<ANVIDIA. *

REAL TIME INFERENCE

Don Brittain, GTC 2019

REAL TIME VISUAL PROCESSING

Real time upscaling

Render at lower res, display at higher res (compute limited cases)

Transmit video at lower res, display at higher res (bandwidth limited cases)
Visual processing

Post processing effects: denoising, antialiasing, color-correction

Optical flow analysis, video codec support

Temporal interpolation or extrapolation (AR/VR)

Artistic enhancements (e.g. style transfer, in-painting)

Other (non-visual) applications
Pose estimations, facial animation, text-to-speech, voice control, etc.

NVIDIA.

Typical Deep Learning Practioner
View of the World

TRAINING

INFERENCE

Cross fingers and hope for the

Try to solve hard problems best performance
using clever network design,
data filtering and augmentation,
advanced ML techniques

Emphasis is on trying to improve the speed and accuracy of training!

3

< NVIDIA.

Typical End-user View of the World

TRAINING B

INFERENCE

This is what makes content creation, data analysis,
video downloads and games go faster or look nicer!

.

CULTURE
SHOCK

<A NnviblAa

®

FOR REAL TIME VISUAL APPLICATIONS

Treat training performance (quality) and inference performance (speed) as
equal participants in the network design process

Inference speed requirements can be HUGE constraints to network design!

Fast inference is also training problem

It must be considered during
network design and training!

Check perf early and often, and run lots of
experiments

DESIGN, TRAINING, AND IMPLEMENTATION

Choice of model: For Tensor Cores, stay with multiple-of-8 feature counts in conv layers
Start small, add layers or features only when needed to boost quality
Concentrate on inference performance rather than training convenience
Choice of Loss Function (and training data): Getting the most out of a small network
Common loss like L1, MSE are probably NOT adequate (consider HFENN, content, style, etc)
Pay attention to having very clean data, and making sure loss is driving what you want
Layer and Computation Graph Optimizations:
Always fuse (or eliminate) operations where possible. Stick with 0-padding, ReLU activation

Cache partial results that will be needed again, and resuse memory to keep footprint small

NVIDIA.

File Edit Tools View Help
f

CQBlapR

Layers

¥ - . Standard

Concatenation

o

Convolution

000
000
000

%o

Dropout

Element wise

Fully connected

ap §e

Instance narmalization
Pooling

Shuffle

SP%e.]

Upsample

Parameters

OD[X|® P PP+ ®

> 9

l image pair input

dims=s: 1920x1024x€

—

e
u[a]s]
aag conv_enc la
oo

k=rnal: S5=5
stride: 1zl
padding: same

features: €4
relu
1

ooo
tatelal conv_enc 1b

ooo

kernel: S5x5
stride: lxl
padding: same

3:@ concat 1

axis: 1

features: €4

zelu 1

J
R
888 conv_enc 2a

(s[als]

kemrrrneal- Sx5

ooo
oo
(]
kernel:
stride:

conv_dec 1

am3
1x1
padding: =same
€4

features:

zelu

(000 conv _deec 0 O 1

NCHW AND NHWC

Yes, you do need to know this

RGB,RGB,RGB

Image

We think “2D” array of pixels It’s really a “3D” array of RGB values More like this...

10 <ANVIDIA.

NCHW AND NHWC

Yes, you do need to know this

RGB,RGB,RGB
Image

We think “2D” array of pixels It’s really a “3D” array of RGB values More like this...

In Memory:

NHWC is the “normal” image storage format RGBRGBRGBRGBRGBRGB, first row across, followed by each row down

NCHW is the “normal” tensor storage format All R’s are stored, first row across then down, then all G’s, then all B’s

11 <ANVIDIA.

NCHW AND NHWC

Yes, you do need to know this

RGB,RGB,RGB

Image —

We think “2D” array of pixels It’s really a “3D” array of RGB values More like this...
In Memory:
NHWC is the “normal” image storage format Tensor Cores “require” NHWC memory layout (using fp16)

Easy to access neighboring data
fp64 is a 64-bit “double precision” floating point number
NCHW is the “normal” tensor storage format fp32 is a 32-bit “single precision” float

Easy to process entire “channels” fp16 is a 16-bit “half precision” float

12 <ANVIDIA.

THINGS TO CONSIDER

Just as you can train without knowing ultimate inference consequences, you can do
“inference” without knowing ultimate trainability

It’s worth looking for fast inference paths (relatively cheap) before investing too much in
time-and-compute expensive training. Fusing always helps!

The fastest performance might not come from the obvious path

Choice of loss function can dramatically affect how efficiently network capacity is used.
Experiment with loss functions to get the best quality per inference batch.

NVIDIA.

|

File Edit Tools View Help

Layers

S QB

¥ - . Standard

o

000
000
000

%o

ap §e

b dn]k

I

Parameters

Concatenation
Convolution

Dropout

Element wise

Fully connected
Instance narmalization
Pooling

Shuffle

o]
5
m

Upsample

&

> | D X
@

L
rs

[]
> 9

009 conv_enc 1a

oo

000 gonv _enc 1b

Do
0oo

kernel:
stride:
padding:

features: €4

zelu

P L PP+ ®

l image pair input

Sx5
1x1

same

ooo
BeEo conv_enc_2a

(s[als]

| WP

——

|

Qoo
Bee conv_dec 1

ooo

kernel: 3x3
stride: 1x1

padding: =same

features: €4
zelu

(000 conv _deec 0 O 1

THINGS TO CONSIDER

Eliminate “training training wheels” if possible

Normalization layers (Instance norm, batch norm and similar) are probably not needed for
small, real time networks

Leaky ReLU or ELU can probably be replaced with just use RelLU
Work from simplified network “up”, rather than complex network “down”
Work in “self-normalized” space, centered about 0 (i.e. whiten data explicitly)

E.g. transform image 0-255 values to -0.5 to 0.5 space

Only use zero padding on conv layers if possible

15 NVIDIA.

THINGS TO CONSIDER

This slows both training and inference
Can lead to temporal instability
Just because “you can” doesn’t mean “you should”

Example: use “residual learning” to avoid problems from too much MUSH

Note: MUSH means “Making Up Shtuff” - yeah, we’ll go with that - and rarely does a

network create temporally stable data during image (re)construction without being highly
encouraged in that direction

16 NVIDIA.

Parameters

Input input

THINGS TO CONSIDER

Real time image processing touches a TON of data, and there are many cases where just
accessing the data (multiple times) constrains wall-clock throughput

Examples:

For an autoencoder, consider replacing convolution/pool layer pairs with strided (2x2)
convolutions, even if you need to add features

Consider places where space-to-depth operations can help.

Test feature counts for “sweet spots” in the hardware pipeline (akin to finding freeways rather
than staying on surface streets). Tensor cores virtually always require feature counts that are
multiples of 8.

Explicitly “fuse” multiple layers of processing together whenever possible (or restrict you model
to layers where pre-fused implementations are available (e.g. 0-pad, ReLU with conv layers)

18 NVIDIA.

Parameters

Alpha

Covariance

Alpha

Covariance

Alpha

Covariance

THINGS TO CONSIDER

Cache “precomputable” or intermediate results if they will be used more than once
Choice of qualitative network model can make dramatic differences in perf (and quality)
Use data reduction if quality is still OK (e.g. 16-bit YUV instead of 24-bit RGB)
Use lower-precision data types if possible

Fp16 instead of fp32 (depending on hardware support), Int8 instead of floats if quality allows

Specifically design around “run time” inference hardware (e.g. consider memory
bandwidth / computation performance ratios, and whether tensor cores are available)

Choose a hybrid classic-DL blend if this works for your application

20

NVIDIA.

®

<A NnviblAa

	Real Time Inference
	REAL TIME VISUAL PROCESSING
	Typical Deep Learning Practioner�View of the World
	Typical End-user View of the World
	Slide Number 5
	FOR REAL TIME VISUAL APPLICATIONS
	Key Take-away:
	DESIGN, training, and Implementation
	Slide Number 9
	NCHW and NHWC
	NCHW and NHWC
	NCHW and NHWC
	Things to Consider
	Slide Number 14
	Things to Consider
	Things to Consider
	Slide Number 17
	Things to Consider
	Slide Number 19
	Things to Consider
	Slide Number 21

