Doing More with More:

Recent Achievements In Large-Scale
Deep Reinforcement Learning

Compiled by: Adam Stooke, Pieter Abbeel (UC Berkeley)

March 2019

Atari, Go, and beyond

e Algorithms & Frameworks (Atari Legacy)

o A3C/DON (DeepMind)
o IMPALA/ Ape-X (DeepMind)
o Accel RL (Berkeley)

e Large-Scale Projects (Beyond Atari)
o AlphaGo Zero (DeepMind)
o Capture the Flag (DeepMind)
m Population Based Training
Dota2 (OpenAl)
Summary of Techniques

led flag

N
Example map

Algorithms & Frameworks

(Atari Legacy)

“Classic” Deep RL for Atari

Neural Network Architecture:
e 2 to 3 convolution layers

l e Fully connected head
e 1 output for each action

[Mnih, et al 2015]

https://arxiv.org/abs/1312.5602

“Classic” Deep RL for Atari

Asynchronous Advantage Actor Critic

Deep Q-Learning (DQN): [Mnih. et al 2015] (A3C): [Mnih, et al 2016]
e Algorithm: e Algorithm:
o Oft-policy Q-learning from replay buffer O policy-gradient (with value estimator)
o Advanced variants: prioritized replay, n- O asynchronous updates to central NN
step returns, dueling NN, distributional,

parameter store

e System Config:

o 16 actor-learner threads running on

etc.

e System Config:

o 1 actor CPU:; 1 environment instance CPU cores in one machine
o 1GPUtraining _ o 1 environment instance per thread
e ~10 days to 200M Atari frames e ~16 hours to 200M Atari frames

o (less intense NN training vs DQN)

https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1312.5602

SEAQUEST Training

Fully Random, Initial
“Beginner’ ~24M frames played
“Advanced” ~240M frames played

http://drive.google.com/file/d/1vlL_QzLEA_SsKRFdZ3pZLyL67cFiOj1A/view
http://drive.google.com/file/d/1oN2jmXraj4ZBBQevndjx69NXJNUdCMai/view
http://drive.google.com/file/d/1tQsXLKpRVWOWQw2Y_gbw_DDxLw6GO0cf/view

IMPALA

[Espeholt, et al 2018]

e System Config:

O

o

O

“Actors” run asynchronously on distributed CPU resources (cheap)
“Learner” runs on GPU; batched experiences received from actors
Actors periodically receive new parameters from learner

e Algorithm:

O

o

Policy gradient algorithm: descended from A3C
Policy lag mitigated through V-trace algorithm (“Importance Weighted”)

e Scale:

o

O

Hundreds of actors, can use multi-GPU learner
(learned all 57 games simultaneously; speed not reported)

Worker
Learner

Gradients

Master

Learner

https://arxiv.org/abs/1802.01561

Sampled experience

A p e - X Learner Updated priorities Replay
[Horgan, et al 2018]

Network Experiences

Actor

Network Initial priorities

Network parameters
»

Ll

Generated experience

Environment

e Algorithm:

o Off-policy, Q-Learning (e.g. DQN)

o Replay buffer adapted for prioritization under distributed-actors setting

o Hundreds of actors; using different € in e-greedy exploration improves scores
e System Config:

o GPU learner, CPU actors (as in IMPALA)

o Replay buffer may be on different machine from learner
e Scale:

o 1 GPU, 376 CPU cores — 22B Atari frames in 5 days, high scores
o (in large cluster, choose number CPU cores to generate data at rate of training consumption)

https://arxiv.org/abs/1803.00933

Accel RL

[Stooke & Abbeel 2018]

pong

Algorithm
— A2C-256e

A3C-8x16e

score

— APPO-8x8e
— PPO-128e

5 10 15 20
minutes

e System config:

Processes

Environment Stepping NN Inference

(CPU) (GPU)

Simulator-0

Simulator-1

Simulator-n

Action-Server

time

envd J[env}][env’

envy

SUOIIDAIASGO

[E[E5

getmxn
actions

o GPU used for both action-selection and training -- batching for efficiency
o CPUs each run multiple (independent) environment instances
o CPUs step environments once, all observations gathered to GPU, GPU returns all actions, ...

e Algorithms:
o Both policy gradient and Q-learning algorithms

o Synchronous (NCCL) and asynchronous multi-GPU variants shown to work

e Scale;

o Atari on DGX-1: 200M frames ~1 hr; near linear scaling to 8 GPU, 40 CPU (A3C)
o Effective when CPU and GPU on same motherboard (shared memory for fast communication)

https://arxiv.org/abs/1803.02811

Atari Scaling Recap

Algo/Framework

Compute Resources

Gameplay Generation Speed*

Training Speed**

DQN (original) 1 CPU; 1 GPU 230 frames per second 1.8K fps (8x generated)
Ape-X 376 CPU; 1x P100 GPU | 50K fps 38.8K fps

Accel RL -- CatDQN | 40 CPU; 8x P100 GPU 30K fps 240K fps (8x generated)
A3C (original) 16 CPU 3.5K fps --

IMPALA 100’s CPU; 8x GPU ? ?

Accel RL -- A2C 40 CPU; 8x P100 GPU 94K fps --

* |.e. algorithm wall-clock speed for learning curves
** 1 gradient per 4 frames; DQN standard uses each data point 8 times for gradients, A3C uses data once

Large-Scale Projects

(Beyond Atari)

a Select b Expand and evaluate € Backup d Play

AlphaGo Zero ¢)

[Silver et al 2017] 4 el o] bea:

o+uﬁa\o+u ,D/\P Q/' l‘) D
i EE -x O

"H e INC| N
Q+U fhain, 0+ U (mﬁﬁ \gﬁ | Q /N2 | FANPAN FANFSN
m) =1y v vﬁ .
N G |

e Algorithm:
o Limited Monte-Carlo Tree Search (MCTS) guided by networks during play
m After games, policy network trained to match move selected by MCTS
m Value-estimator trained to predict eventual game winner
o AlphaGo Fan/Lee (predecessors, 2015/2016):
m Separate policy and value-prediction networks
m Policy network initialized with supervised training on human play, before RL
o AlphaGo Zero (2017):
m Combined policy and value-prediction network, deeper
m Simplified MCTS search
m No human data: train with self-play and RL starting from fully random on raw board data

https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGg98faovwjxeTUgZAUMnRQ

5000

AlphaGo Zero ol

[DeepMind-AlphaGo-Zero-Blog] _

g] 40 days
g 1000 | AlphaGo Zero surpasses all other versions of AlphaGo
H . d, bly, b the best Go pl in th Id.
e NN Architecture: °- It does this entiely fom sef-pay,with no human
o Up to ~8O Convolutlon Iayers (ln reSlduaI bIOCkS) -1000 - intervention and using no historical data.
o Input: 19x19x17 binary values; last 7 board states - . . : : : : : .
5 10 15 20 25 30 35 40

«=== AlphaGo Zero 40 blocks seee AlphaGo Lee seee AlphaGo Master

e Computational Resources:
o Trained using 64 GPUs, 19 param server CPUs
m Earlier versions of AlphaGo: 1,920 CPUs and 280 GPUs
o MCTS: considerable quantity of NN forward passes (1,600 sims per game move)
o Power consumption, decreasing by hardware and algorithm improvements:
m AlphaGo Fan -- 176 GPUs: 40K TDP (similar to Watts of electricity)
m AlphaGo Lee -- 48 TPUs: 10K TDP
m AlphaGo Zero -- 4 TPUs: 1K TDP

e Training Duration:
o Final: 40 days training--29 million self-play games, 3.1 million gradient steps
o By 3 days beat AlphaGo Lee

https://deepmind.com/blog/alphago-zero-learning-scratch/

Capture the Flag padererqetaizo1g)

e The Game:
o First human-level performance in human-style, 3D first-person-action
o 2v2 (multi-agent) game on custom maps on Quake Ill game engine

e NN Architecture: =) o el | (@)
o 4 convolution layers (visual input: 84x84 RGB) !
o Differential Neural Computer (DNC) with memory --| embedding [| processing [~ B2Ie
o 2-level hierarchical agent (fast & slow recurrence) ; —
Revyard e
e Algorithm: SR

o IMPALA for training UNREAL agent (RL with auxiliary tasks for feature learning)
o Population-based training, pop. size 30

o Randomly assigned teams for self-play within population (matched by performance level)

https://arxiv.org/abs/1807.01281

Capture the Flag

[Jaderberg et al 2018]

(b) Indoor procedural maps

(a) Outdoor procedural maps

Red flag

Blue flag carrier

(d) Thousands of parallel

Z
@ . CTF games generate
Y

® @ experience to train from
NUN

'é\\/@\\/~\;

o

(c) First-person
: observations
that the agents
see

A\
»
%
¢
Q
&
X ,

respectiverpolicy

(e) Reinforcement Learning
! ! ' ' ’ updates each agent’s
\
\

D ON(0) O0.® 2@ © NC, 2 Je
—» @Q@ —* ({03. ® N @©@ zDO@') —* ®§ — @ . ®@ — > ®@ — ¢ ;('"@ —®
Agent (f) Population based training provides diverse policies for Population

training games and enables internal reward optimisation

https://arxiv.org/abs/1807.01281

Population Based Training aderberg et al 2017]

e Train multiple agents simultaneously and evolve hyperparameters.

o Multiple learners; measure their relative performance
o Periodically, poorly performing learner’'s NN parameters replaced from superior one

o At same moment, hyperparameters (e.g. learning rate) copied and randomly perturbed
e More robust for achieving successful agent without human oversight / tuning

o In CTF: evolved weighting of game events (e.g. picked up flag) to optimize RL reward

—— IMPALA - PBT - 8 GPUs IMPALA - PBT - 1 GPU

e Can discover schedules in hyperparameters

Learning Rate

0.0007

o e.g. learning rate decay (vs red-line, hand-tuned linear decay) oo
e Use over any learning algorithm (e.g. IMPALA) .

e Hardware/experiment scales with population size

0.0001

0.0000 .
0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames lel0

https://arxiv.org/abs/1711.09846

-

| 4
.- .
124 f »o1me

http://www.youtube.com/watch?v=dltN4MxV1RI

Capture the Flag

e Computational Resources:
o 30 GPUs for learners (1 per agent)
o ~2,000 CPUs total for gameplay (sim & render--1000’s actors)
o Experience fed asynchronously from actors to respective agent learner every 100 steps

e Training Duration;
o Games: 5 minutes; 4,500 agent steps (15 steps per second)
o Trained up to 2 billion steps, ~450K games (eq. 4 years gameplay, in roughly a week)
o Beat strong human players by ~200K games played

FO"OWing teammate Opbonent base Camp]ng Home base defence

Dota2

[OpenAl-Five-Bloqg]

e The Game:
o Popular hero-based action-strategy
o Massively scaled RL effort at OpenAl
o Succeeded with 1v1 play
o Now developing 5v5

e Algorithm:
o PPO [Schulman et al 2017] (advanced policy gradient; multiple gradients per datum)
o Trained by self-play from scratch
o Synchronous updates across GPUs (all-reduce gradients using NCCL2)
o Key to scaling: large training batch size for efficient multi-GPU use

https://blog.openai.com/openai-five/
https://arxiv.org/abs/1707.06347

Dota2

e NN Architecture:

o Single-layer, 1,024-unit LSTM (10M params) // Separate LSTM for each player
o Input: 20,000 numerical values (no vision) // Output: 8 numbers (170K possible actions)

[iScene 4: Team Zoning Mid Push b l

ACTIONS Qel:By=:7ug o] K

Observed Units

P LEEEL T B

Team@ R Dire
Health 875 /902 X Attack 76

Distance
Level 10 X Mana 112/780

ltems Abilities

s e Wk © oy AW
AEREEERD
Modifiers

% =

b

On units of type Hero we also observe: absolute position; health

over last 12 frames; attacking or attacked by hero; projectiles time

to impact, movement, attack, and regeneration speed; current
animation; time since last attack; number of deaths; and using or

phasing an ability

Freezing Field
and Vi Nethertoxin forcae
the human team Lo scatter

P g

http://www.youtube.com/watch?v=UZHTNBMAfAA

Optimizer + Connected Rollout Workers (x256)

Rollout Workers

~500 CPUs
O a Run episodes
= 80% against current bot
- 20% against mixture of past versions
Randomized game settings
- i - Push data every 60s of gameplay
[O De nAI Flve B I OQ] - Discount rewards across the 60s using

generalized advantage estimation

Optimizers
use NCCL2 to

average gradients
at overy step.

e Computational Resources:
o 256 GPUs (P100), 128K CPU cores 2500 CRUS ~—

Play in various environments Model

o ~500 CPUs rollouts per GPU e e bt Parameters
. . = vs previous similar bots (used to
o data uploaded to optimizer every 60s .S:E‘Q‘ifffl‘i,?h“):;ﬂﬂ’mmh
anda analyze,
o (framework: “Rapid”)

Synchronization Time

e Training Duration: 8100 GPUS Per Node

o Games: ~45 minutes; 20,000 agent steps (7.5 steps-per-second) o
m Go: ~150 moves per game § 020
o Train for weeks K

o 100’s years equivalent experience gathered per day

8 16 32 64 128 256 512
GPUs

https://blog.openai.com/openai-five/

Large-Scale Techniques Recap

e 1000’s of parallel actors performing gameplay

o (on relatively cheap CPUSs)

e 10’sto 100’s GPUs for learner(s) (or ~10’s TPUs)
e Most daring examples so far using policy gradient algorithms, not Q-learning

o Asynchronous data transfers — learning algorithm must handle slightly off-policy data

e Billions of samples per learning run to push the limits in complex games

e Self-play pervasive, in various forms
e Research efforts require significant multiples of listed compute resources

o Development requires experimentation with many such learning runs

References

1. AS3C: Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." International conference on machine
learning. 2016. https://arxiv.org/abs/1602.01783

2. DQN: Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529.
https://arxiv.org/abs/1312.5602

3. IMPALA: Espeholt, Lasse, et al. "IMPALA: Scalable distributed Deep-RL with importance weighted actor-learner architectures."
arXiv preprint arXiv:1802.01561 (2018). https://arxiv.org/abs/1802.01561

4. APE-X: Horgan, Dan, et al. "Distributed prioritized experience replay." arXiv preprint arXiv:1803.00933 (2018).
https://arxiv.org/abs/1803.00933

5. Accel RL: Stooke, Adam, and Pieter Abbeel. "Accelerated methods for deep reinforcement learning." arXiv preprint
arXiv:1803.02811 (2018). https://arxiv.org/abs/1803.02811

6. PBT: Jaderberg, Max, et al. "Population based training of neural networks." arXiv preprint arXiv:1711.09846 (2017).
https://arxiv.org/abs/1711.09846

7. AlphaGo: Silver, David, et al. "Mastering the game of Go without human knowledge." Nature 550.7676 (2017): 354. Nature
paper

8. AlphaGo Zero Blog: https://deepmind.com/blog/alphago-zero-learning-scratch/

9. CTF: Jaderberg, Max, et al. "Human-level performance in first-person multiplayer games with population-based deep
reinforcement learning." arXiv preprint arXiv:1807.01281 (2018). https://arxiv.org/abs/1807.01281

10. Dota2 Blog: https://blog.openai.com/openai-five/

11. PPO: Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).
https://arxiv.org/abs/1707.06347

https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1802.01561
https://arxiv.org/abs/1803.00933
https://arxiv.org/abs/1803.02811
https://arxiv.org/abs/1711.09846
https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGg98faovwjxeTUgZAUMnRQ
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://arxiv.org/abs/1807.01281
https://blog.openai.com/openai-five/
https://arxiv.org/abs/1707.06347

