Production-quality, final-frame rendering on the GPU
Redshift 2.6 Recap (part 1)

- New features since GTC 2018
 - Area light spread
 - Fake barn-door effect
 - Had to be as efficient as regular area lights
 - Had to conserve energy
 - Shader-driven global volume scattering
 - Allows greater lighting detail
 - Limited to scattering, not transmission
 - Specular light bending through refractions
 - Important for realistic-looking specular reflections
 - Direct Lighting
 - Samples lights by shooting rays directly towards light sources
 - Very efficient for sampling area lights (when using MIS)
 - But no ray bending through refractive shadow casters
 - Indirect Lighting
 - Samples the scene indirectly by shooting rays based on the surface BRDF
 - Allows ray bending through refractive objects
 - Not as efficient for sampling area lights... so we don't bother!
 - Let's marry the two techniques for the best of both worlds!
 - Direct Lighting for lights that we know are not refracted
 - Indirect Lighting for lights that we know are refracted
 - A mixture of the two for rough surfaces
- Cryptomatte
 - Solves the matte coverage problem
Redshift 2.6 Recap (part 2)

- Redshift Renderview Improvements (Post-FX)
 - Photographic Exposure and vignetting
 - Color Control / LUTs
 - Great for applying a final color grade to make the image more dramatic
 - Bloom
 - That dreamy effect, popular with glamour shots in the 1960s!
 - Streaks
 - Make those hot-spots pop!
 - Fully directional, with tweakable tails
 - Flare
 - Cool lens effect based on bokeh hexagonal shapes, with tweakable chromatic aberration
 - Physically-based version coming soon
 - Intuitive controls but tons of flexibility
 - Real-time in the RS RV, but available in batch too
 - Post-FX AOV
General Core Improvements

• Volume color channels
 – Color ramps
 – Color transmission
• Direct Lighting cut-offs sampling improvements
 – Faster rendering with fewer samples
• Better importance sampling for single scattering
• Multi-step deformation blur
• Custom AOV visibility through reflections/refractions
 – More to come in 3.0
Redshift 3.0 (part 1)

- Our next major release, with big changes!
 - ‘Alpha’ scheduled for April 2019
 - Designed to be faster and easier to use
 - Major refactor of the core...
- Refactor: Ray tracing facelift
 - Smarter ray management for huge performance boost
 - GPUs really shine when they’re given a lot of work to do
 - New technique requires less memory than RRM/AMM, with better performance
 - Big win for multi-sampled rough rays with many bounces
 - up to 4x faster!
 - Benefit for simple scenes too!
 - Increased the trace-depth limits
 - Up to 64 indirect bounces
 - Up to 256 transparency depth
Redshift 3.0 (part 1)
Redshift 3.0 (OptiX)

- (3840 x 2160)
 - CUDA: 6m:18s
 - RTX: 3m:2s
 - 2x faster!

- Shared GPU caches for geo and textures
- Better performance for heavy scenes
Redshift 3.0 (part 2)

• Refactor: Shading system overhaul
 – Required for the Shader SDK (yes, it’s finally happening!)
 – Automatic Sampling
 • Like unified sampling, but at a shading level
 • Two goals: simpler and faster
 • Uses smart noise metrics to determine how many samples the shaders actually need
 • More accurate cut-offs
Redshift 3.0 (Shader SDK)

• Let me write shaders already!
• Major shader system re-factor and clean-up
 – Goal: remove any notion of ‘inner workings’ for the shader writer
 – Happy side effects...
 • Better blended materials
 • Automatic energy conservation?
 • Better performance!
• What should our SDK look like?
 – Should we re-invent the wheel?
 – OSL support... with extensions!
• MDL to follow
• Maybe MaterialX, if it catches on?
Redshift 3.0 (part 3)

• More tricks up our sleeves
 – Optimization coming for deep transparencies
 – Optimizations coming for many lights
 – New features become feasible...
 • ‘Unbiased’ rendering quality?
 • Ray traced caustics!
Coming Soon

- USD / Hydra support
- Intel Denoiser
- Light blockers
- Random Walk SSS
- Volumetric multiple scattering
- LPEs
- Toon shading
- Distributed rendering
The Future

- Blender integration
- Redshift ‘RT’
 - All new renderer
 - Actually real-time, DXR accelerated!
 - Fully dcc integrated
Thanks!

• For more information, please contact us at info@redshift3d.com
• Or meet us right after this presentation!