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Algorithms & Frameworks

(Atari Legacy)



“Classic” Deep RL for Atari

Neural Network Architecture:
e 2 to 3 convolution layers

l e Fully connected head
e 1 output for each action

[Mnih, et al 2015]



https://arxiv.org/abs/1312.5602

“Classic” Deep RL for Atari

Asynchronous Advantage Actor Critic

Deep Q-Learning (DQN): [Mnih. et al 2015] (A3C): [Mnih, et al 2016]
e Algorithm: e Algorithm:
o Oft-policy Q-learning from replay buffer O policy-gradient (with value estimator)
o Advanced variants: prioritized replay, n- O asynchronous updates to central NN
step returns, dueling NN, distributional,

parameter store

e System Config:

o 16 actor-learner threads running on

etc.

e System Config:

o 1 actor CPU:; 1 environment instance CPU cores in one machine
o 1GPUtraining _ o 1 environment instance per thread
e ~10 days to 200M Atari frames e ~16 hours to 200M Atari frames

o (less intense NN training vs DQN)


https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1312.5602

SEAQUEST Training

Fully Random, Initial
“Beginner’ ~24M frames played
“Advanced” ~240M frames played



http://drive.google.com/file/d/1vlL_QzLEA_SsKRFdZ3pZLyL67cFiOj1A/view
http://drive.google.com/file/d/1oN2jmXraj4ZBBQevndjx69NXJNUdCMai/view
http://drive.google.com/file/d/1tQsXLKpRVWOWQw2Y_gbw_DDxLw6GO0cf/view

IMPALA

[Espeholt, et al 2018]

e System Config:

O

o

O

“Actors” run asynchronously on distributed CPU resources (cheap)
“Learner” runs on GPU; batched experiences received from actors
Actors periodically receive new parameters from learner

e Algorithm:

O

o

Policy gradient algorithm: descended from A3C
Policy lag mitigated through V-trace algorithm (“Importance Weighted”)

e Scale:

o

O

Hundreds of actors, can use multi-GPU learner
(learned all 57 games simultaneously; speed not reported)

Worker
Learner

Gradients

Master

Learner


https://arxiv.org/abs/1802.01561

Sampled experience

A p e - X Learner Updated priorities Replay
[Horgan, et al 2018]

Network Experiences

Actor

Network Initial priorities

Network parameters
»

Ll

Generated experience

Environment

e Algorithm:

o Off-policy, Q-Learning (e.g. DQN)

o Replay buffer adapted for prioritization under distributed-actors setting

o Hundreds of actors; using different € in e-greedy exploration improves scores
e System Config:

o GPU learner, CPU actors (as in IMPALA)

o Replay buffer may be on different machine from learner
e Scale:

o 1 GPU, 376 CPU cores — 22B Atari frames in 5 days, high scores
o (in large cluster, choose number CPU cores to generate data at rate of training consumption)


https://arxiv.org/abs/1803.00933

Accel RL

[Stooke & Abbeel 2018]

pong

Algorithm
— A2C-256e

A3C-8x16e

score

— APPO-8x8e
— PPO-128e

5 10 15 20
minutes

e System config:
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o GPU used for both action-selection and training -- batching for efficiency
o CPUs each run multiple (independent) environment instances
o CPUs step environments once, all observations gathered to GPU, GPU returns all actions, ...

e Algorithms:
o Both policy gradient and Q-learning algorithms

o Synchronous (NCCL) and asynchronous multi-GPU variants shown to work

e Scale;

o Atari on DGX-1: 200M frames ~1 hr; near linear scaling to 8 GPU, 40 CPU (A3C)
o Effective when CPU and GPU on same motherboard (shared memory for fast communication)


https://arxiv.org/abs/1803.02811

Atari Scaling Recap

Algo/Framework

Compute Resources

Gameplay Generation Speed*

Training Speed**

DQN (original) 1 CPU; 1 GPU 230 frames per second 1.8K fps (8x generated)
Ape-X 376 CPU; 1x P100 GPU | 50K fps 38.8K fps

Accel RL -- CatDQN | 40 CPU; 8x P100 GPU 30K fps 240K fps (8x generated)
A3C (original) 16 CPU 3.5K fps --

IMPALA 100’s CPU; 8x GPU ? ?

Accel RL -- A2C 40 CPU; 8x P100 GPU 94K fps --

* |.e. algorithm wall-clock speed for learning curves
** 1 gradient per 4 frames; DQN standard uses each data point 8 times for gradients, A3C uses data once




Large-Scale Projects

(Beyond Atari)



a Select b Expand and evaluate € Backup d Play
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e Algorithm:
o Limited Monte-Carlo Tree Search (MCTS) guided by networks during play
m After games, policy network trained to match move selected by MCTS
m Value-estimator trained to predict eventual game winner
o AlphaGo Fan/Lee (predecessors, 2015/2016):
m Separate policy and value-prediction networks
m Policy network initialized with supervised training on human play, before RL
o AlphaGo Zero (2017):
m Combined policy and value-prediction network, deeper
m  Simplified MCTS search
m  No human data: train with self-play and RL starting from fully random on raw board data


https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGg98faovwjxeTUgZAUMnRQ
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AlphaGo Zero ol

[DeepMind-AlphaGo-Zero-Blog] _

g ] 40 days
g 1000 | AlphaGo Zero surpasses all other versions of AlphaGo
H . d, bly, b the best Go pl in th Id.
e NN Architecture: °- It does this entiely fom sef-pay,with no human
o Up to ~8O Convolutlon Iayers (ln reSlduaI bIOCkS) -1000 - intervention and using no historical data.
o Input: 19x19x17 binary values; last 7 board states - . . : : : : : .
5 10 15 20 25 30 35 40

«=== AlphaGo Zero 40 blocks  seee AlphaGo Lee seee AlphaGo Master

e Computational Resources:
o Trained using 64 GPUs, 19 param server CPUs
m Earlier versions of AlphaGo: 1,920 CPUs and 280 GPUs
o MCTS: considerable quantity of NN forward passes (1,600 sims per game move)
o Power consumption, decreasing by hardware and algorithm improvements:
m AlphaGo Fan -- 176 GPUs: 40K TDP (similar to Watts of electricity)
m AlphaGo Lee -- 48 TPUs: 10K TDP
m AlphaGo Zero -- 4 TPUs: 1K TDP

e Training Duration:
o Final: 40 days training--29 million self-play games, 3.1 million gradient steps
o By 3 days beat AlphaGo Lee


https://deepmind.com/blog/alphago-zero-learning-scratch/

Capture the Flag padererqetaizo1g)

e The Game:
o First human-level performance in human-style, 3D first-person-action
o 2v2 (multi-agent) game on custom maps on Quake Ill game engine

e NN Architecture: =) o el | (@)
o 4 convolution layers (visual input: 84x84 RGB) !
o Differential Neural Computer (DNC) with memory --| embedding [ | processing [~ B2Ie
o 2-level hierarchical agent (fast & slow recurrence) ; —
Revyard e
e Algorithm: SR

o IMPALA for training UNREAL agent (RL with auxiliary tasks for feature learning)
o Population-based training, pop. size 30

o Randomly assigned teams for self-play within population (matched by performance level)


https://arxiv.org/abs/1807.01281

Capture the Flag

[Jaderberg et al 2018]
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https://arxiv.org/abs/1807.01281

Population Based Training aderberg et al 2017]

e Train multiple agents simultaneously and evolve hyperparameters.

o Multiple learners; measure their relative performance
o Periodically, poorly performing learner’'s NN parameters replaced from superior one

o At same moment, hyperparameters (e.g. learning rate) copied and randomly perturbed
e More robust for achieving successful agent without human oversight / tuning

o In CTF: evolved weighting of game events (e.g. picked up flag) to optimize RL reward

—— IMPALA - PBT - 8 GPUs IMPALA - PBT - 1 GPU

e Can discover schedules in hyperparameters

Learning Rate

0.0007

o e.g. learning rate decay (vs red-line, hand-tuned linear decay) oo
e Use over any learning algorithm (e.g. IMPALA) .

e Hardware/experiment scales with population size
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https://arxiv.org/abs/1711.09846
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http://www.youtube.com/watch?v=dltN4MxV1RI

Capture the Flag

e Computational Resources:
o 30 GPUs for learners (1 per agent)
o ~2,000 CPUs total for gameplay (sim & render--1000’s actors)
o Experience fed asynchronously from actors to respective agent learner every 100 steps

e Training Duration;
o Games: 5 minutes; 4,500 agent steps (15 steps per second)
o Trained up to 2 billion steps, ~450K games (eq. 4 years gameplay, in roughly a week)
o Beat strong human players by ~200K games played

FO"OWing teammate Opbonent base Camp]ng Home base defence




Dota2

[OpenAl-Five-Bloqg]

e The Game:
o Popular hero-based action-strategy
o Massively scaled RL effort at OpenAl
o Succeeded with 1v1 play
o Now developing 5v5

e Algorithm:
o PPO [Schulman et al 2017] (advanced policy gradient; multiple gradients per datum)
o Trained by self-play from scratch
o Synchronous updates across GPUs (all-reduce gradients using NCCL2)
o Key to scaling: large training batch size for efficient multi-GPU use



https://blog.openai.com/openai-five/
https://arxiv.org/abs/1707.06347

Dota2

e NN Architecture:

o Single-layer, 1,024-unit LSTM (10M params) // Separate LSTM for each player
o Input: 20,000 numerical values (no vision) // Output: 8 numbers (170K possible actions)
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http://www.youtube.com/watch?v=UZHTNBMAfAA

Optimizer + Connected Rollout Workers (x256)

Rollout Workers

~500 CPUs
O a Run episodes
= 80% against current bot
- 20% against mixture of past versions
Randomized game settings
- i - Push data every 60s of gameplay
[O De nAI Flve B I OQ] - Discount rewards across the 60s using

generalized advantage estimation

Optimizers
use NCCL2 to

average gradients
at overy step.

e Computational Resources:
o 256 GPUs (P100), 128K CPU cores 2500 CRUS ~—

Play in various environments Model

o ~500 CPUs rollouts per GPU e e bt Parameters
. . = vs previous similar bots (used to
o data uploaded to optimizer every 60s .S:E‘Q‘ifffl‘i,?h“):;ﬂﬂ’mmh
anda analyze,
o (framework: “Rapid”)

Synchronization Time

e Training Duration: 8100 GPUS Per Node

o Games: ~45 minutes; 20,000 agent steps (7.5 steps-per-second) o
m  Go: ~150 moves per game § 020
o Train for weeks K

o 100’s years equivalent experience gathered per day

8 16 32 64 128 256 512
GPUs



https://blog.openai.com/openai-five/

Large-Scale Techniques Recap

e 1000’s of parallel actors performing gameplay

o (on relatively cheap CPUSs)

e 10’sto 100’s GPUs for learner(s) (or ~10’s TPUs)
e Most daring examples so far using policy gradient algorithms, not Q-learning

o Asynchronous data transfers — learning algorithm must handle slightly off-policy data

e Billions of samples per learning run to push the limits in complex games

e Self-play pervasive, in various forms
e Research efforts require significant multiples of listed compute resources

o Development requires experimentation with many such learning runs
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