# End-to-End Analysis of Large 3D Geospatial Datasets in RAPIDS

# John Murray

Fusion Data Science/University of Liverpool

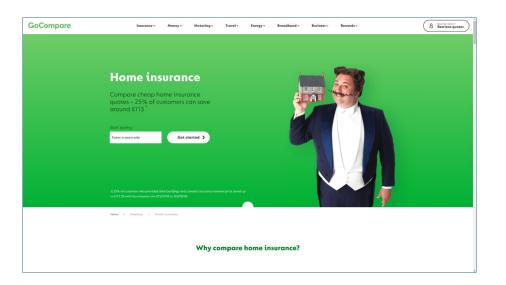
@MurrayData

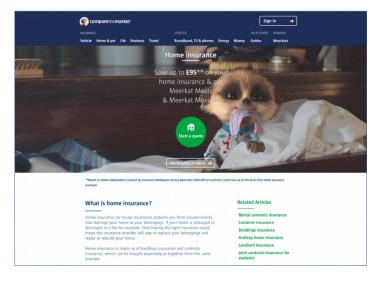
#### What do we mean by 'End-to-End' Analysis?

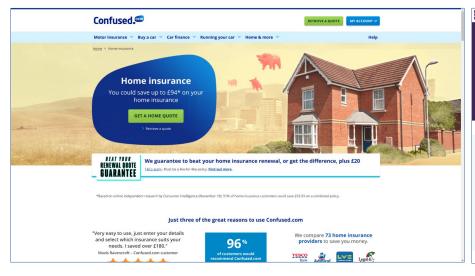
- Processing of raw data sources & ETL:
  - Data calibration
  - Conversion and standardisation
  - Load to repositories
- Combining data sources for:
  - Augmentation to enhance data
  - Attach labels to training data
- Train models
- Infer models
- Interpret and deploy results of inference
- Potentially multistage process

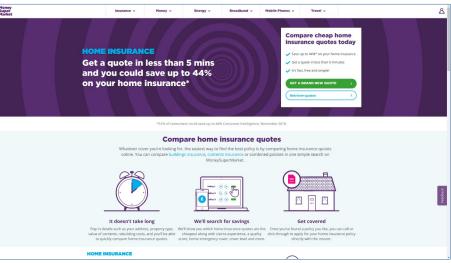
# Al is also a response to other disruptive technology.

# Disruption of Property Insurance Market by Price Comparison websites









### The Challenge for Insurers

- Customers will not complete lengthy application forms online
- Difficult for insurer to ask customer for further information
- Customers expect instant quotations
- Potential financial loss from underwriting high risk propoerties
- Potential loss of low risk customer to a competitor
- Traditional underwriting methods no longer work

#### The Response

- Use AI to classify property attributes and detect risks
- Use alternative data sources to assess underwriting risk
- Minimise application form by prepopulating answers
- Move away from area based risk analysis to individual properties
- Take a 3-dimensional view of a property and its immediate environment

#### **Geospatial Data - Data Sources**

### Traditional data sources

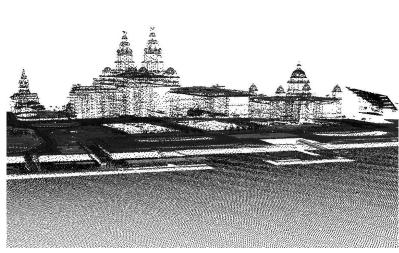
- Census and National Statistics
- Mapping data as vectors and rasters

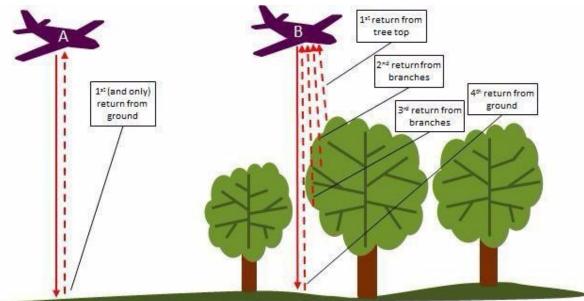
#### New Data Sources

- Satellite & Aerial Imagery
- LiDAR data from aircraft and vehicles
- Sensor data, e.g. SAR
- Social Media
- Cellphone Apps
- Government Open Data
- Crime location data
- Field surveying

#### **LiDAR Data**

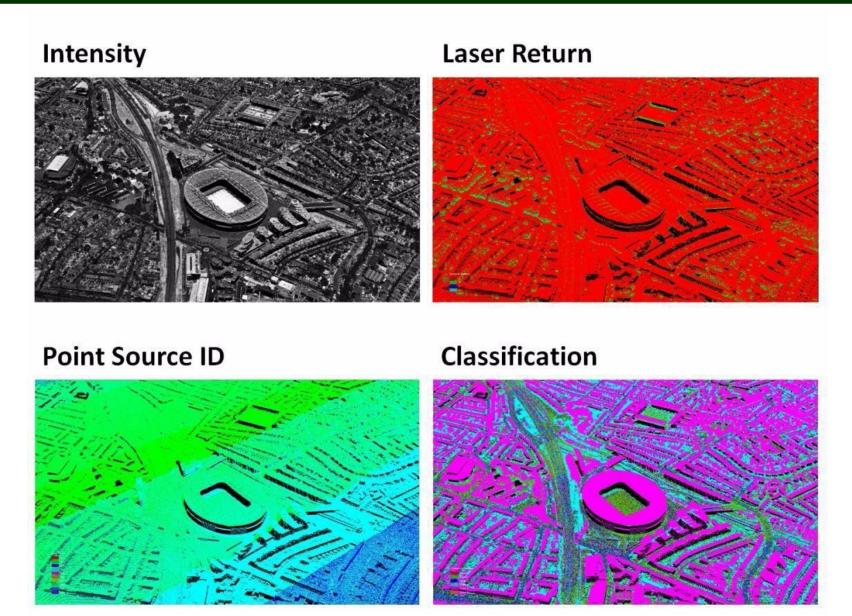






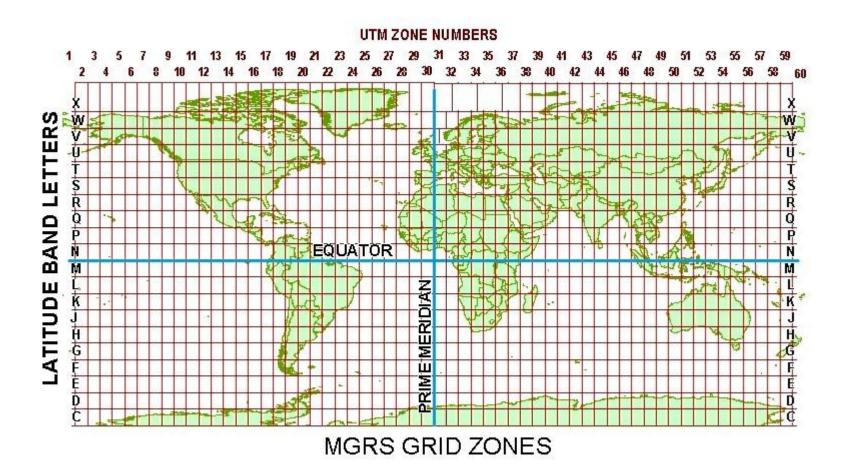
Open Data Images UK Environment Agency

#### **LiDAR Point Cloud Data**



Open Data Images UK Environment Agency

#### **Coordinate Systems**



# **Coordinate Systems**

| 17/11 | 4 N     | N+P      | LA       | TH         | UF | 1 | VH       | WH      | XH | YH |     | CN   | 4 <del>Q</del> - | 1-       | EN  |    | 2                      |
|-------|---------|----------|----------|------------|----|---|----------|---------|----|----|-----|------|------------------|----------|-----|----|------------------------|
| MIV   | 1 NI    | A P      | M di     | <b>MTG</b> | UC | 3 | VG       | WG      | XG | YG | BM  | CM   | DI               | И        | EM  | FM | BMKG                   |
| ML    | 1<br>NL |          | PLQ      | LITE       | UF |   | 15<br>VF | WF      | XF | ΥF | BL  | CL   | D                | 6        | TEL | FL | GLKE                   |
| MK    |         | 1        | QI       | TE         | UE | Ξ | VE       | WE      | XE | YE | ВК  | СК   | 1                | K        | EK  | FK | GK KE                  |
| MK    | NK      | PK       | Q        | TE         | UE |   | VE       | WE      | XE | YE | BK  | CK   |                  | K        | EK  | FE | ON                     |
| MJ    | NJ      | PJ       | QJ       |            | U  |   | VD       | WD      | XD | YD |     | CJ   | [                | JJ       | EJ  | FJ | GJ                     |
| MH    | NH      | PH       | QH       | тс         | U  |   | VC       | WC      | хс | YC | BH  | СН   | 3                | DH       | EH  | FH | 1/5<br>- <del>GH</del> |
| MG    | NG      | PG       | QG       | ТВ         | UE | 3 | VB       | WB      | ХВ | YE | ВС  | CG   |                  | DG       | EG  | FG | GG                     |
| MF    | NF      | PF       | QF       | TA         | UA | 1 | VA       | S<br>WA | ХА | YΑ | В   | CF   |                  | DF       | EF  | FI | GF                     |
| ME    | NE      | PE       | QE       | TV         | U١ | 1 | W        | w       | XV | Y  | В   | E CE |                  | DE       | EE  | F  | E GE                   |
| A 1   | ND NC   | PD<br>PC | QD<br>QC | TU         | UL | J | VU       | WU      | XU | Y  | 200 | C C  | D<br>C           | DC<br>DC |     |    | D GD<br>C GC           |

# **Coordinate Systems**

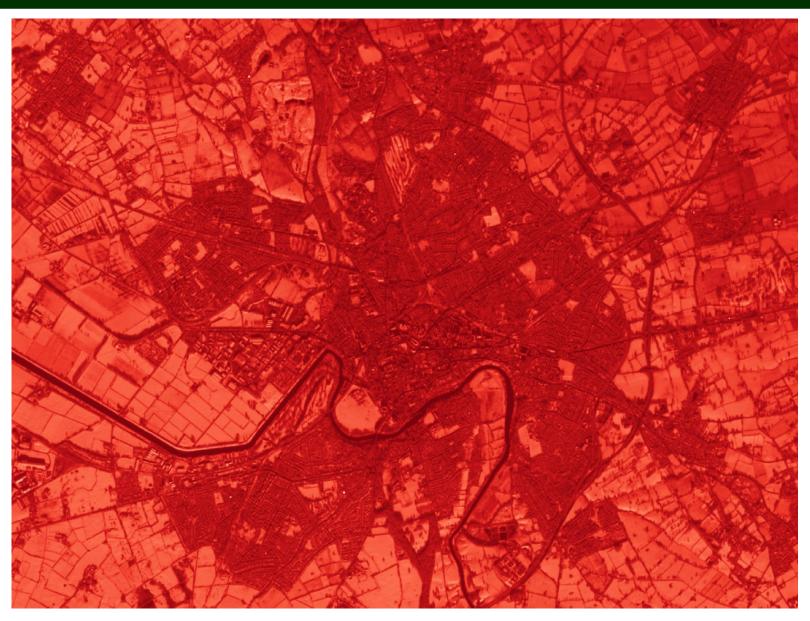


# **Research - Satellite imagery**

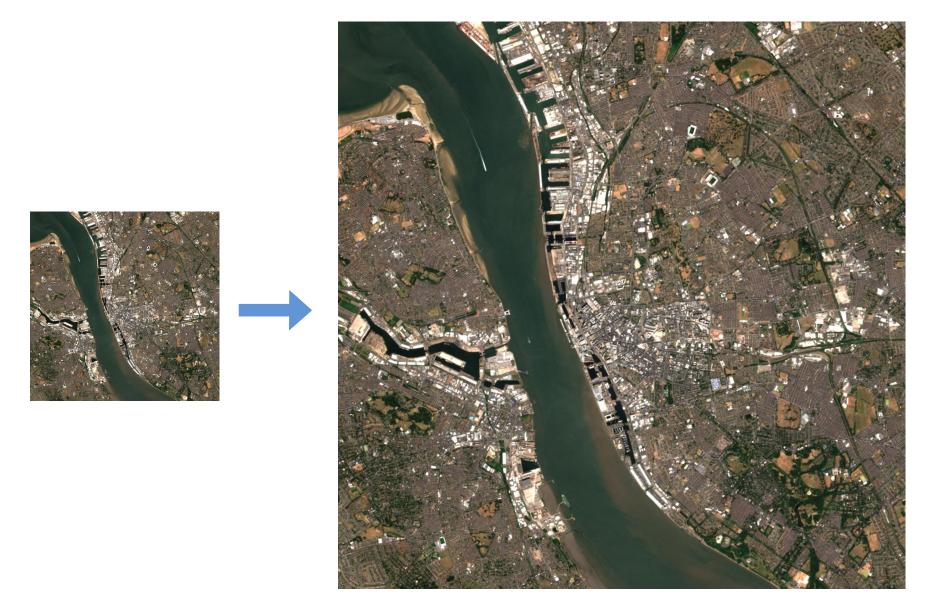


Open Data Images ESA EU Copernicus Sentinel Mission

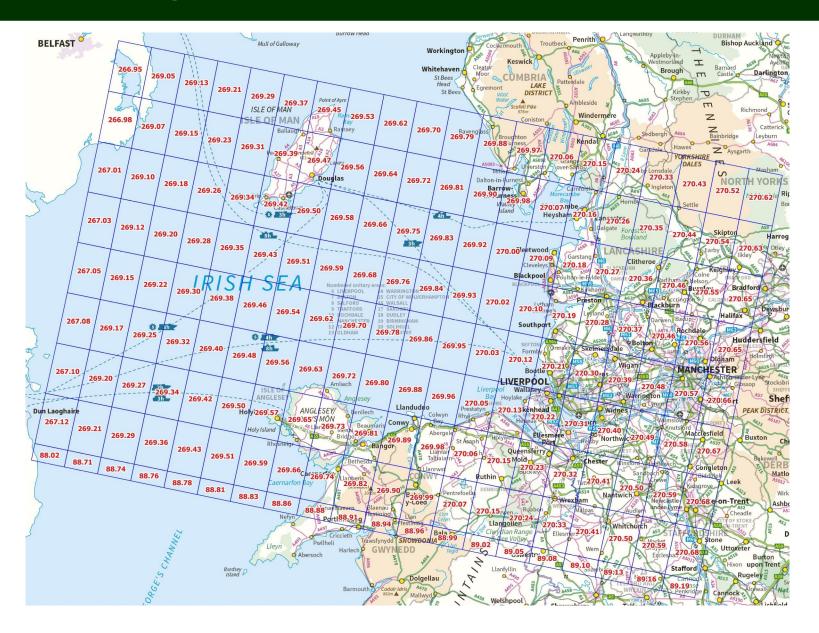
# **Satellite imagery**



# **Autoencoder Upscaled Satellite imagery**



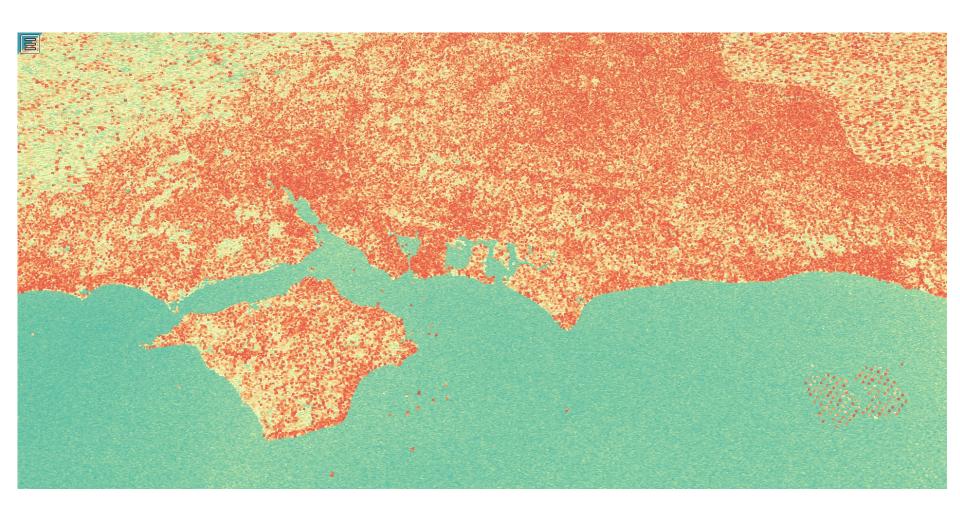
#### Single Aperture Radar (SAR) Data



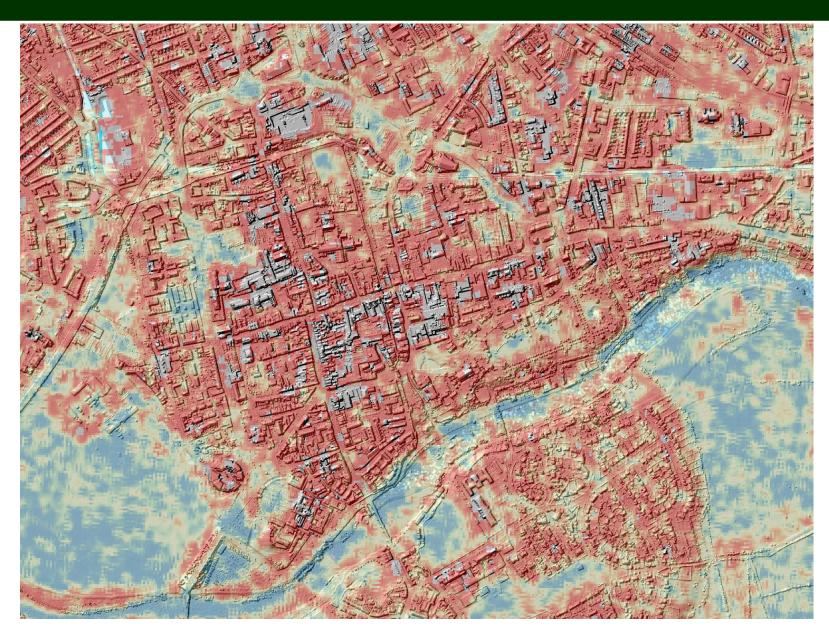
# Single Aperture Radar (SAR) Data



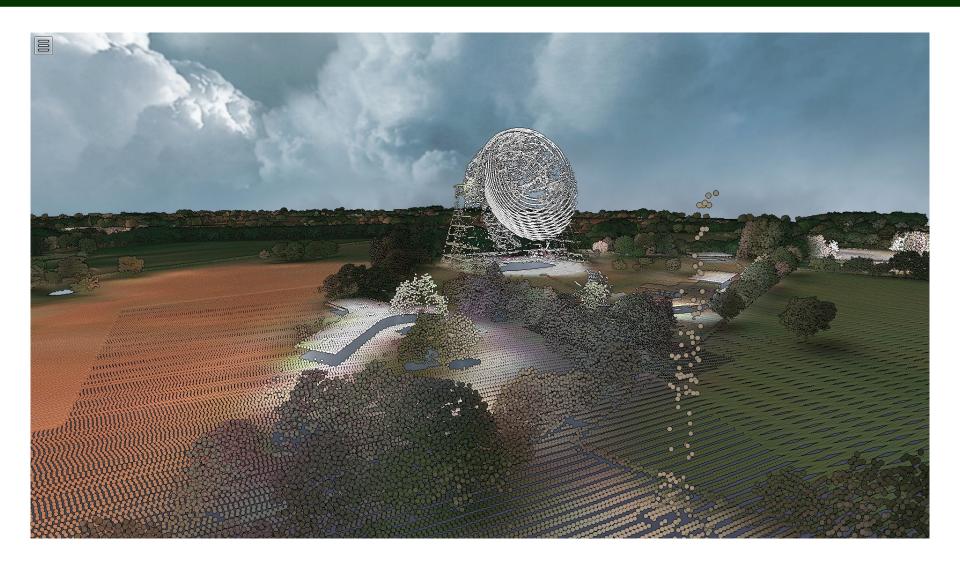
# Single Aperture Radar (SAR) Data



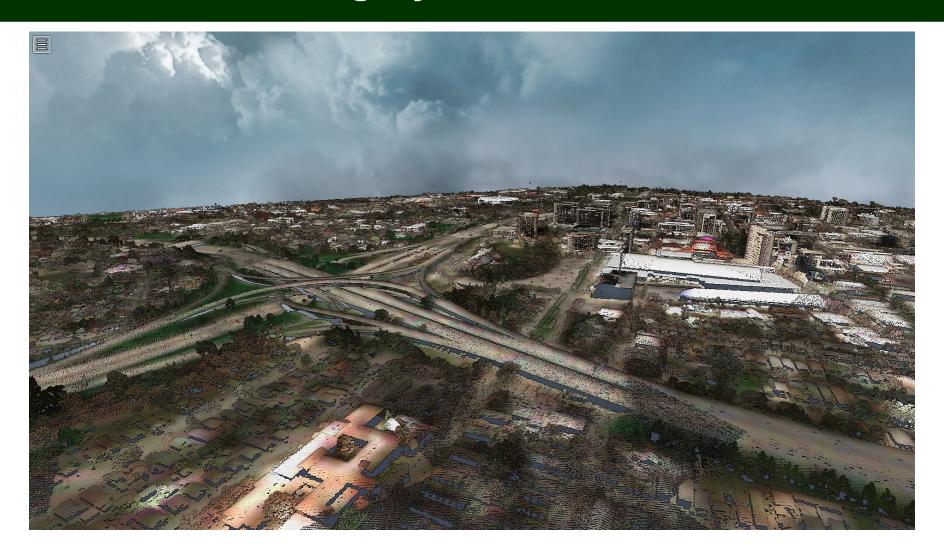
### **SAR and LiDAR Combined**



# **Satellite Imagery and LiDAR Combined**



# **Satellite Imagery and LiDAR Combined**

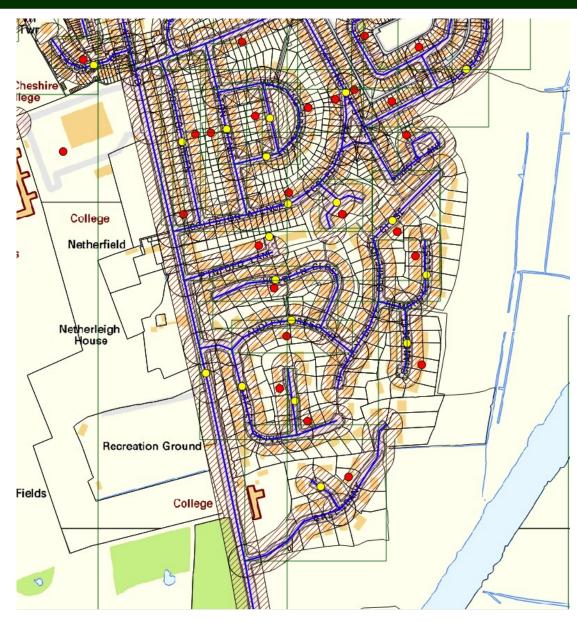


### Satellite Imagery and LiDAR Combined in RAPIDS

```
File Edit View Run Kernel Tabs Settings Help
     spatia_rapids_color_demo.i
     a + % □ □ b ■ C Code
                                                                                                                                                                                                                                     Python 3
序
          [1]: import cudf
               from cudf.dataframe import DataFrame
               import numpy as np
               import math
               import pandas as pd
               from numba import cuda
          [2]: names = ['Point ID', 'ETRS89 Easting', 'ETRS89 Northing', 'ETRS89 OSGB36 EShift', 'ETRS89 OSGB36 NShift', 'ETRS89 ODN HeightShift', 'Height Datum Flag']
          [3]: dtypes = ['int64','int64','int64','float64','float64','float64','int64']
          [4]: filename = '/data/ostn/OSTN15 OSGM15 DataFile.txt'
          [5]: from spatia rapids import transformations
               shift_dic = transformations.load_shifts(filename,names,dtypes,'ETRS89_Easting','ETRS89_Northing','ETRS89_OSGB36_EShift','ETRS89_OSGB36_NShift','ETRS89_ONG_HeightShift')
               CPU times: user 87.3 ms, sys: 144 ms, total: 231 ms
               Wall time: 287 ms
          [7]: import laspy as lp
          [8]: %%time
               lasfile = '/data/pointcloud/liv/Liverpool_Centre.las'
               inFile = lp.file.File(lasfile, mode = "r")
               print(inFile.header.min,inFile.header.max)
               print(inFile.header.get_dataformatid())
               [334000.0, 390000.0, -0.8] [335999.99, 391999.99, 139.73]
               CPU times: user 2.4 ms, sys: 625 µs, total: 3.02 ms
               Wall time: 2.35 ms
          [9]: origin = 496000,5913000
         [10]: %%time
                point zdf = DataFrame()
               point zdf['x'] = inFile.x
               point_zdf['y'] = inFile.y
               point zdf['z'] = inFile.z
               #point zdf['n'] = inFile.num returns[inFile.num returns==4]
               CPU times: user 1.91 s, sys: 189 ms, total: 2.1 s
               Wall time: 911 ms
         [11]: print(point_zdf)
                           334011.79
                                              390001.13 -0.71
                           334011.94
                                              390001.26 -0.54
                                              390001.42 -0.38
                           334012.12
                           334012.27
                                              390001.54 -0.27
                4 334012.41000000003 390001.66000000003 -0.16
                           334012.36
                                              390001.68 -0.13
                                              390001.55 -0.27
                           334012.21
```

# Demonstration LiDAR Processing in RAPIDS

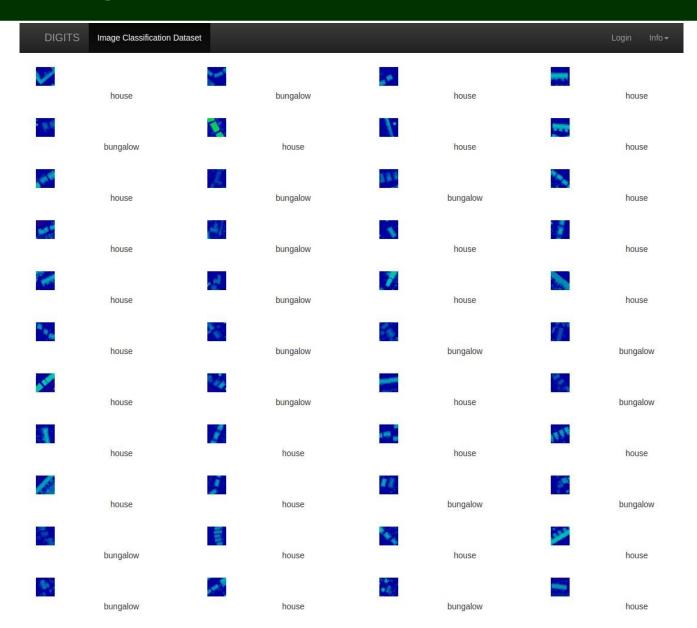
# **Property Attribute Classification in LiDAR**



### **Property Attribute Classification in LiDAR**

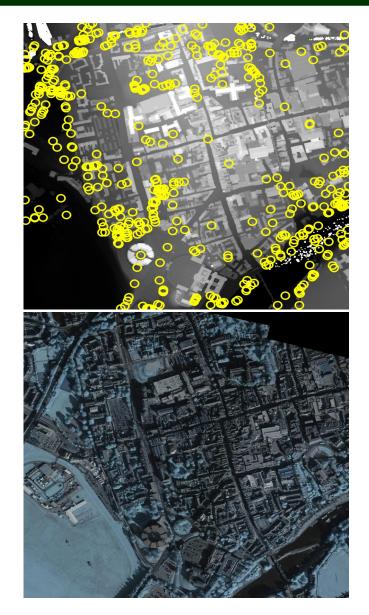
| LMK KEY               | BUILDING REFERENCE NUMBER | ADDRESS1             | POSTCODE | PROPERTY_TYPE | BUILT_FORM    |
|-----------------------|---------------------------|----------------------|----------|---------------|---------------|
| 337587020090803100814 | 1966065668                | 32, Commondale Drive |          | House         | Semi-Detached |
| 673146320110905030952 | 7035879868                | 6, Miers Avenue      | TS24 9HL | House         | Mid-Terrace   |
| 733339620120120100139 | 5400804968                | 13 Poppy Close       | TS26 0YX | House         | Detached      |
| 547496820100930060918 | 9899530868                | 30, Laurel Gardens   | TS25 4NZ | Flat          | NULL          |
| 79303520090512090529  | 3210151668                | 53, Mariners Point   | TS24 0FB | House         | End-Terrace   |
| .00721020080509110549 | 9252586468                | 3, Elderslie Walk    | TS25 4BP | Flat          | Detached      |
| 81296520110922070956  | 2432530968                | 72, Ridlington Way   | TS24 9QB | House         | Semi-Detached |
| 86920720110211120216  | 8555633868                | 14, Fernville Close  | TS25 4LN | Bungalow      | Semi-Detached |
| 90270320111018041032  | 4393990968                | 6, Barnard Grove     | TS24 9SD | House         | Semi-Detached |
| 22193520100118040117  | 0699551768                | 15, Salisbury Place  | TS26 0XJ | Flat          | Mid-Terrace   |
| 54540820101019111021  | 1688680868                | 11, Rockpool Close   | TS24 0TJ | House         | Semi-Detached |
| 138040420140509020507 | 5633903278                | 5, Celandine Gardens | TS26 0ZJ | House         | End-Terrace   |
| 4140820080215050255   | 0740894468                | 26, Burn Valley Road | TS26 9BS | House         | End-Terrace   |
| 98577720090105050109  | 0223755568                | 22, Brimston Close   | TS26 0QA | Bungalow      | Detached      |
| 20599120111105121136  | 2968313968                | 76, Murray Street    | TS26 8RQ | Flat          | NULL          |
| 58106120101027081043  | 5364011868                | 77, Lime Crescent    | TS24 8JW | House         | Mid-Terrace   |
| 56450520110719030722  | 9025958868                | 6, Phoenix Close     | TS25 3DH | Flat          | NULL          |
| 39986220110609060653  | 5171247868                | 28, Lister Street    | TS24 7QF | House         | End-Terrace   |
| 12747420100713100718  | 5502987768                | 33, Commondale Drive | TS25 2AN | Bungalow      | Semi-Detached |
| 467410320160801010848 | 2709636478                | 44, Northgate        | TS24 OLJ | House         | Mid-Terrace   |
| 16461120110412120413  | 0480475868                | 263a Raby Road       | TS24 8HF | Flat          | Mid-Terrace   |
| 445200120160519100511 | 3080974478                | 50, Penarth Walk     | TS26 0TW | Bungalow      | Mid-Terrace   |
| 80353420081114091105  | 0074234568                | 48, Irvine Road      | TS25 3HS | House         | End-Terrace   |
| 48719520160915090924  | 4897769078                | 7, Regent Square     | TS24 0QW | House         | Mid-Terrace   |
| 90254220081125081148  | 9792684568                | 75, Challoner Road   | TS24 8HY | House         | Semi-Detached |
|                       |                           |                      |          |               |               |

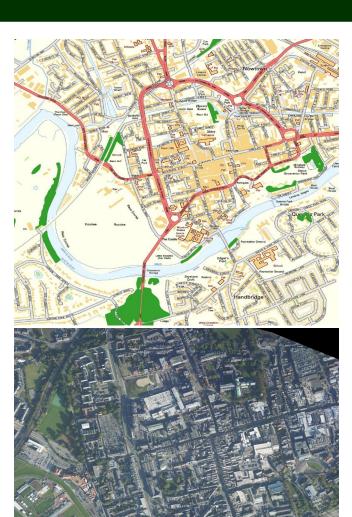
#### **Property Attribute Classification in LiDAR**



# Demonstration Deep Learning

# **Deep Learning - Object Detection in LiDAR**

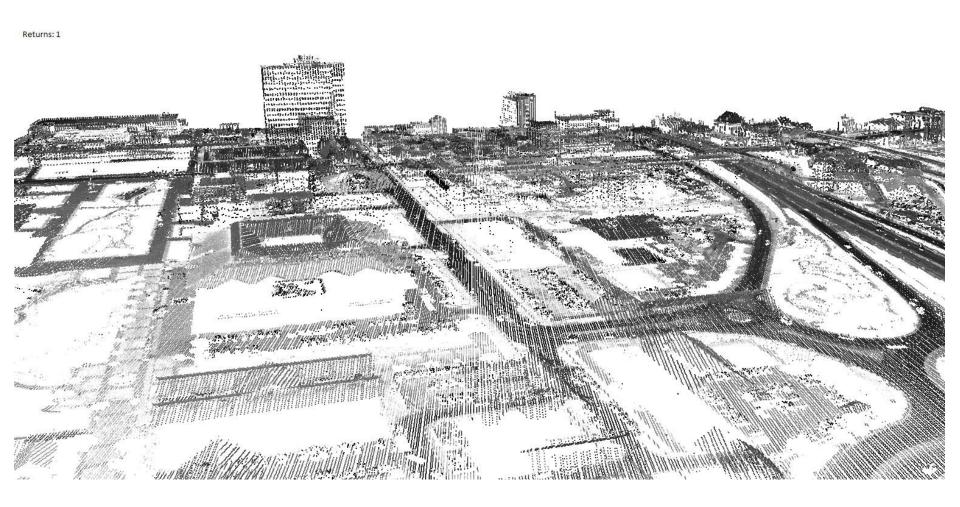




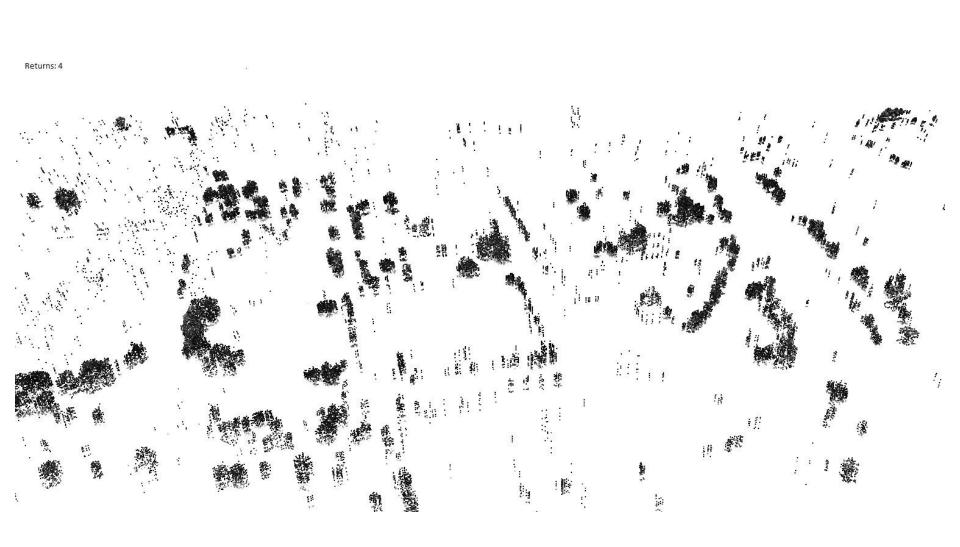
#### **Deep Learning - OS Greenspace**



# **LiDAR Segmentation**



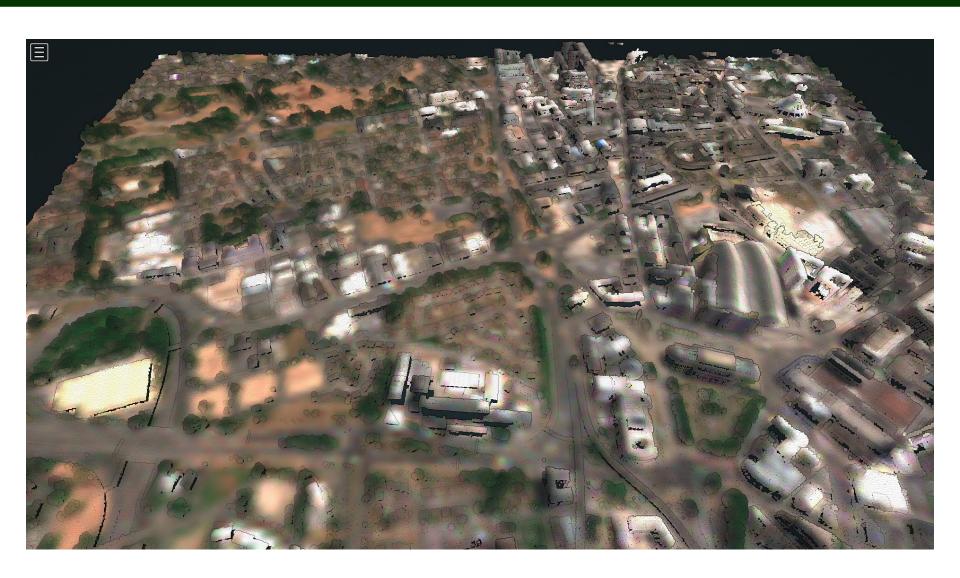
# **LiDAR Segmentation**



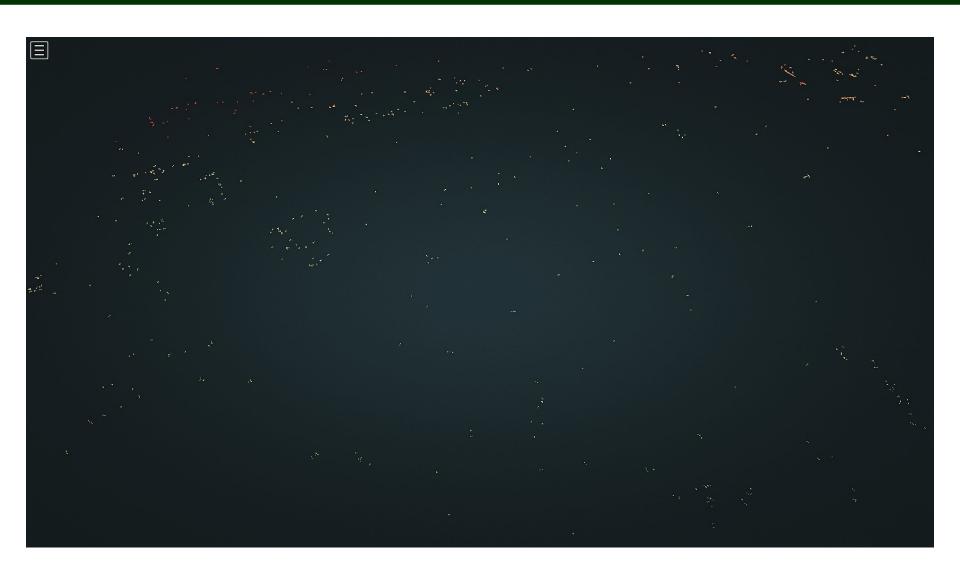
#### **LiDAR Tree Detection in RAPIDS with CuML**

```
File Edit View Run Kernel Tabs Settings Help
     ■ spatia rapids color trees.ip ×
     Python 3 O
帛
         [1]: import cudf
               from cudf.dataframe import DataFrame
               import numpy as np
               import math
               import pandas as pd
               from numba import cuda
               from cuml import DBSCAN as cumlDBSCAN
          [2]: import laspy as lp
lasfile = '/data/pointcloud/liv/Liverpool_Centre.las'
               inFile = lp.file.File(lasfile, mode = "r")
               CPU times: user 0 ns, sys: 2.91 ms, total: 2.91 ms
               Wall time: 2.42 ms
         [4]: %%time
               point_zdf = DataFrame()
               point zdf['x'] = inFile.x[inFile.return num==4]
               point_zdf['y'] = inFile.y[inFile.return_num==4]
               point_zdf['z'] = inFile.z[inFile.return_num==4]
               CPU times: user 1.83 s, sys: 172 ms, total: 2 s
               Wall time: 860 ms
         [5]: eps = 3
               min_samples = 2
               clustering_cuml = cumlDBSCAN(eps = eps, min_samples = min_samples)
               clustering_cuml.fit(point_zdf)
               CPU times: user 629 ms, sys: 779 µs, total: 629 ms
               Wall time: 187 ms
         [7]: point_zdf["l"] = clustering_cuml.fit_predict(point_zdf)
         [8]: trees = point_zdf.query("l >= 0")
         [9]: trees.drop_column("l")
         [10]: print(trees)
                          334021.23
                                            391927.01
                                                                   13.52
                          334021.21
                                            391926.95
                                                                   13.61
                          334071.26
                                            391837.87 14.2900000000000001
                          334015.74 391688.41000000003 16.740000000000002
                          334015.7 391688.10000000003
                          334144.01
                                            391663.71 19.5800000000000002
                          334143.48
               15
                                            391663.32
                                                                  19.56
               25 334195.41000000003
                                            391622.94
                                                                   20.32
                         334294.52
                                                                  20.28
               27
                                            391614.95
               28 334294.85000000003
                                            391615.19
                                                                  20.32
               [2087 more rows]
```

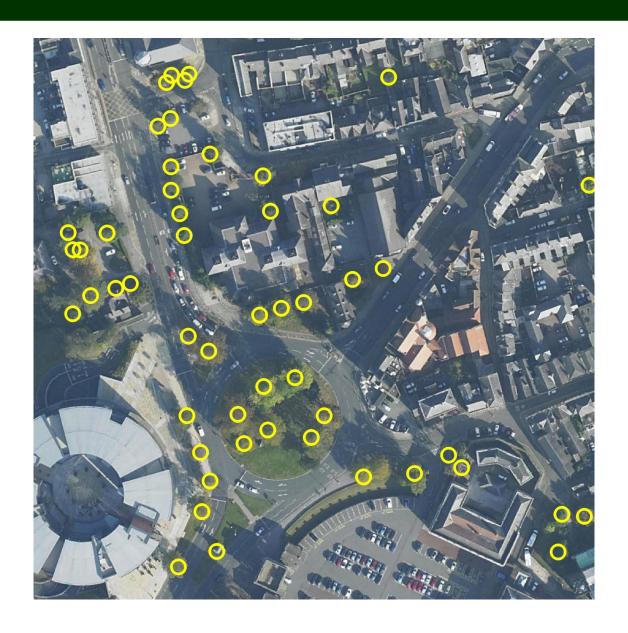
#### **LiDAR Tree Detection in RAPIDS with CuML**



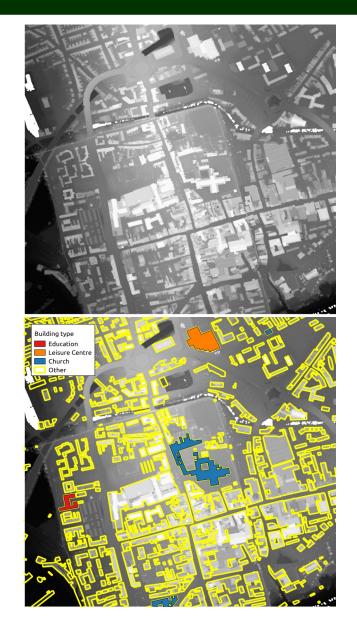
# **LiDAR Tree Detection in RAPIDS with CuML**



#### **Tree Detection in LiDAR**



# **Object Detection from LiDAR**





#### Object Detection Labeling in RAPIDS

```
m oml_churches_test.ipynb
B + % (1) 1 >
                        ■ C Code
                                                                                                                                                                                                          Python 3
     [1]: import cudf
           from spatia_rapids import projections
           from spatia_rapids import transformations
           import numpy as np
     [2]: ostn names = ['Point ID', 'ETRS89 Easting', 'ETRS89 Northing', 'ETRS89 OSGB36 EShift', 'ETRS89 OSGB36 NShift', 'ETRS89 ODN HeightShift', 'Height Datum Flag']
           ostn_dtypes = ['int64', 'int64', 'int64', 'float64', 'float64', 'float64', 'int64']
           ostn_filename = '/data/ostn/OSTN15_OSGM15_DataFile.txt'
           shift_dic = transformations.load_shifts(ostn_filename,ostn_names,ostn_dtypes,'ETRS89_Easting','ETRS89_Northing','ETRS89_OSG836_EShift','ETRS89_OSG836_NShift','ETRS89_ONH HeightShift')
           CPU times: user 99.1 ms, sys: 220 ms, total: 319 ms
           Wall time: 341 ms
     [4]: names = ['ID', 'ring', 'point', 'x', 'y']
           dtypes = ["int64", "int64", "int64", "float64", "float64"]
           filename = "/data/vectors/oml_churches.csv"
           vdf = cudf.read csv(filename,names=names,dtype=dtypes,skiprows=1)
           CPU times: user 12.9 ms, sys: 4.29 ms, total: 17.2 ms
           Wall time: 16.7 ms
     [6]: %%time
           vdf = vdf.apply_rows(transformations.rapids_etrs2osgb,incols=['x', 'y'],outcols=dict(es=np.float64,hs=np.float64,hs=np.float64,adj=np.int8),kwargs=shift_dic)
           CPU times: user 636 ms, sys: 15 ms, total: 651 ms
           Wall time: 649 ms
     [7]: vdf['east'] = vdf['x']-vdf['es']
           vdf['north'] = vdf['y']-vdf['ns']
     [8]: proj_etrs = projections.get_proj_parameters(27700,ellipsoid=4258)
           proj utm30 = projections.get proj parameters(25830)
           ('GRS_1980', 6378137.0, 6356752.314140356, '298.257222101', 0.003352810681182319)
           ('n': 0.0016792203946287211, 'PHI0': 0.8552113334772214, 'N0': -100000.0, 'a': 6375137.0, 'e_sqr': 0.006694380022900686, 'bF0': 6354217.697096618, 'LAMBDA0': -0.03490658503988659, 'aF0': 6375593.8562768
           23, 'E0': 400000.0, 'F0': 0.9996012717, 'b': 6356752.314140356}
           ('GRS_1980', 6378137.0, 6356752.314140356, '298.257222101', 0.003352810681182319)
           {'n': 0.0016792203946287211, 'PHIO': 0.0, 'NO': 0.0, 'a': 6375137.0, 'e_sqr': 0.006694380022900686, 'bFO': 6354209.6132147005, 'LAMBDAO': -0.05235987755982988, 'aFO': 6375585.745200001, 'EO': 500000.0,
           'F0': 0.9996, 'b': 6356752.314140356)
           vdf = vdf.apply rows(projections.rapids en2latlon,incols=['east', 'north'],outcols=dict(lat=np.float64,lon=np.float64),kwargs=proj etrs)
           CPU times: user 709 ms, sys: 36 ms, total: 745 ms
           Wall time: 741 ms
    [18]: print(vdf)
                ID ring point
                                                                y adj
                                                                                       es ...
                          0 460054.5900000001
                                                       1201094.46 1 102.93099739657141 ... -0.9022432882672774
                1 0
                    0
                          1
                                      460066.9
                                                       1201094.96 1 102.93117743282399 ... -0.9020177824183705
                1 0
                                     460067.81
                                                       1201072.7 1 102.930899369787 ... -0.9020079284275687
                1 0
                                      460055.5
                                                       1201072.2 1 102.93071960710002 ... -0.9022334328822663
                          4 460054.5900000001
                                                      1201094.46 1 102.93099739657141 ... -0.9022432882672774
```

#### Object Detection Labeling in RAPIDS

```
oml_churches_test.ipynb
                           C Code
          CPU times: user 709 ms, sys: 36 ms, total: 745 ms
          Wall time: 741 ms
    [10]: print(vdf)
               ID ring point
                    0
                          0 460054.59000000001
                                                     1201094.46
                                                                 1 102.93099739657141 ... -0.9022432882672774
                          1
                                                     1201094.96
                                                                1 102.93117743282399 ... -0.9020177824183705
                                     460066.9
                                    460067.81
                                                     1201072.7 1 102.930899369787 ... -0.9020079284275687
                                     460055.5
                                                      1201072.2 1 102.93071960710002 ... -0.9022334328822663
                          4 460054.59000000001
                                                     1201094.46 1 102.93099739657141 ... -0.9022432882672774
           5
                                    461447.13
                                                     1208836.01 1 103.05450175515129 ... -0.8743238732757238
                                   461448.27 1208846.68000000004
                                                                1 103.05466216124361 ... -0.8742996054706821
                                 461471.36
                                                     461470.22
                                                     1208833.55
                                                                 1 103.05481118188099 ... -0.8739010428465085
                                   461447.13
                                                                 1 103.05450175515129 ... -0.8743238732757238
                                                     1208836.01
          [192755 more rows]
          [5 more columns]
    [11]: %%time
          vdf = vdf.apply rows(projections.rapids latlon2en,incols=['lat', 'lon'],outcols=dict(east=np.float64,north=np.float64),kwargs=proj utm30)
          CPU times: user 499 ms, sys: 11.3 ms, total: 510 ms
          Wall time: 509 ms
    [12]: print(vdf[['east', 'north']])
           0 614554.7220852895 6729927.903818589
           1 614567.0242868561 6729928.591401609
           2 614568.2734215639 6729906.345545966
           3 614555.9712196725 6729905.657963582
           4 614554.7220852895 6729927.903818589
           5 615829.2509406238 6737690.593149093
           6 615830.228243363 6737701.280419619
           7 615853.3554255705 6737699.172567375
           8 615852.3781230241 6737688.48529628
           9 615829.2509406238 6737690.593149093
          [192755 more rows]
    [13]: pdf = vdf.to pandas()
    [14]: gb = pdf.groupby(['ID'])
          bb = gb.agg({'east' : [np.min, np.max], 'north' : [np.min, np.max]})
    [15]: gb = pdf.groupby(['ID'])
          bb.to csv("/data/vectors/church bb.csv")
```

# **Object Detection Labeling in RAPIDS**



```
from spatia rapids import projections
from spatia_rapids import dem
d = dem.dem()
import os.path
import fnmatch
folder = '/data/dem/'
matches = []
for root, dirnames, filenames in os.walk(folder):
 for filename in fnmatch.filter(filenames, '*.asc'):
   matches.append(os.path.join(root, filename))
idx_array = np.full((9301), -1, dtype=int)
grid array = []
def getOSGridRecNo(e,n):
   east index = int(e/10000);
    north_index = int(n/10000);
    return east index + (71 * north index) + 1;
%%time
for i,f in enumerate(sorted(matches)):
   d.loadASCII(f)
    idx = getOSGridRecNo(d.metadata['xllcorner'],d.metadata['yllcorner'])-1
    idx array[idx] = i
   #print(i,idx,f)
    grid array += [d.data]
CPU times: user 15.9 s, sys: 209 ms, total: 16.2 s
Wall time: 16.1 s
from numba import cuda
cuda grid = cuda.to device(np.array(grid array))
cuda idx = cuda.to device(idx array)
cuda_grid.shape
```

```
@cuda.jit(device=True)
def cu_getOSGridRecNo(e,n):
   east index = int(e/10000);
   north_index = int(n/10000);
   return east_index + (71 * north_index) + 1;
@cuda.jit(device=True)
def cu calc height(E, N, grid,idx):
   # Calculate point offset within grid square
   grid rec = cu getOSGridRecNo(E,N) - 1
   if grid rec < 0 or grid rec > idx.shape[0] or idx[grid rec] < 0:
   east origin = math.floor((E + 25) / 50) * 50 - 25
   north origin = math.floor((N + 25) / 50) * 50 - 25
   east offset = int((east origin - int(east origin / 10000) * 10000) / 50)
   north offset = 199 - int((north origin - int(north origin / 10000) * 10000) / 50)
   print (east origin, north origin)
   print (east offset, north offset)
   t = (E - east_origin) / 50
   u = (N - north origin) / 50
   # If point is a grid corner, return the shift
   if (E + 25) % 50 == 0 and (N + 25) % 50 == 0:
        return grid[idx[grid rec]][north offset][east offset]
   # Else use bilinear interpolation to estimate shift within the grid.
        height = 0.0
       # Calculate point offset within grid square
       # For each corner of the enclosing arid square
        for xi in range(0,2):
           for yi in range(0,2):
                grid rec = cu getOSGridRecNo(east origin+xi*50, north origin+yi*50) -1
                if idx[grid rec] < 0:
                   return 0.0
               eidx = (east offset + xi) % 200
                nidx = (north offset - vi) % 200
               print(east origin+xi*50,north origin+yi*50,grid rec,eidx,nidx)
                # Calculate bilinear adjustment factor (area of rectangle define by point and corner) and apply it to shift at relevant corner
                factor = ((1 - xi) + (2 * xi - 1) * t) * ((1 - yi) + (2 * yi - 1) * u)
                h = grid[idx[grid rec]][nidx][eidx]
                height += factor * h
                print(grid[idx[grid_rec]][nidx][eidx])
        return (height)
def rapids_calc_heights(x, y, h, cuda_grid,cuda_idx):
   for i, (E, N) in enumerate(zip(x,y)):
        h[i] = cu_calc_height(E,N,cuda_grid,cuda_idx)
hdf = adf.apply rows(rapids calc heights,incols=['x', 'y'],outcols=dict(h=np.float64),kwargs=dict(cuda grid=cuda grid,cuda idx=cuda idx))
CPU times: user 3min 13s, svs: 2min 17s, total: 5min 31s
Wall time: 5min 13s
```

```
print(hdf[['x','y','h']])
0 358263.47000000003 172798.15 14.971814348801894
1
            352967.0 181077.0 6.812000163269042
2
            352967.0 181077.0 6.812000163269042
3
            354800.0 180469.0
                                            6.97
            354796.0 180460.0 6.911400001525879
            353473.0 180409.0 7.487519968414307
            352548.0 180308.0 7.708360050964355
            352515.0 180360.0 7.50000002861023
            352462.0 180401.0 7.3659998798370365
            354662.0 180364.0 6.717719916343689
[37961339 more rows]
```



#### By using RAPIDS & TensorFlow

- We have processed large 3D datasets
- Re-projected coordinate systems with high accuracy
- Merged datasets in different formats & coordinates to enrich training data
- Labelled LiDAR & satellite images for training
- Been able to interpret and deploy the results of Al

#### In terms of our business objectives

- Al models have accurately predicted property attributes
- These remove the need to ask questions
- Removes the risk of incorrect information being supplied by the customer due to fraud or subjectivity
- Provided additional insights to the insurance companies
- Considerably enhance the accuracy of underwriting decisions

### Other applications under development

- Spatial microsimulation of small-area statistics estimates
- Using cuML clustering on autoencoder output for unsupervised classification of imagery
- Creating 3D deep learning models with TensorFlow Sparse Tensors and Conv3D layers
- Using hybrid image and sensor data combined objects as training data

#### **Conclusions**

- RAPIDS simplifies the process of GPU acceleration of computationally intensive applications
- RAPIDS protects your legacy investments by allowing code to be reused with minimal adaptation
- RAPIDS is extensible
- RAPIDS is a versatile data science accelation platform