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REAL TIME VISUAL PROCESSING

Real time upscaling

Render at lower res, display at higher res (compute limited cases)

Transmit video at lower res, display at higher res (bandwidth limited cases)
Visual processing

Post processing effects: denoising, antialiasing, color-correction

Optical flow analysis, video codec support

Temporal interpolation or extrapolation (AR/VR)

Artistic enhancements (e.g. style transfer, in-painting)

Other (non-visual) applications
Pose estimations, facial animation, text-to-speech, voice control, etc.
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Typical Deep Learning Practioner
View of the World

TRAINING

INFERENCE

Cross fingers and hope for the

Try to solve hard problems best performance
using clever network design,
data filtering and augmentation,
advanced ML techniques

Emphasis is on trying to improve the speed and accuracy of training!
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Typical End-user View of the World

TRAINING B

INFERENCE

This is what makes content creation, data analysis,
video downloads and games go faster or look nicer!



.

CULTURE
SHOCK

<A NnviblAa

®



FOR REAL TIME VISUAL APPLICATIONS

Treat training performance (quality) and inference performance (speed) as
equal participants in the network design process

Inference speed requirements can be HUGE constraints to network design!



Fast inference is also training problem

It must be considered during
network design and training!

Check perf early and often, and run lots of
experiments



DESIGN, TRAINING, AND IMPLEMENTATION

Choice of model: For Tensor Cores, stay with multiple-of-8 feature counts in conv layers
Start small, add layers or features only when needed to boost quality
Concentrate on inference performance rather than training convenience
Choice of Loss Function (and training data): Getting the most out of a small network
Common loss like L1, MSE are probably NOT adequate (consider HFENN, content, style, etc)
Pay attention to having very clean data, and making sure loss is driving what you want
Layer and Computation Graph Optimizations:
Always fuse (or eliminate) operations where possible. Stick with 0-padding, ReLU activation

Cache partial results that will be needed again, and resuse memory to keep footprint small
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NCHW AND NHWC

Yes, you do need to know this

RGB,RGB,RGB

Image

We think “2D” array of pixels It’s really a “3D” array of RGB values More like this...
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NCHW AND NHWC

Yes, you do need to know this

RGB,RGB,RGB
Image

We think “2D” array of pixels It’s really a “3D” array of RGB values More like this...

In Memory:

NHWC is the “normal” image storage format RGBRGBRGBRGBRGBRGB, first row across, followed by each row down

NCHW is the “normal” tensor storage format All R’s are stored, first row across then down, then all G’s, then all B’s
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NCHW AND NHWC

Yes, you do need to know this

RGB,RGB,RGB

Image —

We think “2D” array of pixels It’s really a “3D” array of RGB values More like this...
In Memory:
NHWC is the “normal” image storage format Tensor Cores “require” NHWC memory layout (using fp16)

Easy to access neighboring data
fp64 is a 64-bit “double precision” floating point number
NCHW is the “normal” tensor storage format fp32 is a 32-bit “single precision” float

Easy to process entire “channels” fp16 is a 16-bit “half precision” float
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THINGS TO CONSIDER

Just as you can train without knowing ultimate inference consequences, you can do
“inference” without knowing ultimate trainability

It’s worth looking for fast inference paths (relatively cheap) before investing too much in
time-and-compute expensive training. Fusing always helps!

The fastest performance might not come from the obvious path

Choice of loss function can dramatically affect how efficiently network capacity is used.
Experiment with loss functions to get the best quality per inference batch.
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THINGS TO CONSIDER

Eliminate “training training wheels” if possible

Normalization layers (Instance norm, batch norm and similar) are probably not needed for
small, real time networks

Leaky ReLU or ELU can probably be replaced with just use RelLU
Work from simplified network “up”, rather than complex network “down”
Work in “self-normalized” space, centered about 0 (i.e. whiten data explicitly)

E.g. transform image 0-255 values to -0.5 to 0.5 space

Only use zero padding on conv layers if possible
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THINGS TO CONSIDER

This slows both training and inference
Can lead to temporal instability
Just because “you can” doesn’t mean “you should”

Example: use “residual learning” to avoid problems from too much MUSH

Note: MUSH means “Making Up Shtuff” - yeah, we’ll go with that - and rarely does a

network create temporally stable data during image (re)construction without being highly
encouraged in that direction
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THINGS TO CONSIDER

Real time image processing touches a TON of data, and there are many cases where just
accessing the data (multiple times) constrains wall-clock throughput

Examples:

For an autoencoder, consider replacing convolution/pool layer pairs with strided (2x2)
convolutions, even if you need to add features

Consider places where space-to-depth operations can help.

Test feature counts for “sweet spots” in the hardware pipeline (akin to finding freeways rather
than staying on surface streets). Tensor cores virtually always require feature counts that are
multiples of 8.

Explicitly “fuse” multiple layers of processing together whenever possible (or restrict you model
to layers where pre-fused implementations are available (e.g. 0-pad, ReLU with conv layers)
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THINGS TO CONSIDER

Cache “precomputable” or intermediate results if they will be used more than once
Choice of qualitative network model can make dramatic differences in perf (and quality)
Use data reduction if quality is still OK (e.g. 16-bit YUV instead of 24-bit RGB)
Use lower-precision data types if possible

Fp16 instead of fp32 (depending on hardware support), Int8 instead of floats if quality allows

Specifically design around “run time” inference hardware (e.g. consider memory
bandwidth / computation performance ratios, and whether tensor cores are available)

Choose a hybrid classic-DL blend if this works for your application
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