

ACCELERATING GRAPH ALGORITHMS WITH RAPIDS

Joe Eaton, Ph.D. Technical Lead for Graph Analytics

AGENDA

- Introduction Why Graph Analytics?
- Graph Libraries nvGraph and cuGraph
- Graph Algorithms What's New
- Conclusion What's Next

RAPIDS

How do I get the software?

- <u>https://github.com/rapidsai</u>
- https://anaconda.org/rapidsai/
- https://pypi.org/project/cudf
- <u>https://pypi.org/project/cuml</u>

- <u>https://ngc.nvidia.com/registry/nvidia-</u> <u>rapidsai-rapidsai</u>
- https://hub.docker.com/r/rapidsai/rapidsai/

RAPIDS – OPEN GPU DATA SCIENCE Software Stack

Data Preparation Model Training Visualization **PYTHON** DEEP LEARNING FRAMEWORKS RAPIDS DASK CUDF CUML **CUGRAPH** CUDNN CUDA **APACHE ARROW**

WHY GRAPH ANALYTICS

Cyber Security

- 1. Build a User-to-User Activity Graph
 - Property graph with temporal information
- 2. Compute user behavior changes over time
 - PageRank changes in user's importance
 - Jaccard Similarity changes in relationship to others
 - Louvain changes in social group, groups of groups
 - Triangle Counting changes in group density

3. Look for anomalies

WHAT IS NEEDED

• Fast Graph Processing

• Use GPUs (Shameless Marketing)

32GB V100 DGX-1 Now with 256GB of GPU Memory

1 PFLOPS | 8x Tesla V100 32GB | 300 GB/s NVLink Hybrid Cube Mesh 2x Xeon | 8 TB RAID 0 | Quad IB 100Gbps, Dual 10GbE | 3U - 3200W

DGX-1 HYBRID-CUBE MESH

DGX-2

2 PFLOPS | 512GB HBM2 | 16 TB/sec Memory Bandwidth | 10 kW / 160 kg

DGX-2 INTERCONNECT

16 Tesla V100 32GB Connected by NVSwitch | On-chip Memory Fabric Semantic Extended Across All GPUs

NVGRAPH IN RAPIDS

Keep What you have Invested in Graph Analytics

More! GPU Optimized Algorithms

Ś

Reduced cost & Increased performance

Integration with RAPIDS data IO, preparation and ML methods

Performance Constantly Improving

GRAPH ANALYTIC FRAMEWORKS

For GPU Benchmarks

- Gunrock from UC Davis
- Hornet from Georgia Tech (also HornetsNest)
- nvGraph from NVIDIA

PAGERANK

- Ideal application: influence in social networks
- Each iteration involves computing: y = A x

x = y/norm(y)

- Merge-path load balancing for graphs
- Power iteration for largest eigenpair by default
- Implicit Google matrix to preserve sparsity
- Advanced eigensolvers for ill-conditioning

PAGERANK PIPELINE BENCHMARK

Graph Analytics Benchmark

Proposed by MIT LL.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Apply supercomputing benchmarking methods to create scalable benchmark for big data workloads.

Four different phases that focus on data ingest and analytic processing, details on next slide....

Reference code for serial implementations available on GitHub. <u>https://github.com/NVIDIA/PRBench</u>

TRIANGLE COUNTING

High Performance Exact Triangle Counting on GPUs Mauro Bisson and Massimiliano Fatica

Useful for:

- Community Strength
- Graph statistics for summary
- Graph categorization/labeling

Figure 1. Example of triangle counting via multiplication of the two halves of an adjacency matrix. The sum is restricted to only the grey elements of the original L matrix.

TRAVERSAL/BFS

Common Usage Examples:

Path-finding algorithms:

- Navigation
- Modeling
- Communications Network

Breadth first search

building block fundamental graph primitive

Graph 500 Benchmark

BFS PRIMITIVE

Load balancing

BOTTOM UP Motivation

• Sometimes it's better for children to look for parents (bottom-up)

Frontier depth=4

CLUSTERING ALGORITHMS

Spectral

Build a matrix, solve an eigenvalue problem, use eigenvectors for clustering

• Hierarchical / Agglomerative

Build a hierarchy (fine to coarse), partition coarse, propagate results back to fine level

- Local refinements
 - Switch one node at a time

SPECTRAL EDGE CUT MINIMIZATION

80% hit rate

Balanced cut minimization

SPECTRAL MODULARITY MAXIMIZATION

84% hit rate

A. Fender, N. Emad, S. Petiton, M. Naumov. 2017. "Parallel Modularity Clustering." ICCS

HEIRARCHICAL LOUVAIN CLUSTERS

Check the size of each cluster If size> threshold : recluster

LOUVAIN SINGLE RUN

32GB V100

Single and Dual GPU on Commodity Workstation

RMAT	Nodes	Edges	Single	Dual
20	1,048,576	16,777,216	0.019	0.020
21	2,097,152	33,554,432	0.047	0.035
22	4,194,304	67,108,864	0.114	0.066
23	8,388,608	134,217,728	0.302	0.162
24	16,777,216	268,435,456	0.771	0.353
25	33,554,432	536,870,912	1.747	0.821
26	67,108,864	1,073,741,824		1.880

Scale 26 on a single GPU can be achieved by using Unified Virtual Memory. Runtime was 3.945 seconds Larger sizes exceed host memory of 64GB

DATASETS Mix of social network and RMAT

Dataset	Nodes	Edges
soc-twitter-2010	21,297,772	530,051,618
Twitter.mtx	41,652,230	1,468,365,182
RMAT - Scale 26	67,108,864	1,073,741,824
RMAT - Scale 27	134,217,728	2,122,307,214
RMAT - Scale 28	268,435,456	4,294,967,296

FRAMEWORK COMPARISON

PageRank on DGX-1, Single GPU

PAGERANK ON DGX-1

Using Gunrock, Multi-GPU

🕺 NVIDIA

BFS ON DGX-1 Using Gunrock, Multi-GPU

DGX-2

DGX-1 VS. DGX-2

RMAT SCALING, STAGE 4 PRBENCH PIPELINE

Near Constant Time Weak Scaling is Real Due to NVLINK

	Max RMAT scale	Comp time (sec)	Gedges/sec	MFLOPS	NVLINK Speedup
1	25	1.4052	7.6	15282.90	1.0
2	26	1.3914	15.4	30867.37	1.4
4	27	1.3891	30.9	61838.78	2.8
8	28	1.4103	60.9	121815.46	4.1
16	29	1.4689	117.0	233917.04	8.1

WHAT'S NEXT? Ease of Use, Multi-GPU, new algorithms

HORNET

- Designed for sparse and irregular data great for powerlaw datasets
- Essentially a multi-tier memory manager
 - Works with different block sizes -- always powers of two (ensures good memory utilization)
 - Supports memory reclamation
 - Superfast!
- Hornet in RAPIDS: Will be part of cuGraph.
 - Streaming data analytics and GraphBLAS good use cases.
 - Data base operations such as join size estimation.
 - String dictionary lookups, fast text indexing.

HORNET

Performance - Edge Insertion

- Results on the NVIDIA P100 GPU
- Supports over 150M updates per second
 - Checking for duplicates
 - Data movement (when newer block needed)
 - Memory reclamation
- Similar results for deletions

- Generality
 - Supports many algorithms
- Programmability
 - Easy to add new methods
- Scalability
 - Multi-GPU support
- Performance
 - Competitive with other GPU frameworks

Programming Model

A generic graph algorithm:

Data-centric abstraction

Operations are defined on
a group of vertices or edges ≝ a frontier
=> Operations = manipulations of frontiers

Bulk-synchronous programming

- Operations are done one by one, in order
- Within a single operation, computing on multiple elements can be done in parallel, without order

Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T. Riffel, and John D. Owens.

CONCLUSIONS We Can Do Real Graphs on GPUs!

- The benefits of full NVLink connectivity between GPUs is evident with any analytic that needs to share data between GPUs
- DGX-2 is able to handle graphs scaling into the billions of edges
- Frameworks need to be updated to support more than 8 GPUs, some have hardcoded limits due to DGX-1
- More to come! We will be building ease-of-use features with high priority, we can already share data with cuML and cuDF.

https://rapids.ai

