TensorCore Optimized DNN for Efficient Low Latency Inference for 5G Networks

Tero Rissa / Andrew Baldwin
GTC 2019
Goals

Results

Method
Goals

5G radio resource management L1/L2 tasks can typically benefit from use of relatively simple Multilayer Perceptron (MLP) Deep Neural Network (DNN) models

Parameters: **3.3M**

Ops/Inference: **6.7M + 4K x tanh**

Latency: Needs result in **50 µs** to integrate the results with a 5G protocol cycle

Throughput: Still need high throughput to serve maximum number of clients and reduce computation cost

Batch size: Smaller is better as combining data from multiple clients into larger batches can increase latency

Input: Data arriving over backplane to CPU DDR buffer

```python
import keras
from keras.layers import Input, Dense
from keras.layers import Model

inputs = Input(shape=(192,))
x = Dense(1024, activation="tanh")(inputs)
x = Dense(1024, activation="tanh")(inputs)
x = Dense(1024, activation="tanh")(inputs)
x = Dense(1024, activation="tanh")(inputs)
predictions = Dense(32)(x)
model = Model(inputs=inputs, outputs=predictions)
```
Goals
Results
Method
Results

Keras - CPU single-core

TensorFlow 1.12 backend
Xeon 6130 @ 3.5GHz (turbo)
(Use “taskset 1” to constrain to single core)

Best latency: Batch 1, 780μs, 1.3k Inf/s
Plateau: Batch 256, 35000μs, 7.5k Inf/s

Shortest latency is 16x target
17% efficiency at best latency compared to plateau
Results

Keras - CPU multi-core

TensorFlow 1.12 backend
2 x Xeon 6130 @ 2.4GHz 32 core 64 thread

Best latency: Batch 1, 1900\(\mu s\), 0.5k Inf/s
Best rate: Batch 2k, 28000\(\mu s\), 80k Inf/s

Shortest latency 2x worse than single-core
Latency better than single-core above batch 16
Rate not scaling efficiently vs single (32 vs 1)
Results
Keras – GPU NVIDIA Tesla V100 PCIe

TensorFlow 1.12 backend
To allow TensorCore use:
keras.backend.set_floatx("float16")

Best latency: Batch 1, \(670\mu s\), 1.5k Inf/s
Plateau: Batch 8k, 4000\(\mu s\), 2100k Inf/s

No latency improvement on Batch 1
Shortest latency is 13x target
Up to 26x rate of CPU multi-core
Latency similar between Batch 1-128
Results

TensorFlow 1.12 – GPU NVIDIA V100

Keras model converted to frozen TensorFlow graph

Aim is to see if Keras is limiting the performance

Best latency: Batch 1, 670µs, 1.5k Inf/s
Plateau: Batch 16k, 5900µs, 2800k Inf/s

Shortest latency same as Keras on TF
30% improvement on plateau rate compared to Keras
Uncertain if or at which batch sizes TensorCores were used
Results

TensorRT v5 – GPU NVIDIA V100

TF graph converted to TRT
f16 inference enabled

Latency measurement includes on a single CUDA stream:
- Async copy from pagelocked CPU memory buffer to input device buffer
- TensorRT API Inference from input device buffer to output device buffer
- Async copy from output device buffer to pagelocked CPU memory buffer
- Stream synchronize call

Rate is measured without async copies but with sync

Best latency: Batch 1, 110µs, 9k Inf/s
Best rate: Batch 16k, 2600µs, 6300k Inf/s

6x better latency & rate vs TensorFlow
Shortest latency 2x target
Optimal rate/latency at Batch 256, 185µs, 2800k Inf/s
Results – lowest latency

Instarence – GPU NVIDIA V100

Nokia low-latency GPU inference system
Keras model as input
Latency and Rate measured in similar way as for TRT
Parameters optimised for lowest latency in real use case (host to host, no pipeline)

Best latency: Batch 8, 34.8µs, 222k Inf/s
Best rate under 50µs: Batch 32, 615k Inf/s
Plateau: Batch 4k, 1460µs, 2800k Inf/s

3x shorter latency than TensorRT
Latency 30% shorter than target (0.7x)
Best latency and rate up to Batch 256
Results – max throughput

Instarence – GPU NVIDIA V100

Nokia low-latency GPU inference system
Keras model as input
Latency and Rate measured in similar way as for TRT
Parameters optimised for best throughput (device to device, full pipeline)

Best latency: Batch 8, 32.1µs, 1900k Inf/s
Plateau: Batch 64, 137.3µs, 3700k Inf/s

28x rate vs TRT at batch 8
8.5x rate vs low-latency mode at batch 8
Goals
Results
Method
MLP DNN per-layer Operations

Apply **weights** (matrix multiply):
- Weight matrix: [Nodes (outputs) x Inputs (nodes in previous layer)]
 - x
- Input matrix: [Inputs x Batch size]
 - Layer output Matrix: [Nodes x Batch size]

Add **bias** (element-wise):
- + Bias vector: [Nodes]
 - Matrix: [Nodes x Batch size]

Apply **Activation** function (element-wise):
- tanh([Nodes x Batch size])
 - Matrix: [Nodes x Batch size]

Results & Input – not reused

Constant parameters - reused (3.3M, 6.6MB as f16)

\[
Z^{[n]} = W^{[n]} \times X^{[n-1]} + b^{[n]}
\]
\[
A^{[n]} = \tanh(Z^{[n]})
\]

[Diagram of matrix multiplication, addition, and activation function]
Achievable performance using cuBLAS

Measured time taken for cuBLAS Hgemm (f16) matrix multiply for a layer $1024 \rightarrow 1024$ with different batch sizes and TensorCores enabled

Best latency: $12\mu s$ for batch size <128
Lower limit latency for target model: $36\mu s$ $(3*12)$

Maximum performance: $45M$ layers/s
Maximum achievable inference rate for target model: $15M$ Inf/s $(45/3)$
(Assuming use of cuBLAS and Ignoring small layers, bias, activation)

Hardware severely under-utilized at small batch sizes
Latency does not improve at all under batch 64
Hardware resources on NVIDIA V100 PCIe

<table>
<thead>
<tr>
<th>Resource</th>
<th>Per SM</th>
<th>Per V100 (80x SM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Clock Speed</td>
<td>1380 MHz</td>
<td>1380 MHz</td>
</tr>
<tr>
<td>Executing threads</td>
<td>128 (4x32)</td>
<td>10240</td>
</tr>
<tr>
<td>TensorCore count</td>
<td>8</td>
<td>640</td>
</tr>
<tr>
<td>TensorCore ops</td>
<td>128 (444*2) /cycle</td>
<td>113 TFLOPS</td>
</tr>
<tr>
<td>TensorCore BW needed</td>
<td>96 ([4x4]32B) B/cycle</td>
<td>85 TB/s</td>
</tr>
<tr>
<td>Register memory</td>
<td>256 (64k*4B) KB</td>
<td>20.0 MB</td>
</tr>
<tr>
<td>Shared memory</td>
<td>96 KB</td>
<td>7.5 MB</td>
</tr>
<tr>
<td>L1/Shared memory BW</td>
<td>128 B/cycle (32*4)</td>
<td>14 TB/s</td>
</tr>
<tr>
<td>Main memory BW</td>
<td></td>
<td>0.9 TB/s</td>
</tr>
</tbody>
</table>

- Must be in registers
- Space for all 6.6MB f16 model parameters in registers
Our chosen strategies

→ Use TensorCores directly through `wmma` functions to achieve low latency with high rate
 - With cuBLAS we would need to prioritise latency or rate.

Usually, layers are processed by sequential Cuda kernels
→ Registers need to be loaded again each time

If parameters are reloaded for each inference, rate will be limited
→ Use persistent kernels that can process many batches without reloading parameters
→ Create a pipeline allocating each SM to graph node, exchanging buffers with other SMs

TensorCore `wmma` interface currently has 3 size variants
→ Select 8 x 32 x 16 `wmma` operations to allow efficient batch 8 operation
Matrix stage

1 block (1 SM) computes 256 x 256 matrix multiply using TensorCores via nvcuda::wmma API with 8 warps, 32 threads each

16 preloaded weight fragments in registers
Each input batch is loaded to shared memory for reuse by all warps

Accumulate 16 [8x32x16] matrix multiplies
Result is written back to global memory

Batch sizes up to 64 are processed in shared memory for increased throughput
Reduction/bias/activation stage

For layer larger than 256x256, partial results from Matrix stage need to be reduced to final size.

In case of 1024 x 1024, this means groups of 4 blocks need to be summed to single final block.

8 warps allow each thread to read and sum 4 partial values.

Summed result has bias value added.

Activation function is applied (tanh).

Result is written back to global memory.

Batch sizes up to 64 are processed in shared memory for increased throughput.

\[\text{tanh}(\Sigma) \]

4 * [256*batch] partial outputs

256*batch outputs (8 warps * 32)
Mapping the model graph to a hardware-aware pipeline

10 stage pipeline - Alternating **matrix** and **combined reduction/bias/activation** stages
All blocks in a stage execute together when results from previous stage are available
One batch must pass through all stages, but each stage can be processing different batch

Input

[Batch x 192]

16 blocks on 16 SM

1024
4 x 256

1024
4 x 256

2 stages have 2 x 16 blocks can be together on 16 SM

In total requires 56x SM (V100)

Output

[Batch x 32]
Pipeline Kernel Structure

Pre-allocate batch-size buffers for exchanging data between stages

Stages notify in both directions:
- next stage when new work available
- previous stage when input buffer consumed to prevent overwriting

Fence to ensure visibility of results in L2 cache for different SM before notifying

Waiting & syncing cause unavoidable overhead when block cannot be processing

// Pseudocode
read_configuration()
load_parameters_to_registers()

while (*more_to_do) {
 while (!*new_input_data) {
 __nanosleep() } __syncthreads()

 read_input_data() __syncthreads()
 mark_input_data_read() __syncthreads()
 process_input_data()
 while (!*last_output_read) {
 __nanosleep() } __syncthreads()

 write_output_data() __syncthreads()
 __threadfence() // Ensure visibility
 mark_output_data_written()
Host communication

For each task, input and output buffers can use host (unified) memory to avoid need for additional copy via device memory.

A persistent kernel is used to watch for host job requests and then add to pipeline queue.

A 2nd persistent kernel watches (L2) for queued tasks completion and notified host.

Client can queue multiple tasks which can be processed simultaneously by the graph pipeline (one task per stage) and will complete in the order they were submitted.
Possible Future Directions

Support on T4 & INT8 inference
Convert from proof of concept to reusable framework accepting standard model formats as input
Support more node types, e.g. convolutions
Explore runtime graph reconfiguration:
• Allow multiple models to be executed with similar latency and throughput characteristics in every protocol frame cycle, increasing value of installation
• Current approach uses mainly L2 cache rather than device RAM bandwidth
• High device RAM bandwidth could allow for effective scheduled cyclic preloading of models before relevant new data availability