
Don Brittain, GTC 2019

REAL TIME INFERENCE

2

REAL TIME VISUAL PROCESSING

- Real time upscaling
- Render at lower res, display at higher res (compute limited cases)

- Transmit video at lower res, display at higher res (bandwidth limited cases)

- Visual processing
- Post processing effects: denoising, antialiasing, color-correction

- Optical flow analysis, video codec support

- Temporal interpolation or extrapolation (AR/VR)

- Artistic enhancements (e.g. style transfer, in-painting)

- Other (non-visual) applications
Pose estimations, facial animation, text-to-speech, voice control, etc.

Possible application areas

3

Typical Deep Learning Practioner
View of the World

TRAINING
Try to solve hard problems

using clever network design,
data filtering and augmentation,

advanced ML techniques

INFERENCE
Cross fingers and hope for the

best performance

Emphasis is on trying to improve the speed and accuracy of training!

4

Typical End-user View of the World

TRAINING

INFERENCE

This is what makes content creation, data analysis,
video downloads and games go faster or look nicer!

CULTURE
SHOCK!

6

FOR REAL TIME VISUAL APPLICATIONS

TRAINING INFERENCE

Treat training performance (quality) and inference performance (speed) as
equal participants in the network design process

Inference speed requirements can be HUGE constraints to network design!

7

KEY TAKE-AWAY:

Fast inference is also training problem

It must be considered during
network design and training!

Check perf early and often, and run lots of
experiments

8

DESIGN, TRAINING, AND IMPLEMENTATION

- Choice of model: For Tensor Cores, stay with multiple-of-8 feature counts in conv layers

- Start small, add layers or features only when needed to boost quality

- Concentrate on inference performance rather than training convenience

- Choice of Loss Function (and training data): Getting the most out of a small network

- Common loss like L1, MSE are probably NOT adequate (consider HFENN, content, style, etc)

- Pay attention to having very clean data, and making sure loss is driving what you want

- Layer and Computation Graph Optimizations:

- Always fuse (or eliminate) operations where possible. Stick with 0-padding, ReLU activation

- Cache partial results that will be needed again, and resuse memory to keep footprint small

With Fast Inference as a Goal

DEMO

MODEL DESIGN: MOTION DETECTION

10

NCHW AND NHWC
Yes, you do need to know this

Image

RGB,RGB,RGB

We think “2D” array of pixels It’s really a “3D” array of RGB values More like this…

11

NCHW AND NHWC
Yes, you do need to know this

Image

RGB,RGB,RGB

We think “2D” array of pixels It’s really a “3D” array of RGB values More like this…

NHWC is the “normal” image storage format RGBRGBRGBRGBRGBRGB, first row across, followed by each row down

In Memory:

NCHW is the “normal” tensor storage format All R’s are stored, first row across then down, then all G’s, then all B’s

12

NCHW AND NHWC
Yes, you do need to know this

Image

RGB,RGB,RGB

We think “2D” array of pixels It’s really a “3D” array of RGB values More like this…

NHWC is the “normal” image storage format

In Memory:

NCHW is the “normal” tensor storage format

Easy to access neighboring data

Easy to process entire “channels”

Tensor Cores “require” NHWC memory layout (using fp16)

fp64 is a 64-bit “double precision” floating point number
fp32 is a 32-bit “single precision” float
fp16 is a 16-bit “half precision” float

13

THINGS TO CONSIDER

- Just as you can train without knowing ultimate inference consequences, you can do
“inference” without knowing ultimate trainability

- It’s worth looking for fast inference paths (relatively cheap) before investing too much in
time-and-compute expensive training. Fusing always helps!

- The fastest performance might not come from the obvious path

- Choice of loss function can dramatically affect how efficiently network capacity is used.
Experiment with loss functions to get the best quality per inference batch.

Use untrained inference performance as a guide

DEMO

I LIED!

15

THINGS TO CONSIDER

- Eliminate “training training wheels” if possible

- Normalization layers (Instance norm, batch norm and similar) are probably not needed for
small, real time networks

- Leaky ReLU or ELU can probably be replaced with just use ReLU

- Work from simplified network “up”, rather than complex network “down”

- Work in “self-normalized” space, centered about 0 (i.e. whiten data explicitly)

- E.g. transform image 0-255 values to -0.5 to 0.5 space

- Only use zero padding on conv layers if possible

KISS (Keep It Simple Stupid)

16

THINGS TO CONSIDER

- This slows both training and inference

- Can lead to temporal instability

- Just because “you can” doesn’t mean “you should”

- Example: use “residual learning” to avoid problems from too much MUSH

- Note: MUSH means “Making Up Shtuff” – yeah, we’ll go with that – and rarely does a
network create temporally stable data during image (re)construction without being highly
encouraged in that direction

Don’t try to learn what you already know

DEMO

ALIASING LOCATOR

18

THINGS TO CONSIDER

- Real time image processing touches a TON of data, and there are many cases where just
accessing the data (multiple times) constrains wall-clock throughput

- Examples:

- For an autoencoder, consider replacing convolution/pool layer pairs with strided (2x2)
convolutions, even if you need to add features

- Consider places where space-to-depth operations can help.

- Test feature counts for “sweet spots” in the hardware pipeline (akin to finding freeways rather
than staying on surface streets). Tensor cores virtually always require feature counts that are
multiples of 8.

- Explicitly “fuse” multiple layers of processing together whenever possible (or restrict you model
to layers where pre-fused implementations are available (e.g. 0-pad, ReLU with conv layers)

Consider both compute and memory bandwidth costs

DEMO

REAL TIME STYLE TRANSFER

20

THINGS TO CONSIDER

- Cache “precomputable” or intermediate results if they will be used more than once

- Choice of qualitative network model can make dramatic differences in perf (and quality)

- Use data reduction if quality is still OK (e.g. 16-bit YUV instead of 24-bit RGB)

- Use lower-precision data types if possible

- Fp16 instead of fp32 (depending on hardware support), Int8 instead of floats if quality allows

- Specifically design around “run time” inference hardware (e.g. consider memory
bandwidth / computation performance ratios, and whether tensor cores are available)

- Choose a hybrid classic-DL blend if this works for your application

Advanced Possibilities

Thank
You!

	Real Time Inference
	REAL TIME VISUAL PROCESSING
	Typical Deep Learning Practioner�View of the World
	Typical End-user View of the World
	Slide Number 5
	FOR REAL TIME VISUAL APPLICATIONS
	Key Take-away:
	DESIGN, training, and Implementation
	Slide Number 9
	NCHW and NHWC
	NCHW and NHWC
	NCHW and NHWC
	Things to Consider
	Slide Number 14
	Things to Consider
	Things to Consider
	Slide Number 17
	Things to Consider
	Slide Number 19
	Things to Consider
	Slide Number 21

