numpy arrays, Pandas 
DataFrames, and PyArrow Tables

• JIT compilation of User-Defined Functions 
(UDFs) using Numba

CUDF



18

libcudf (CUDA C++) cudf (Python)

• Low level library containing function 
implementations and C/C++ API

• Importing/exporting a GDF using the CUDA IPC 
mechanism

• CUDA kernels to perform element-wise math 
operations on GPU DataFrame columns

• CUDA sort, join, groupby, and reduction 
operations on GPU DataFrames

• A Python library for manipulating GPU 
DataFrames

• Python interface to libcudf library with 
additional functionality

• Creating GDFs from Numpy arrays, Pandas 
DataFrames, and PyArrow Tables

• JIT compilation of User-Defined Functions 
(UDFs) using Numba

CUDF
See Jake Hemstad’s talk “RAPIDS CUDA DataFrame

Internals for C++ Developers” on Wednesday at 10am



19

LIVE DEMO!
(PRAY TO THE DEMO GODS) 



20

CUDF
0.6 Release on Friday!

• Initial String Support!

• Near feature parity with Pandas on CSV Reader

• DLPack and __cuda_array_interface__ 
integration

• Huge API improvements for Pandas compatibility 
and enhanced multi-GPU capabilities via Dask

• Type-generic operation groundwork

• And more!



21

GPU-Accelerated string functions with a Pandas-like API 
STRING SUPPORT

• API and functionality is following Pandas: 
https://pandas.pydata.org/pandas-
docs/stable/api.html#string-handling

• Handles ingesting and exporting typical 
Python objects (Pandas series, Numpy
arrays, PyArrow arrays, Python lists, etc.)

• Initial performance results:

• lower(): ~22x speedup

• find(): ~40x speedup

• slice(): ~100x speedup

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

lower() find(#) slice(1,15)

m
ill
ise

co
nd

s

Pandas cudastrings

https://pandas.pydata.org/pandas-docs/stable/api.html


22

ACCELERATED DATA LOADING
CPUs bottleneck data loading in high throughput systems

• CSV Reader
• Follows API of pandas.read_csv
• Current implementation is >10x speed 

improvement over pandas
• Parquet Reader – v0.7

• Work in progress: Will follow API of 
pandas.read_parquet

• ORC Reader – v0.7
• Work in progress: Will have similar API of 

Parquet reader
• Decompression of the data will be GPU-

accelerated as well!

Source: Apache Crail blog: SQL Performance: Part 1 - Input File Formats

http://crail.incubator.apache.org/blog/2018/08/sql-p1.html


23

INTEROPERABILITY WITH THE ECOSYSTEM
__cuda_array_interface__ and DLPack



24

PYTHON CUDA ARRAY INTERFACE
Interoperability for Python GPU Array Libraries

• The CUDA array interface is a standard format that 

describes a GPU array to allow sharing GPU arrays 

between different libraries without needing to copy or 

convert data

• Native ingest and export of __cuda_array_interface__ 

compatible objects via Numba device arrays in cuDF

• Numba, CuPy, and PyTorch are the first libraries to 

adopt the interface:

• https://numba.pydata.org/numba-

doc/dev/cuda/cuda_array_interface.html

• https://github.com/cupy/cupy/releases/tag/v5.0.0b4

• https://github.com/pytorch/pytorch/pull/11984

https://numba.pydata.org/numba-doc/dev/cuda/cuda_array_interface.html
https://github.com/cupy/cupy/releases/tag/v5.0.0b4
https://github.com/pytorch/pytorch/pull/11984


25

DLPACK
Interoperability with Deep Learning Libraries

• DLPack is an open-source memory tensor structure 
designed to allow sharing tensors between deep 
learning frameworks

• Currently supported by PyTorch, MXNet, and Chainer / 
CuPy

• cuDF supports ingesting and exporting column-major 
DLPack tensors

• If you’re interested in row-major tensor support 
please let us know!



26

DASK
What is Dask and why does RAPIDS use it for scaling out?

• Dask is a distributed computation scheduler built to 
scale Python workloads from laptops to 
supercomputer clusters.

• Extremely modular with scheduling, compute, data 
transfer, and out-of-core handling all being disjointed 
allowing us to plug in our own implementations.

• Can easily run multiple Dask workers per node to 
allow for an easier development model of one worker 
per GPU regardless of single node or multi node 
environment.



27

DASK
Scale up and out with cuDF

• Use cuDF primitives underneath in map-reduce style 
operations with the same high level API

• Instead of using typical Dask data movement of 
pickling objects and sending via TCP sockets, take 
advantage of hardware advancements using a 
communications framework called OpenUCX:

• For intranode data movement, utilize NVLink
and PCIe peer-to-peer communications

• For internode data movement, utilize GPU 
RDMA over Infiniband and RoCE

https://github.com/rapidsai/
dask-cudf

http://www.openucx.org/

https://github.com/rapidsai/dask-cudf
http://www.openucx.org/


28

DASK
Scale up and out with cuDF

• Use cuDF primitives underneath in map-reduce style 
operations with the same high level API

• Instead of using typical Dask data movement of 
pickling objects and sending via TCP sockets, take 
advantage of hardware advancements using a 
communications framework called OpenUCX:

• For intranode data movement, utilize NVLink
and PCIe peer-to-peer communications

• For internode data movement, utilize GPU 
RDMA over Infiniband and RoCE

https://github.com/rapidsai/
dask-cudf

http://www.openucx.org/

See Matt Rocklin’s talk “Dask Extensions and New 
Developments with RAPIDS” next!

https://github.com/rapidsai/dask-cudf
http://www.openucx.org/


29

What’s coming in 0.7+?
CUDF

• Better User Experience

• Migrating to using Cython exclusively for binding the Python to libcudf which allows for raising 
more intuitive and descriptive exceptions from the C++ API

• Improve general exceptions and error handling in cuDF library for common issues such as driver / 
CUDA mismatches, out of memory errors, dtype mismatches, etc.

• More feature completeness in libcudf

• Much of the functionality today lives purely in the Python library via just in time compiled 
kernels with Numba, we want to move this functionality to static compiled kernels in libcudf and 
expose usable C++ APIs for both end users and library builders

• Enhanced Multi-GPU and Multi-Node capabilities

• Better Pandas API compatibility to integrate more into the Dask codebase



30

GPU Memory

cuDF
Analytics

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> Kepler.gl
Visualization

RAPIDS
End to End Accelerate GPU Data Science



31

GPU Memory

cuDF
Analytics

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> Kepler.gl
Visualization

RAPIDS
End to End Accelerate GPU Data Science



32

ROAD TO 1.0 
GTC Europe – Launch - RAPIDS 0.1

cuGraph SG MG MGMN

Jaccard

Weighted Jaccard

PageRank

Louvain

SSSP

BFS

SSWP

Triangle Counting

Subgraph Extraction

cuML SG MG MGMN

Gradient Boosted Decision Trees 

(GBDT)

GLM

Logistic Regression

Random Forest (regression)

K-Means

K-NN

DBSCAN

UMAP

ARIMA

Kalman Filter

Holts-Winters

Principal Components

Singular Value Decomposition



33

ROAD TO 1.0 
GTC San Jose – Today - RAPIDS 0.6

cuGraph SG MG MGMN

Jaccard

Weighted Jaccard

PageRank

Louvain

SSSP

BFS

SSWP

Triangle Counting

Subgraph Extraction

cuML SG MG MGMN

Gradient Boosted Decision Trees 

(GBDT)

GLM

Logistic Regression

Random Forest (regression)

K-Means

K-NN

DBSCAN

UMAP

ARIMA

Kalman Filter

Holts-Winters

Principal Components

Singular Value Decomposition



34

ROAD TO 1.0 
Q4 – 2019 - RAPIDS 0.12?

cuML SG MG MGMN
Gradient Boosted Decision Trees 

(GBDT)

GLM

Logistic Regression

Random Forest (regression)

K-Means

K-NN

DBSCAN

UMAP

ARIMA

Kalman Filter

Holts-Winters

Principal Components

Singular Value Decomposition

cuGraph SG MG MGMN

Jaccard

Weighted Jaccard

PageRank

Louvain

SSSP

BFS

SSWP

Triangle Counting

Subgraph Extraction



35

DASK
Scale up and out with cuML

• Native integration with Dask + cuDF

• Can easily use Dask workers to initialize NCCL for 

optimized gather / scatter operations

• Example: this is how the dask-xgboost included 

in the container works for multi-GPU and multi-

node, multi-GPU

• Provides easy to use, high level primitives for 

synchronization of workers which is needed for many 

ML algorithms



36

LOOKING TO THE 
FUTURE



37

JOIN THE MOVEMENT
Everyone Can Help!

Integrations, feedback, documentation support, pull requests, new issues, or code donations welcomed!

APACHE ARROW GPU Open Analytics 
Initiative

https://arrow.apache.org/

@ApacheArrow

http://gpuopenanalytics.com/

@GPUOAI

RAPIDS

https://rapids.ai

@RAPIDSAI



THANK YOU

Keith Kraus @keithjkraus

Dante Gama Dessavre @dante_dgd


