
© 2019 Nokia11

TensorCore Optimized DNN for
Efficient Low Latency Inference
for 5G Networks
Tero Rissa / Andrew Baldwin

GTC 2019

© 2019 Nokia2

Goals
Results
Method

© 2019 Nokia3

Goals
5G radio resource management L1/L2 tasks can
typically benefit from use of relatively simple
Multilayer Perceptron (MLP) Deep Neural Network
(DNN) models

Parameters: 3.3M

Ops/Inference: 6.7M + 4K x tanh

Latency: Needs result in 50 µs to integrate the
results with a 5G protocol cycle

Throughput: Still need high throughput to serve
maximum number of clients and reduce
computation cost

Batch size: Smaller is better as combining data from
multiple clients into larger batches can increase
latency

Input: Data arriving over backplane to CPU DDR
buffer

import keras

from keras.layers import Input, Dense

from keras.layers import Model

inputs = Input(shape=(192,))

x = Dense(1024, activation=”tanh”)(inputs)

x = Dense(1024, activation=”tanh”)(inputs)

x = Dense(1024, activation=”tanh”)(inputs)

x = Dense(1024, activation=”tanh”)(inputs)

predictions = Dense(32)(x)

model = Model(inputs=inputs, outputs=predictions)

192 1024 1024 1024 1024 32

© 2019 Nokia4

Goals

Results

Method

© 2019 Nokia5

Results
Keras - CPU single-core

TensorFlow 1.12 backend

Xeon 6130 @ 3.5GHz (turbo)
(Use “taskset 1” to constrain to single core)

Best latency: Batch 1, 780µs, 1.3k Inf/s

Plateau: Batch 256, 35000µs, 7.5k Inf/s

Shortest latency is 16x target

17% efficiency at best latency compared to
plateau

© 2019 Nokia6

Results
Keras - CPU multi-core

TensorFlow 1.12 backend

2 x Xeon 6130 @ 2.4GHz 32 core 64 thread

Best latency: Batch 1, 1900µs, 0.5k Inf/s

Best rate: Batch 2k, 28000µs, 80k Inf/s

Shortest latency 2x worse than single-core

Latency better than single-core above batch 16

Rate not scaling efficiently vs single (32 vs 1)

© 2019 Nokia7

Results
Keras – GPU NVIDIA Tesla V100 PCIe

TensorFlow 1.12 backend

To allow TensorCore use:
keras.backend.set_floatx(“float16”)

Best latency: Batch 1, 670µs, 1.5k Inf/s

Plateau: Batch 8k, 4000µs, 2100k Inf/s

No latency improvement on Batch 1

Shortest latency is 13x target

Up to 26x rate of CPU multi-core

Latency similar between Batch 1-128

© 2019 Nokia8

Results
TensorFlow 1.12 – GPU NVIDIA V100

Keras model converted to frozen TensorFlow
graph

Aim is to see if Keras is limiting the performance

Best latency: Batch 1, 670µs, 1.5k Inf/s

Plateau: Batch 16k, 5900µs, 2800k Inf/s

Shortest latency same as Keras on TF

30% improvement on plateau rate compared to
Keras

Uncertain if or at which batch sizes TensorCores
were used

© 2019 Nokia9

Results
TensorRT v5 – GPU NVIDIA V100

TF graph converted to TRT
f16 inference enabled

Latency measurement includes on a single CUDA stream:

• Async copy from pagelocked CPU memory buffer to input device buffer

• TensorRT API Inference from input device buffer to output device buffer

• Async copy from output device buffer to pagelocked CPU memory buffer

• Stream synchronize call

Rate is measured without async copies but with sync

Best latency: Batch 1, 110µs, 9k Inf/s

Best rate: Batch 16k, 2600µs, 6300k Inf/s

6x better latency & rate vs TensorFlow

Shortest latency 2x target

Optimal rate/latency at Batch 256, 185µs, 2800k
Inf/s

© 2019 Nokia10

Results – lowest latency
Instarence – GPU NVIDIA V100

Nokia low-latency GPU inference system

Keras model as input
Latency and Rate measured in similar way as for TRT

Parameters optimised for lowest latency in real
use case (host to host, no pipeline)

Best latency: Batch 8, 34.8µs, 222k Inf/s

Best rate under 50µs: Batch 32, 615k Inf/s

Plateau: Batch 4k, 1460µs, 2800k Inf/s

3x shorter latency than TensorRT

Latency 30% shorter than target (0.7x)

Best latency and rate up to Batch 256

© 2019 Nokia11

Results – max throughput

Instarence – GPU NVIDIA V100

Nokia low-latency GPU inference system

Keras model as input
Latency and Rate measured in similar way as for TRT

Parameters optimised for best throughput (device
to device, full pipeline)

Best latency: Batch 8, 32.1µs, 1900k Inf/s

Plateau: Batch 64, 137.3µs, 3700k Inf/s

28x rate vs TRT at batch 8

8.5x rate vs low-latency mode at batch 8

© 2019 Nokia12

© 2019 Nokia13

© 2019 Nokia14

Goals
Results
Method

© 2019 Nokia15

MLP DNN per-layer Operations

Apply weights (matrix multiply):

Weight matrix: [Nodes (outputs) x Inputs (nodes in
previous layer)]

x

Input matrix: [Inputs x Batch size]

→ Layer output Matrix: [Nodes x Batch size]

Add bias (element-wise):

+ Bias vector: [Nodes]

→ Matrix: [Nodes x Batch size]

Apply Activation function (element-wise):

tanh([Nodes x Batch size])

→ Matrix: [Nodes x Batch size]

Results & Input – not reused

Constant parameters - reused (3.3M, 6.6MB as f16)

𝑍 𝑛 = 𝑊[𝑛] × 𝑋[𝑛−1] + 𝑏[𝑛]

(𝑛[𝑛], 𝑚) 𝑛 𝑛 , 𝑛 𝑛−1 𝑛 𝑛−1 , m 𝑛 𝑛 , 1

𝐴[𝑛] = tanh 𝑍 𝑛

(𝑛[𝑛], 𝑚)

=

x =

+ =

tanh ()

© 2019 Nokia16

Achievable performance using cuBLAS

Measured time taken for cuBLAS Hgemm (f16) matrix
multiply for a layer 1024 → 1024 with different batch
sizes and TensorCores enabled

Best latency: 12µs for batch size <128

Lower limit latency for target model: 36µs (3*12)

Maximum performance: 45M layers/s

Maximum achievable inference rate for target model:
15M Inf/s (45/3)
(Assuming use of cuBLAS and Ignoring small layers, bias, activation)

Hardware severely under-utilized at small batch sizes

Latency does not improve at all under batch 64

© 2019 Nokia17

Hardware resources on NVIDIA V100 PCIe

Resource Per SM Per V100 (80x SM)

Max Clock Speed 1380 MHz 1380 MHz

Executing threads 128 (4x32) 10240

TensorCore count 8 640

TensorCore ops 128 (4*4*4*2) /cycle 113 TFLOPS

TensorCore BW needed 96 ([4x4]*3*2B) B/cycle 85 TB/s

Register memory 256 (64k*4B) KB 20.0 MB

Shared memory 96 KB 7.5 MB

L1/Shared memory BW 128 B/cycle (32*4) 14 TB/s

Main memory BW 0.9 TB/s

Must be in registers

Space for all 6.6MB f16

model parameters in

registers

© 2019 Nokia18

Our chosen strategies

→ Use TensorCores directly through wmma functions to achieve low latency with high rate

- With cuBLAS we would need to prioritise latency or rate.

Usually, layers are processed by sequential Cuda kernels

→ Registers need to be loaded again each time

If parameters are reloaded for each inference, rate will be limited

→ Use persistent kernels that can process many batches without reloading parameters

→ Create a pipeline allocating each SM to graph node, exchanging buffers with other SMs

TensorCore wmma interface currently has 3 size variants

→ Select 8 x 32 x 16 wmma operations to allow efficient batch 8 operation

© 2019 Nokia19

Matrix stage

1 block (1 SM) computes 256 x 256 matrix
multiply using TensorCores via nvcuda::wmma
API with 8 warps, 32 threads each

16 preloaded weight fragments in registers

Each input batch is loaded to shared memory
for reuse by all warps

Accumulate 16 [8x32x16] matrix multiplies

Result is written back to global memory

Batch sizes up to 64 are processed in shared
memory for increased throughput

2
5
6
 i
n
p

u
ts

 (
16

 o
p

s
*

[1
6
*b

a
tc

h
])

256 outputs (8 warps * [32*batch])

𝛴

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

© 2019 Nokia20

Bias Vector

Reduction/bias/activation stage

For layer larger than 256x256, partial results
from Matrix stage need to be reduced to final
size

In case of 1024 x 1024, this means groups of 4
blocks need to be summed to single final block

8 warps allow each thread to read and sum 4
partial values

Summed result has bias value added

Activation function is applied (tanh)

Result is written back to global memory

Batch sizes up to 64 are processed in shared
memory for increased throughput

4 * [256*batch] partial outputs

256*batch outputs (8 warps * 32)

𝑡𝑎𝑛ℎ(𝛴)

© 2019 Nokia21

Input

[Batch x 192]

Mapping the model graph to a hardware-aware pipeline

Output

[Batch x 32]

10 stage pipeline - Alternating matrix and combined reduction/bias/activation stages

All blocks in a stage execute together when results from previous stage are available

One batch must pass through all stages, but each stage can be processing different batch

1024

4 x 256

1024

4 x 256

16 blocks

on 16 SM

2 stages have 2 x 16 blocks

can be together on 16 SM

In total requires

56x SM (V100)

© 2019 Nokia22

1|2

Ta

Q

Ta

Co

3|4 5|6 7|8
9 |

10

NVIDIA V100

© 2019 Nokia23

Pipeline Kernel Structure

Pre-allocate batch-size buffers for exchanging
data between stages

Stages notify in both directions:

• next stage when new work available

• previous stage when input buffer
consumed to prevent overwriting

Fence to ensure visibility of results in L2 cache
for different SM before notifying

Waiting & syncing cause unavoidable
overhead when block cannot be processing

// Pseudocode
read_configuration()
load_parameters_to_registers()

while (*more_to_do) {
while (!*new_input_data) {

__nanosleep() }
__syncthreads()
read_input_data()
__syncthreads()
mark_input_data_read()
process_input_data()
while (!*last_output_read) {

__nanosleep() }
__syncthreads()
write_output_data()
__threadfence() // Ensure visibility
__syncthreads()
mark_output_data_written()

}

© 2019 Nokia24

Persistent Graph

Host communication

For each task, input and output buffers can use
host (unified) memory to avoid need for
additional copy via device memory

A persistent kernel is used to watch for host
job requests and then add to pipeline queue

A 2nd persistent kernel watches (L2) for
queued tasks completion and notified host

Client can queue multiple tasks which can be
processed simultaneously by the graph
pipeline (one task per stage) and will complete
in the order they were submitted.

Host-side job queue structure + I/O buffer

Host

Device

CPU Client

Device-side task queue structure + Parameters

Matrix kernel Reduction/bias/activation kernel

Task queue kernel Task complete kernel

Jo
b

 1

Queue Job 1 Queue Job 2 Job 1 complete Job 2 complete

Load

params

Time

Jo
b

 2

Jo
b

 1

Jo
b

 2

© 2019 Nokia26

Possible Future Directions

Support on T4 & INT8 inference

Convert from proof of concept to reusable framework accepting standard model formats as input

Support more node types, e.g. convolutions

Explore runtime graph reconfiguration:

• Allow multiple models to be executed with similar latency and throughput characteristics in
every protocol frame cycle, increasing value of installation

• Current approach uses mainly L2 cache rather than device RAM bandwidth

• High device RAM bandwidth could allow for effective scheduled cyclic preloading of models
before relevant new data availability

