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Agenda

● AI inside of NVIDIA
● Constraints and scale
● AI Platform needs
● Technical solutions
● Scenario walkthrough
● Maglev architecture evolution



3

AI inside of NVIDIA 
Deep Learning is fueling all areas of business

Self-Driving Cars Robotics Healthcare

AI Cities Retail AI for Public Good
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Constraints and scale
SDC Scale Today at NVIDIA
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Constraints and scale
What are our requirements?

Safety Tons of data!

Inference on edge Reproducibility



— NVIDIA’s data collection (miles)

–– Active testing to date (miles)

— Target robustness (miles)

DATA AND INFERENCE TO GET THERE?

30PB

60PB

120PB

180PB

Real-time test runs in 24h 
on 400 Nodes*

24h test 
on 1,600 Nodes*

24h test 
on 3,200 Nodes*

* DRIVE PEGASUS Nodes

What testing scale are we talking about?
We’re on our way to 100s PB of real test data = millions of real miles
+ 1,000s DRIVE Constellation nodes for offline testing alone
& billions of simulated miles

15PB



8

The need for an AI platform
An end-to-end solution for industry-grade AI development

Scalable AI 
Training

Seamless PB-Scale 
Data Access

AI-based Data 
Selection/Mining

Traceability: 
model=>code+data

Workflow
Automation

PB-Scale AI 
Testing

Enable the development of AV Perception, fully tested across 1000s of conditions, 
and yielding failure rates < 1 in N miles, N large
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1PB per 
month
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The need for an AI platform
Enabling automation of training, and testing workflows

 Data Factory

TransferPilot

 Automated Workflows

Data 
Indexing

Data
Selection

Data
Labeling

Model 
Training

Model
Testing

Dataset Store
[Training & Testing 

Datasets]

Training 
Workflows

[Data preproc, DNN 
training, pruning, export, 

fine-tuning]LabelStore
[Labels, tags, etc.]

NVOrigin
[On-demand transcoding]

Labeled Datasets
SaturnV Storage

Model Store
[Trained Models]

Trained Models

Testing Workflows
[Nightly tests, 

re-simulation, etc.]

Tested
Models
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So how did we solve 
for this?
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Tons of data!

Inference on edge

Reproducibility

Safety- Non-compromisable primary objective for the passengers

All other engineering requirements stem from this

- Models tested on huge datasets to be confident
- Faster iteration that aids in producing extremely good and 

well-tested models
- Reproducibility/Traceability

Technical solution(s)
Safety
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Safety

Tons of data!

- Collecting enormous amounts of data under innumerable scenarios 
is key to building good AV models

- Now that we data, what next?
- How do engineers access this data?
- How do you make sure that the data:

- can be preprocessed for each team’s need?
- is not corrupted by other members of the team or across teams?

- Lifecycle management of data

Technical solution(s)
Tons of data!

Inference on edge

Reproducibility
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Safety

Tons of data!

What is the solution? 

vdisk

- Virtualized Immutable 
file-system

- Offers broad platform support
- Structured to support data 

deduplication
- Inherently supports caching
- Provides kubernetes 

integration making it 
cloud-native

Technical solution(s)
Tons of data!

Inference on edge

Reproducibility
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Safety

Tons of data!

Reproducibility

Inference on edge

Technical solution(s)
Inference on edge

- AV model inference is limited in terms of hardware capabilities

- So, finding a lighter model without losing performance is prudent 
and takes multiple and faster iterations
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Safety

Tons of data!

Inference on edge

Reproducibility

Why?

- Being able to run a 10 year old workflow and get the same results
- Faster iteration of model development
- Understand why a model behaved certain way

Requires:

- Proper version control of datasets, models and the experiments

Reproducibility

- … and traceability go hand in hand

Technical solution(s)
Reproducibility
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● Predicting 12 month mortgage delinquency using Fannie Mae Single family home loan 
data

Key points:

Immutable dataset creation

Specifying workflows and launching them

End-to-traceability

MagLev
Scenario walkthrough
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• Creating an immutable dataset

• Creates a ISO image 

• ISO image only contains the metadata for the dataset while the actual dataset resides in 
S3

MagLev
Scenario walkthrough

>> maglev volumes create --name <my-volume> --path 
</some/local/directory/path> [--resume-version <version>]

Creating volume: Volume(name = my-volume, version =  
449c8efa-eaef-4d9b-81b9-3a59fe269e9b)
Uploading '<local-file>'...
…
Successfully created new volume.
Volume(name = my-volume, version = 449c8efa-eaef-4d9b-81b9-3a59fe269e9b)
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MagLev
Scenario walkthrough
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MagLev
Scenario walkthrough
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MagLev
Scenario walkthrough
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MagLev
Scenario walkthrough
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MagLev
Scenario walkthrough
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MagLev Architecture Evolution

Compute and data on public cloud

- Mostly for technical evaluation
- Costs skyrocketing
- Poor performance

- clash between functionality and efficiency

Early decisions

- Cloud native platform
- General purpose services/ETL pipelines hosted on public cloud allows us to elastically 

scale based on requirements

Version 1 - Technical viability

Image source: shuttershock.com
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MagLev Architecture Evolution

Compute on internal data-center for GPU workloads

- Minimize costs
- Take advantage of innovation on GPUs before it hits the market
- Huge compute cluster that is always kept busy by the training/testing workflows

What needed to improve:

- Performance due to lack of data locality

Version 2 - Minimize costs
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MagLev Architecture Evolution

Internal data center specialized for both compute and data performance

- High performance due to data locality
- Better UX for data scientists

- Programmatically create workflows

Version 3 - High performance
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MagLev Data Center Architecture
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MagLev Service Architecture

- General service cluster on public 
cloud

- Authentication
- Volume management
- Workflow traceability
- Experiment/Model management

- Compute cluster on internal NGC 
cloud

- Both clusters are cloud-native built 
on top of Kubernetes
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Questions


