·IIIII CISCO

S9758 - Machine Learning Based Network Fault Management with Streaming Telemetry Data

GPU Technology Conference 2019

Vladimir Yashin Senior Data Scientist, CX Platforms Mar 20, 2019

About

Vladimir

Yashin

Network engineering

Data Science

- 5 years of network engineering (Service Provider)
- 3 years of building ML solutions
- Cisco CX
- Based in Brussels, Belgium

Expanding the Network

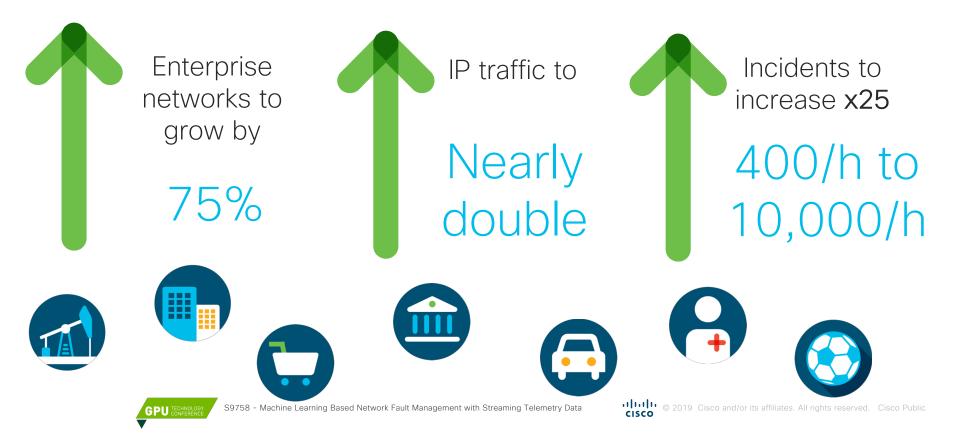
Why Telemetry?

SQUID for AD in Telemetry

Beyond RNN

Conclusions

Big is getting Bigger (2021)



Cost of a failure grows too

CBBC Newsround

HOME > NEWS > CABLING

Network outage grounds passengers at Gatwick Airport

An issue with a Vodafone cable wreaks havoc at one of the UK's busiest airports

Facebook and Instagram suffer most severe outage ever BBC News - il y a 8 heures Facebook has yet to offer an explanation for the outage. ... Buenos Aires-based designer Rebecca Brooker told the **BBC** the interruption was ... Instagram, YouTube, WhatsApp: Why was some of the internet broken ... CBBC Newsround - il v a 1 heure Facebook says technical issues with its family of apps resolved

> 4 heures records, no indication what started it

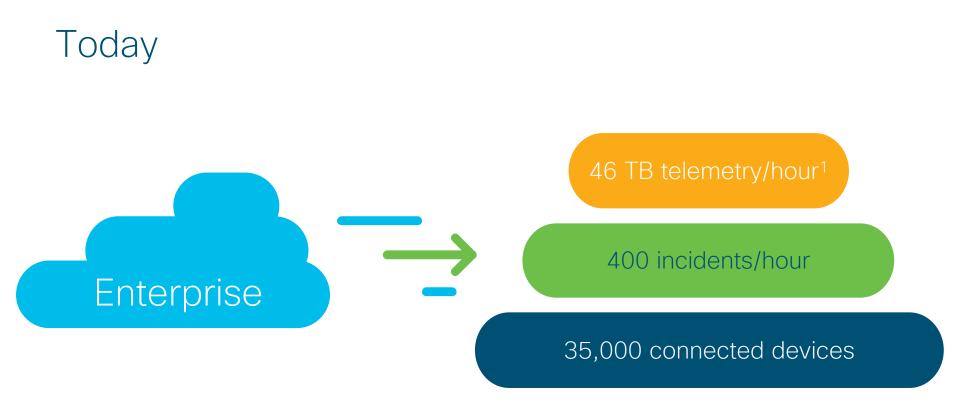
urs; worst outage in history

August 22, 2018 By: Max Smolaks

CenturyLink outage takes down several 911 emergency services across the US

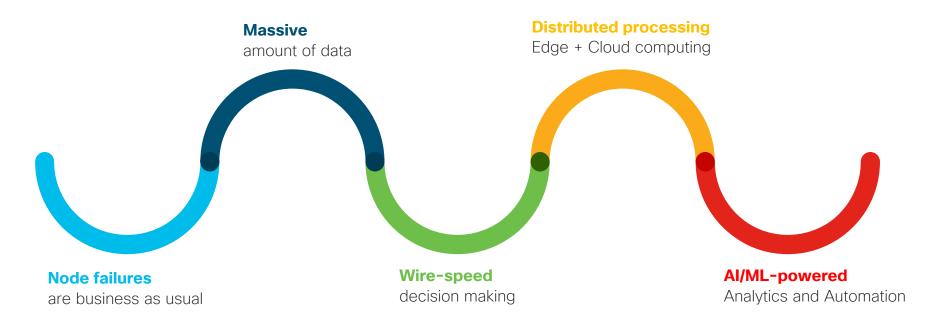
Downtime caused by network issue affecting 15 of CenturyLink's data centers.

December 28, 2018 by Catalin Cimpanu



¹ Big enterprise streaming 100+ telemetry streams with 5s interval from 35,000 devices

Autonomous requires Technology Transformation



Expanding the Network

Why Telemetry?

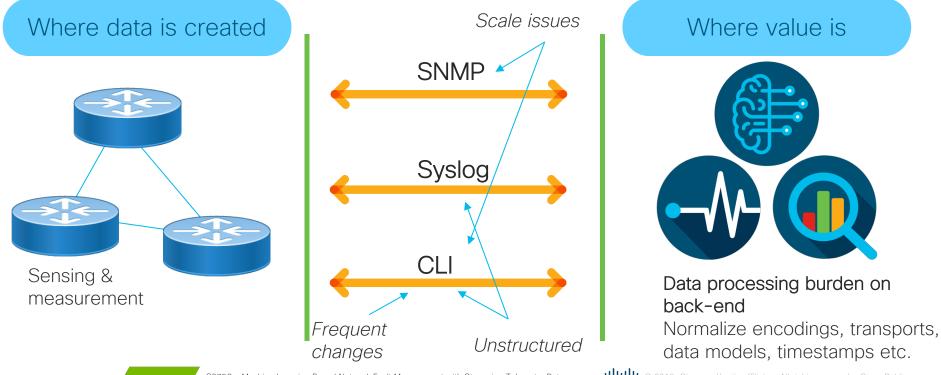
SQUID for AD in Telemetry

Beyond RNN

Conclusions

Traditional monitoring is showing its age

No longer suited for Cloud-Scale Network Operations



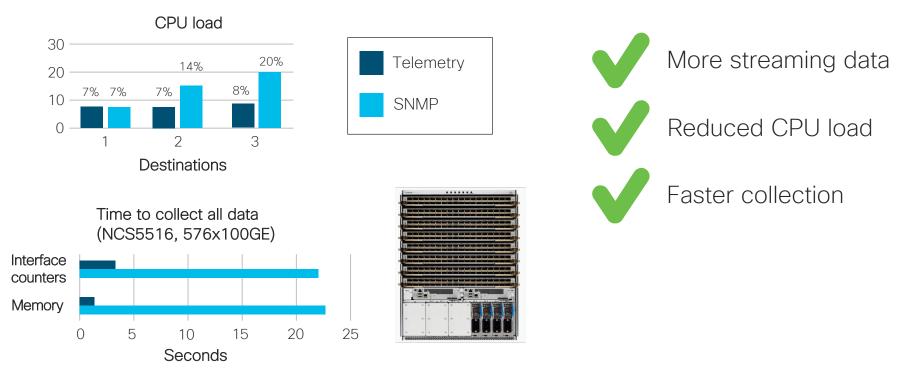
Streaming Telemetry principles

Data is "pushed" by device towards collector

Standard encoding (Protobuf, JSON) and transport (gRPC)

Vendor-neutral, model-driven network management designed by users

Pushing more data really does work better



Current challenges

Different types of sensors and telemetry data formats	emergent behavior make simulations and generating synthetic data hard	Asynchronous data sampling rate and arrival	Scalability: Millions of devices and streams in IoT networks	Latency: Need for real-time processing and anomaly detection
Great progress in standardization with OpenConfig	Experiments and ML model training on real data from day 1. Requires huge data lakes.	Data buffering and aggregation	Moving model inference and training to edge	Moving model inference and training to edge
	sensors and telemetry data formats Great progress in standardization	Dimerent types of sensors and telemetry data formatsbehavior make simulations and generating synthetic data hardGreat progress in standardization with OpenConfigExperiments and ML model training on real data from day 1. Requires huge	Different types of sensors and telemetry data formatsemergent behavior make simulations and generating synthetic data hardAsynchronous data sampling rate and arrivalGreat progress in standardization with OpenConfigExperiments and ML model training on real data from day 1. Requires hugeData buffering and aggregation	Different types of sensors and telemetry data formatsemergent behavior make simulations and generating

Expanding the Network

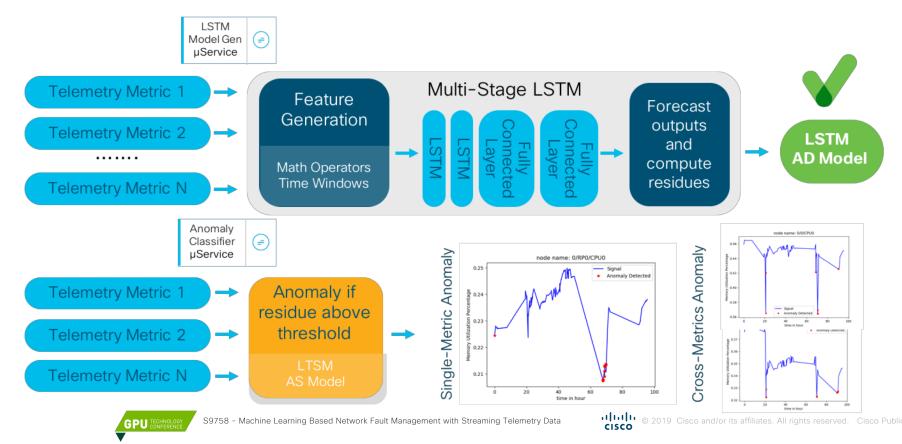
Why Telemetry?

SQUID: Deep Learning System for Anomaly Detection in Streaming Telemetry

Beyond RNN

Conclusions

SQUID ML Pipeline

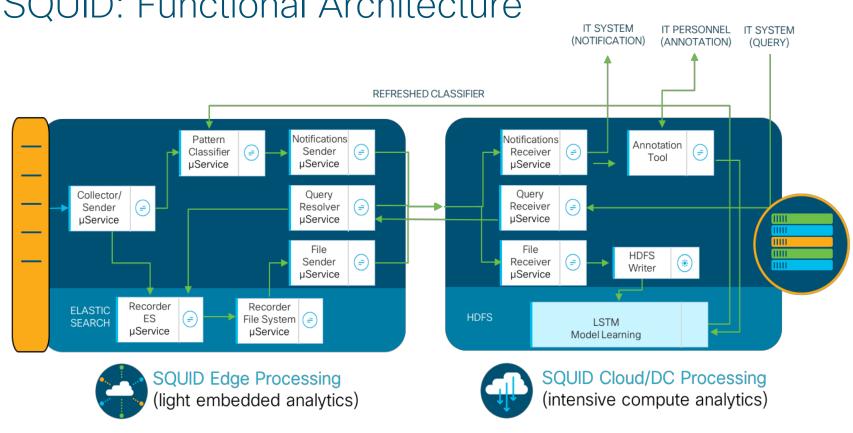


Training (Cisco Cloud)

- 3x Nvidia DGX-1 (8x Tesla V100)
- 15min per model on single GPU
- 3 hours to train all ~300 models to convergence

Training/inference (Edge)

- Cisco UCS C480 ML M5
- 8x Nvidia Tesla V100 32GB



SQUID: Functional Architecture

GPU TECHNOLOG

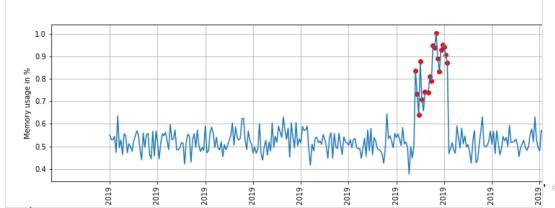
S9758 - Machine Learning Based Network Fault Management with Streaming Telemetry Data

Cisco Public Cisco and/or its affiliates. All rights reserved. Cisco Public

Training time comparison



Training time of all ~300 models on DGX1 (PyTorch) (CPU vs. GPU)



Result	S		
	Data Scientists create models based on SME input	Self-service portal	
	Model training time: 15min	Real time evaluation	
	Highly accurate	Reduced accuracy is acceptable	
	Production-grade	Draft modelling	
	Highly accurate blackbox (LSTM- based)	Transparent, inspectable model (Linear)	

Expanding the Network

Why Telemetry?

SQUID for AD in Telemetry

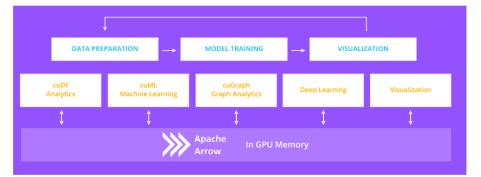
Beyond RNN

Conclusions

Nvidia RAPIDS Introduction

RAPIDS

- Pandas-like DataFrame in vRAM
- Similar to H2O4GPU
- Vendor-backed
- Can share data with PyTorch and Chainer
- Claims 4x+ speedup over xgboost
- You may find these sessions useful:
- S9801 RAPIDS: Deep Dive Into How the Platform Works
- S9577 RAPIDS: The Platform Inside and Out
- S9793 cuDF: RAPIDS GPU-Accelerated Data Frame Library
- S9817 RAPIDS cuML: A Library for GPU Accelerated Machine Learning



Dataset



Data

- Synthetic Telemetry stream
- One sample per minute
- 43200 samples/device
- 1000 IP routers
- 70/10/20 split

Features

- Time of day
- Day of week

ETL performance

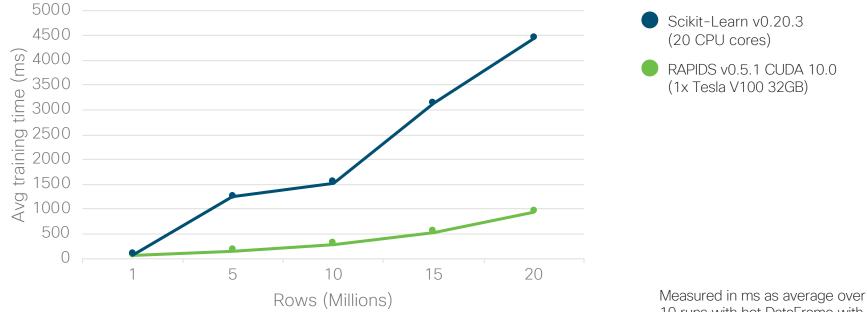
RAPIDS v0.5.1 CUDA 10.0, 1x Tesla V100

Sklearn v0.20.3, 20 CPU cores

```
train_cudf_csv = cudf.read_csv('training.csv', lineterminator='\r')
                                                                           [20]: train_df_csv = pd.read_csv('training.csv')
[4]: def transform(cpu mean, cpu var, data cudf):
                                                                            [21]: transformer = ColumnTransformer([
         df = data cudf
                                                                                      ('cat', OneHotEncoder(handle_unknown='ignore'), ['hour', 'weekday'
         df = df.one_hot_encoding('hour', 'h', range(24))
                                                                                      ('num', StandardScaler(), ['total cpu one minute'])
         df = df.one hot encoding('weekday', 'wd', range(7))
                                                                                  1)
         feature_columns = [c for c in list(df)
                            if c.startswith('h ')
                                                                                  def transform(transformer, data df):
                                                                                      matrix = transformer.transform(data df)
                            or c.startswith('wd ')]
         Y = (df.total cpu one minute - cpu mean) / np.sgrt(cpu var)
                                                                                      return matrix[:, :-1], matrix[:, -1].toarray()
         return df[feature columns], Y
                                                                           [22]: %%timeit -n10 -r3
                                                                                  transformer.fit(train df csv)
[6]: %%timeit -n10 -r3
     cpu_mean, cpu_var = train_cudf_csv.total_cpu one minute.mean var()
                                                                                  train_X, train_Y = transform(transformer, train_df_csv)
     train_X, train_Y = transform(cpu_mean, cpu_var, train_cudf_csv)
                                                                                         \pm 4.85 ms per loop (mean \pm std. dev. of 3 runs, 10 loops each)
                                                                              18.6 s
            \pm 17.2 ms per loop (mean \pm std. dev. of 3 runs, 10 loops each)
437 ms
                                                                                                                  Dataset 28M rows, 32 column
```

42x speedup!

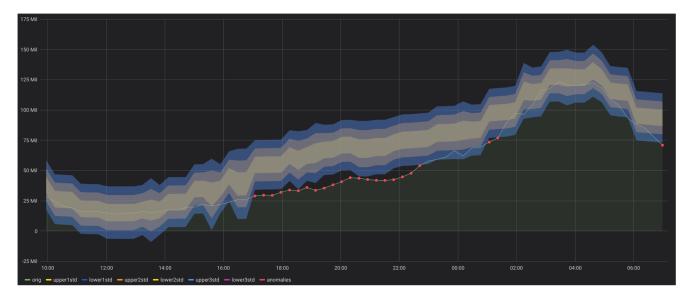
Model training performance



Measured in ms as average over 10 runs with hot DataFrame with 31 columns + 1 response variable.

Linear modelling on Telemetry data

- GLM on RAPIDS is 2x faster than sklearn (~500MB of telemetry from 1 router)
- Still, we are talking seconds



RAPIDS: Observations

ETL

- Dataset took 8+ GB of VRAM (double precision?)
- 29GB of VRAM watermark in ETL task (external+internal copying)
- Sklearn is underutilizing CPU in ETL (very short bursts of activity) this can be tuned/optimized
- Sub-second ETL pipeline means fast enough for real-time UI

Training

- Linear regression is way faster on GPU, but this is clearly not a bottleneck in end2end workflow.
- GBM or compute-intensive clustering would've been a whole different story

Expanding the Network

Why Telemetry?

SQUID for AD in Telemetry

Beyond RNN

Conclusions

S9758 - Machine Learning Based Network Fault Management with Streaming Telemetry Data

CISCO © 2019 Cisco and/or its affiliates. All rights reserved.

Conclusions

- Customers prefer integration into existing workflows:
 - Alerts/thresholds instead of « unmanned operations »
 - Inspectable *risk scores* and *weights* instead of magic black box
- Gain trust with simple solutions, deploy DL when customer is ready
- « Give a man a fish... » huge gains from SMEs' participation

Future work

- RAPIDS memory tuning
- Kubeflow/RAPIDS integration for unified training/production pipelines

Questions?

We value Your Feedback

Fill in session survey in your GTC mobile app

https://live.eventbase.com/appdownload?event=gtcsiliconvalley2019

Streaming Telemetry Data

Cisco Public Cisco and/or its affiliates. All rights reserved. Cisco Public

ılıılı cısco

Thank you

GPU TECHNOLOGY CONFERENCE

··||...|.. CISCO

Cisco 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

ılıılı cısco