
Doing More with More:

Recent Achievements in Large-Scale

Deep Reinforcement Learning

Compiled by: Adam Stooke, Pieter Abbeel (UC Berkeley)

March 2019

Atari, Go, and beyond

● Algorithms & Frameworks (Atari Legacy)
○ A3C / DQN (DeepMind)

○ IMPALA / Ape-X (DeepMind)

○ Accel RL (Berkeley)

● Large-Scale Projects (Beyond Atari)
○ AlphaGo Zero (DeepMind)

○ Capture the Flag (DeepMind)

■ Population Based Training

○ Dota2 (OpenAI)

○ Summary of Techniques

Algorithms & Frameworks
(Atari Legacy)

“Classic” Deep RL for Atari

Neural Network Architecture:

● 2 to 3 convolution layers

● Fully connected head

● 1 output for each action

[Mnih, et al 2015]

https://arxiv.org/abs/1312.5602

“Classic” Deep RL for Atari
Asynchronous Advantage Actor Critic

(A3C): [Mnih, et al 2016]

● Algorithm:
○ policy-gradient (with value estimator)

○ asynchronous updates to central NN

parameter store

● System Config:
○ 16 actor-learner threads running on

CPU cores in one machine

○ 1 environment instance per thread

● ~16 hours to 200M Atari frames
○ (less intense NN training vs DQN)

Deep Q-Learning (DQN): [Mnih, et al 2015]

● Algorithm:
○ Off-policy Q-learning from replay buffer

○ Advanced variants: prioritized replay, n-

step returns, dueling NN, distributional,

etc.

● System Config:
○ 1 actor CPU; 1 environment instance

○ 1 GPU training

● ~10 days to 200M Atari frames

https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1312.5602

top left Fully Random, Initial

bottom left “Beginner” ~24M frames played

bottom right “Advanced” ~240M frames played

SEAQUEST Training

http://drive.google.com/file/d/1vlL_QzLEA_SsKRFdZ3pZLyL67cFiOj1A/view
http://drive.google.com/file/d/1oN2jmXraj4ZBBQevndjx69NXJNUdCMai/view
http://drive.google.com/file/d/1tQsXLKpRVWOWQw2Y_gbw_DDxLw6GO0cf/view

IMPALA

[Espeholt, et al 2018]

● System Config:
○ “Actors” run asynchronously on distributed CPU resources (cheap)

○ “Learner” runs on GPU; batched experiences received from actors

○ Actors periodically receive new parameters from learner

● Algorithm:
○ Policy gradient algorithm: descended from A3C

○ Policy lag mitigated through V-trace algorithm (“Importance Weighted”)

● Scale:
○ Hundreds of actors, can use multi-GPU learner

○ (learned all 57 games simultaneously; speed not reported)

https://arxiv.org/abs/1802.01561

Ape-X
[Horgan, et al 2018]

● Algorithm:
○ Off-policy, Q-Learning (e.g. DQN)

○ Replay buffer adapted for prioritization under distributed-actors setting

○ Hundreds of actors; using different ε in ε-greedy exploration improves scores

● System Config:
○ GPU learner, CPU actors (as in IMPALA)

○ Replay buffer may be on different machine from learner

● Scale:
○ 1 GPU, 376 CPU cores → 22B Atari frames in 5 days, high scores

○ (in large cluster, choose number CPU cores to generate data at rate of training consumption)

https://arxiv.org/abs/1803.00933

Accel RL
[Stooke & Abbeel 2018]

● System config:
○ GPU used for both action-selection and training -- batching for efficiency

○ CPUs each run multiple (independent) environment instances

○ CPUs step environments once, all observations gathered to GPU, GPU returns all actions, …

● Algorithms:
○ Both policy gradient and Q-learning algorithms

○ Synchronous (NCCL) and asynchronous multi-GPU variants shown to work

● Scale:
○ Atari on DGX-1: 200M frames ~1 hr; near linear scaling to 8 GPU, 40 CPU (A3C)

○ Effective when CPU and GPU on same motherboard (shared memory for fast communication)

https://arxiv.org/abs/1803.02811

Atari Scaling Recap

Algo/Framework Compute Resources Gameplay Generation Speed* Training Speed**

DQN (original) 1 CPU; 1 GPU 230 frames per second 1.8K fps (8x generated)

Ape-X 376 CPU; 1x P100 GPU 50K fps 38.8K fps

Accel RL -- CatDQN 40 CPU; 8x P100 GPU 30K fps 240K fps (8x generated)

A3C (original) 16 CPU 3.5K fps --

IMPALA 100’s CPU; 8x GPU ? ?

Accel RL -- A2C 40 CPU; 8x P100 GPU 94K fps --

* i.e. algorithm wall-clock speed for learning curves

** 1 gradient per 4 frames; DQN standard uses each data point 8 times for gradients, A3C uses data once

Large-Scale Projects
(Beyond Atari)

AlphaGo Zero
[Silver et al 2017]

● Algorithm:
○ Limited Monte-Carlo Tree Search (MCTS) guided by networks during play

■ After games, policy network trained to match move selected by MCTS

■ Value-estimator trained to predict eventual game winner

○ AlphaGo Fan/Lee (predecessors, 2015/2016):

■ Separate policy and value-prediction networks

■ Policy network initialized with supervised training on human play, before RL

○ AlphaGo Zero (2017):

■ Combined policy and value-prediction network, deeper

■ Simplified MCTS search

■ No human data: train with self-play and RL starting from fully random on raw board data

https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGg98faovwjxeTUgZAUMnRQ

AlphaGo Zero
[DeepMind-AlphaGo-Zero-Blog]

● NN Architecture:
○ Up to ~80 convolution layers (in residual blocks)

○ Input: 19x19x17 binary values; last 7 board states

● Computational Resources:
○ Trained using 64 GPUs, 19 param server CPUs

■ Earlier versions of AlphaGo: 1,920 CPUs and 280 GPUs

○ MCTS: considerable quantity of NN forward passes (1,600 sims per game move)

○ Power consumption, decreasing by hardware and algorithm improvements:

■ AlphaGo Fan -- 176 GPUs: 40K TDP (similar to Watts of electricity)

■ AlphaGo Lee -- 48 TPUs: 10K TDP

■ AlphaGo Zero -- 4 TPUs: 1K TDP

● Training Duration:
○ Final: 40 days training--29 million self-play games, 3.1 million gradient steps

○ By 3 days beat AlphaGo Lee

https://deepmind.com/blog/alphago-zero-learning-scratch/

Capture the Flag [Jaderberg et al 2018]

● The Game:
○ First human-level performance in human-style, 3D first-person-action

○ 2v2 (multi-agent) game on custom maps on Quake III game engine

● NN Architecture:
○ 4 convolution layers (visual input: 84x84 RGB)

○ Differential Neural Computer (DNC) with memory

○ 2-level hierarchical agent (fast & slow recurrence)

● Algorithm:
○ IMPALA for training UNREAL agent (RL with auxiliary tasks for feature learning)

○ Population-based training, pop. size 30

○ Randomly assigned teams for self-play within population (matched by performance level)

https://arxiv.org/abs/1807.01281

Capture the Flag
[Jaderberg et al 2018]

https://arxiv.org/abs/1807.01281

Population Based Training [Jaderberg et al 2017]

● Train multiple agents simultaneously and evolve hyperparameters.
○ Multiple learners; measure their relative performance

○ Periodically, poorly performing learner’s NN parameters replaced from superior one

○ At same moment, hyperparameters (e.g. learning rate) copied and randomly perturbed

● More robust for achieving successful agent without human oversight / tuning

○ In CTF: evolved weighting of game events (e.g. picked up flag) to optimize RL reward

● Can discover schedules in hyperparameters

○ e.g. learning rate decay (vs red-line, hand-tuned linear decay)

● Use over any learning algorithm (e.g. IMPALA)

● Hardware/experiment scales with population size

https://arxiv.org/abs/1711.09846

http://www.youtube.com/watch?v=dltN4MxV1RI

Capture the Flag

● Computational Resources:
○ 30 GPUs for learners (1 per agent)

○ ~2,000 CPUs total for gameplay (sim & render--1000’s actors)

○ Experience fed asynchronously from actors to respective agent learner every 100 steps

● Training Duration:
○ Games: 5 minutes; 4,500 agent steps (15 steps per second)

○ Trained up to 2 billion steps, ~450K games (eq. 4 years gameplay, in roughly a week)

○ Beat strong human players by ~200K games played

Dota2
[OpenAI-Five-Blog]

● The Game:
○ Popular hero-based action-strategy

○ Massively scaled RL effort at OpenAI

○ Succeeded with 1v1 play

○ Now developing 5v5

● Algorithm:
○ PPO [Schulman et al 2017] (advanced policy gradient; multiple gradients per datum)

○ Trained by self-play from scratch

○ Synchronous updates across GPUs (all-reduce gradients using NCCL2)

○ Key to scaling: large training batch size for efficient multi-GPU use

https://blog.openai.com/openai-five/
https://arxiv.org/abs/1707.06347

Dota2

● NN Architecture:
○ Single-layer, 1,024-unit LSTM (10M params) // Separate LSTM for each player

○ Input: 20,000 numerical values (no vision) // Output: 8 numbers (170K possible actions)

http://www.youtube.com/watch?v=UZHTNBMAfAA

Dota2

[OpenAI-Five-Blog]

● Computational Resources:
○ 256 GPUs (P100), 128K CPU cores

○ ~500 CPUs rollouts per GPU

○ data uploaded to optimizer every 60s

○ (framework: “Rapid”)

● Training Duration:
○ Games: ~45 minutes; 20,000 agent steps (7.5 steps-per-second)

■ Go: ~150 moves per game

○ Train for weeks

○ 100’s years equivalent experience gathered per day

https://blog.openai.com/openai-five/

Large-Scale Techniques Recap

● 1000’s of parallel actors performing gameplay

○ (on relatively cheap CPUs)

● 10’s to 100’s GPUs for learner(s) (or ~10’s TPUs)

● Most daring examples so far using policy gradient algorithms, not Q-learning

○ Asynchronous data transfers → learning algorithm must handle slightly off-policy data

● Billions of samples per learning run to push the limits in complex games

● Self-play pervasive, in various forms

● Research efforts require significant multiples of listed compute resources

○ Development requires experimentation with many such learning runs

References
1. A3C: Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." International conference on machine

learning. 2016. https://arxiv.org/abs/1602.01783

2. DQN: Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529.

https://arxiv.org/abs/1312.5602

3. IMPALA: Espeholt, Lasse, et al. "IMPALA: Scalable distributed Deep-RL with importance weighted actor-learner architectures."

arXiv preprint arXiv:1802.01561 (2018). https://arxiv.org/abs/1802.01561

4. APE-X: Horgan, Dan, et al. "Distributed prioritized experience replay." arXiv preprint arXiv:1803.00933 (2018).

https://arxiv.org/abs/1803.00933

5. Accel RL: Stooke, Adam, and Pieter Abbeel. "Accelerated methods for deep reinforcement learning." arXiv preprint

arXiv:1803.02811 (2018). https://arxiv.org/abs/1803.02811

6. PBT: Jaderberg, Max, et al. "Population based training of neural networks." arXiv preprint arXiv:1711.09846 (2017).

https://arxiv.org/abs/1711.09846

7. AlphaGo: Silver, David, et al. "Mastering the game of Go without human knowledge." Nature 550.7676 (2017): 354. Nature

paper

8. AlphaGo Zero Blog: https://deepmind.com/blog/alphago-zero-learning-scratch/

9. CTF: Jaderberg, Max, et al. "Human-level performance in first-person multiplayer games with population-based deep

reinforcement learning." arXiv preprint arXiv:1807.01281 (2018). https://arxiv.org/abs/1807.01281

10. Dota2 Blog: https://blog.openai.com/openai-five/

11. PPO: Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).

https://arxiv.org/abs/1707.06347

https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1802.01561
https://arxiv.org/abs/1803.00933
https://arxiv.org/abs/1803.02811
https://arxiv.org/abs/1711.09846
https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGg98faovwjxeTUgZAUMnRQ
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://arxiv.org/abs/1807.01281
https://blog.openai.com/openai-five/
https://arxiv.org/abs/1707.06347

