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HPC & NWP

John von Neumann posing with the
ENIAC computer, 1946 (photo
courtesy of NOAA)

NCEP Operational Forecast Skill

36 and 72 Hour Forecasts @ 500 MB over North America
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2018 BILLION-DOLLARDISASTERS
WEATHER AND CLIMATE EVENTS
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Cumulative CPI adjusted billion-dollar disaster frequency. 1980-2018 average.
Dat

aas of 2/6/2019. Source: NOAA/NCEI CLIMATE @ CENTRAL
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U.S. Selected Significant Climate Anomalies and Events
for 2018

@ Record-low sea ice plagued parts of western
and northern AK early in the year, contributing

to above-average temperatures. AK had its 2™
warmest year on record.

On Dec 25, 23% of the contiguous U.S. was in drought.
Since the start of 2018, drought improved across CA,

the central Plains, the Southeast and much of the Four Nor’'easters impacted the East
@, Northeast while the Southwest and Northwest saw Coast during Mar with heavy snow,
Y drought intensification. t‘ strong winds and coastal flooding.

Flash flooding hit parts of MI, MN,

The camp Fire destroyed over and WI during Jun. Highways were TN: Ncr VAI wvl PA: MD: DE! NJI and
15,000 structures and killed at washed out and rivers set record > MA had their wettest year on record.

least 88 people in CA in Nov. ‘ crests. MI’s Upper lf'enlnsula was
0 This was the deadliest and most particularly hard hit. Hurricane Florence made landfall
destructive fire on record for CA Large and destructive fires near Wrightsville Beach, NCin Sep

and the deadliest wildfire in the and moved inlands slowly, with heavy

U.S. since 1918. :::::ll':ztiinac:::ssth::vecs'tEk rains, storm surge and record flooding,
9 pring » causing at least 51 deaths.

Fire in CO and the Carr,

Ferguson, and Mendocino 0 Hurricane Michael made landfall near

Complex Fires in CA during Jul. 8 . . .
: Mexico Beach, FL in Oct with sustained
Heavy rainfall inundated parts of HI winds SIS mph - one of the most

@ z:::igl-?lp:és 3::33;?9\’,? :;ar a(ii:z:ezr:;- intense hurricanes to hit the contiguous
, hours’ se'tting & U &4 U.S. and causing more than 45 fatalities.

Below average precipitation and near
. o B average temperature characterized
The average U.S. temperature_for'2018 was 53.5. F, 1.5°F aboye average and the 14" warmest on conditions across Puerto Rico in 2018.
record. The annual U.S. precipitation was 34.63 inches, 4.69 inches above average, the 3 wettest.

3 3)

Please Note: Material provided in this map was compiled from NOAA's State of the Climate Reports. For more information please visit: http://www.ncdc.noaa.gov/sotc

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019



Mitigating Impacts

* Detection
e Prediction

* Dissemination
* Forecast Offices
* Fire weather centers
* Aviation
 Air quality
* Transportation
* Water centers

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 207190



Seamless Suite of Operational
Numerical Guidance Systems

Spanning Weather and Climate

Forecast
: Months -Climate Forecast System
Guidance *North American Multi-Model Ensemble System
Threats 2 Week *North American Ensemble Forecast System
Assessments

*Global Ensemble Forecast System

1 Week __+Global Forecast System »Global Dust
*Na

-Short-Range Ensemble *Land DA <Wave Ensemble

*North American Mesoscale>» Waves -+ Global Ocean - Bays

*Fire - Regional Hurricane < Space Weather - Storm Surge

*Rapid Refresh Ozone - Tsunami * Nearshore Wave
*Dispersion (smoke)

Forecasts
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Slide from M.Farrar, EMC Modeling Strategy, 2017
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NWS Weather Forecast Models (2019)

constrained by HPC

GFS

Higher resolution means
smaller area and
shorter forecasts

* Global: Global Forecast System (GFS) (28 KM)
* Weeks: O - 16 day forecasts, 4x/ day

* Regional: North American Model (NAM) (12KM)
* Days: 84 hours, 4x/day

* Regional: High Resolution Rapid Refresh (3KM)
* Hours: 36 hours, 24x/day
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Nesting: GFS (global) + RapidRefresh + HRRR

100°E  90°E 80°E 70°E 60°E  50°E 40°E

3-km High-Resolution
Rapid Refresh Alaska,
Hawaii and Puerto Rico
Testing (HRRR-AK,
HRRR-HI, HRRR-PR)
Experimental (ongoing)

Initial & Lateral
Boundary
Conditions

3-km High-Resolution
Rapid Refresh (HRRRv3)

— to 36h (Feb 2018)

Initial & Lateral
Boundary
Conditions

3-km Storm-Scale

. i i Ensemble Analysis and
3-km High-Resolution Time Lagged Forecast (HRRRE)

3-km HRRR-Smoke (VIIRS fire data) || Experimental (ongoing)

; C. Alexander, NOAA ESRL, June 2017, WRF Workshop
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Global Weather System Components

Global Climate System Components

10-100s of members

Improved
Weather
Prediction

sa|quiasu]

is a tradeoff between
* Computing
* Accuracy 13 KM
* Time-to-solution

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 10



Computational Challenges

* Processors are not getting faster

 ESPC HPC Working Group: 2016 -
* NOAA, NASA, DoE, DoD Navy, NCAR
* Discuss HPC challenges, limitations for weather & climate applications
 Position paper describing concerns

“HPC architectures are developing in the wrong direction for state-heavy, low
computational intensity (Cl) Earth system applications.”

“NWP applications average less than 2% of peak performance, constrained by
their ability to perform sufficient calculations for each expensive access to
memory.”

Carman, et al. “Position Paper on High Performance Computing Needs in Earth
System Prediction.” National Earth System Prediction Capability (ESPC)
program. April 2017. https://do1.org/10.7289/V5862DH3

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 11
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Processor Technologies

* CPU, GPU TPU, FPGA, ARM

* Diversity
* Processor

* Clock speed, energy
* 10’s to 1000’s of cores

* Single, double, half precision
* Memory
* Size, speed, type

* Burden on compilers, standards
* Portability

* Performance
* Interoperability

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019
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Typical 2S Configuration

Node Technologies

Intel® Xeon® ® Intel® Xeon®

Scalable Processor Scalable Processor

* Increasing diversity

* Number of sockets, processors T SA T I A 52
° Tens to thousa nds Of Cores '''''''''''' o Intel® Omni-Path Fabric Intel® Omni-Path Fabric
* M emory Intel Skylake duaI socket

e Speed, bandwidth

e Communications
* Intra-socket

* Intra-node (PCle, NVLINK)
* File system
* Many vendors, choices
* Performance, energy, cost Cray dual-socket ARM

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 13
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Application Performance — Single Node

Research model developed by NOAA ESRL/GSD (2010—2016)

* Directive-based (OpenACC, OpenMP, SMS), performance portable
 GPU is 2-3 times faster than CPU (Fermi to Pascal generation GPUs)

Uniform Icosahedral Grid

o)
o
o

NIM Performance

Ul
o
o

m)
t )
e - dynamics -
O 40.0
(S
4
~— 30.0
(V]
g 20.0
)
c
00 H -
Year 2010/11 2012 2013 2014 2016

mCPU mGPU mMIC

M.Govett, et. al., Parallelization and Performance of the NIM Weather
Model on CPU, GPU and MIC Processors, BAMS, October 2017
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Application Performance — Single Node
MPAS model developed at NCAR

MPAS

Model for Prediction Across Scales

1.2

adopted by IBM Weather Company MPAS Performance
 GPU is 3X faster than CPU (Volta versus ' 118L<M,grid
Broadwell) 0 ot

* Directive-based, performance portable

Runtime (sec)
o o
S ()}

N

: H

dynamics - SP dynamics - DP physics - DP
W Broadwell CPU m P100 GPU V100 GPU

R.Loft, Sept 2018, ECMWF HPC Workshop

Non-uniform Icosahedral Grid S
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FV3GES Performance — Single Node

* Finite-Volume Cube-Sphere Model

selected by NOAA NWS Cube-sphere \\
* Designed for CPU grid !
 Efficient use of cache memory
e Slower on GPU FV3 Dynamics Performance
* Code changes slowed down CPU zjg 24P°°re|"F')al~°3’ée('5'PCJU
. ascCa
Not performance portable o0 2D & 3D loops
* Inefficiencies 050
. . . = 0.40
* Limited parallelism £ 030
 Non-uniform cube-sphere grid £ 0,20 I I
° 1 1 0.10
Pervasive edge & corner calculations o i I N .
* Ongoing efforts to address GPU csw  yppm  xppm del6.vt xtp.u  ytpv
performance Cha”enges m CPU 2D CPU-3D mPascal-3D

M. Govett, June 2018, PASC Symposium
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Advanced Node Technologies ORNL Summit Node

12.56B/s, K 4. 12.5GB/s

16GB/s
NVMe
/ Pqﬁ Gﬁn 41/0

* Diversity

* Performance, cost, power - P e P
e <] — 1 = -
* Complexity SO @E @@E oD o

?ﬁ*ﬁégﬁ%ﬂ“wwfﬁﬁﬁﬁéﬁm%ﬂ

V100 V100 V100 V100 V100 V100
GPU GPU GPU GPU GPU GPU

ﬁﬁ NV ﬁ ﬁﬁ ﬁ I\IVLN 4} {T
Every GPU-to-GPU
at 300 GB/sec

DOE Summlt node:

* |BM Power9 CPU, 6 V100 GPUs, 30K GPU cores

e 512 GB DDR4 RAM, 96 GB HBM?2
NVIDIA DGX-2: 16 Tesla V100 GPUs, (81K GPU, 10K Tensor cores).  nyiINK. 50GB/s bandwidth oer link

e 1.5TB DDR4 RAM, 500 GB HBM2, 10kW power * PCle Gen 4 (16GB/s) for inter-node, 1/0

« 300 GB/s NVLINK ) .
+  PCle Gen3, 8x EDR IB / 100 Gigabit Ethernet Summit System: 4600 nodes, 27K GPUs

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 17




System Inter-connect Technologies

* Interconnect required for large HPC systems
* Weakness in large system deployments

* Applications use MPI communications
* Pack message buffer
* Inter-process communications
* Unpack message buffer

* Scalability a big challenge for ﬂ

application performance

100Gb/s 100Gb/s

Dual-socket Dual-socket
CPU CPU

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 18



Application Scalability

 ECMWEF Scalability Programme (2014 - )
* ESCAPE, NextGenlO, ESIWACE, ESCAPE-2
 Scaling, 1/0, compilers, algorithms

* Targeting 1-3 KM resolution for global models

Forecast days/day

512/536 380
256 V 323 239
133
128 170 154
70 8 9%
64 M
52
32 39
26
16
15 2
e 8
6
4 .
4
2
1
120 240 480 960

#nodes (Broadwell; 1node=32cores (IFS)/ 36cores (ICON))

== |FSTCo 1279 (9km, 137
levels, double precision)

~#=IFSTCo 1279 (9km, 137
levels, single precision)

IFSTCo 1999 (5km, 137
levels, single precision)

~#=|FSTCo 3999 (2.5km, 62
levels, single precision)

» =< ICON R2B8 (10km, 137

levels, double precision)

ICON R2B9 (5km, 137
levels, double precision)

= |CON R2B10 (2.5km, 62
levels, double precision)

IFS 1km: strong scaling on PizDaint

: ., Operational weather prediction

would require 200-240 days / day

, 2017

60 64.37
>
©
e 50
[’
>
8 40
8 ’ 31.10
2 30 34.34 25.72
'S
2o, —TC07999 (1km) H
" ==Tco7999 (1km) NH Many thanks to
10 Thomas Schulthess &

1920 2400 2880 3360 3840 4320 4800 5280
PizDaint XC50 nodes (x12 == cores)

Maria Grazia Giuffreda !

v
== ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 25

Nils Wedi, ESCAPE Project Presentation -
ECMWF HPC Workshop, Sep 2018 Cray X030 Raswel, Ariss

interconnect, ~5000 nodes

Example: TCo7999 L62 (~1.25km)

4880 MPI tasks x 12 threads

69 FC/day ~ 0.19 SYPD
single precision / FLT
~85.21 MWh/SY

Advancing U.S. Weather Predictid®with Exascale HPC, March 19, 2019
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Scaling Factors

* Computation
e Parallelism

* Algorithms
* Model grid

e Communications

* Frequency
e Data volume
* Overlapping

1.20

1.00

0.80

0.60

0.40

0.20

Computational Efficiency

0.00

FV3GFS Strong Scaling

Efficiency

Physics + dynamics
14 KM resolution

— Computation — Communications

32 64 128 256

Compute Nodes
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Time to Solution FV3GFS Performance

by the Numbers 3 KM resolution, 5 day forecast
Weak Scaling
Operational requirement: 5 days in 2250 seconds (10 days in ~1.25 hours)
Actual Performance Estimated Performance
Resolution _— 6.50 KM 3.25KM
Time Step 225 sec 112.5 sec 56 sec 28 sec
CPU Nodes 64 256 1024 4096
CPU cores 1536 6144 24576 98304
Total Time 1094 1916 3357 5880
Dynamics 560 792 1120 1584
Communications 440 710 1146 1851

Runtimes in seconds for a 5 day forecast, NOAA theia system with 24 cores Haswell nodes
Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 21



Time to Solution FV3GFS Performance

by the Numbers 3 KM resolution, 5 day forecast
Strong Scaling

Operational Requirement: 5 day in 2250 seconds (10 days in 1.25 hours)

Tile Size / MPI 48 x 48 24 x 48 24 x 24

CPU Cores 98,304 196,608 393,216

Total Time 5880 3962 2095

Dynamics 1584 1275 643
Communications 1851 1390 3801

Estimated performance, NOAA theia system: 27,000 cores, 24 Haswell cores / node

* 393,216 cores = 16,384 CPU nodes
* 30% of runtime is for inter-process communications

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 22



Performance and Scalability
CPU and GPU

Typical model execution cycle
B
| | | | | | | | | | | | N

0 1 2 3 4 5 6 7 8 9 10 11

2X faster compute

Communications /O

2X faster compute does not mean 2X faster
This example is only 1.6X faster

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 23



Data Challenges

Data is only useful if it can be used
Observations
Assimilation

Prediction
Output
Distribution
Dissemination



Observations

* More data than we can use

* GOES, JPSS, cubesats, nano
* Radar, balloons, ships, planes
e Autos, cell, sensors, ...

* Tremendous potential

Instruments
L National Doppler Radar Sites
//V‘ S p a C e_ B a S e d M Select radar location and click.
/// o oo ° Requires Java/Javascript
/ 4 = ° Alaska
A_.,,\:\ gl Instruments
é 1 Py E ~3 °
GPSsatellites ' A ' I e SR 5 4 ; 3 : °®
- . L °
: ° o o
° o °
o, 0 ©
.. °
LIPS 0.
[ ]
Hawaii °

:" ~
Y
E) alamy stock photo

">

AN s 5= — » . B
cosmic ‘
; - : Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019



Geostationary Operational
Environmental Satellite (GOES)

@ 0]
GOES West GOES East
137.2°w 75.2°w

water vapor image
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Model Output: 14KM to 3KM resolution

* Each 3D variable: pressure, temperature, moisture, winds, ....

Resolution Vertical Levels | Number of Grid Total Cells Increase Per field
(KM) Cells (Millions) (Billions) in Cells storage (SP)

14 (1x) 64 (1x) 0.25
3.5 (4x) 128  (2x) 56.6 (16) 5.4

* Model output:
14KM - 10 model fields, 6 hourly output, 10 day forecast

3KM - 10 model fields, 3 hourly output, 10 day forecast
3KM - 10 model fields, hourly output, 2 day forecast

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019

1GB
21x 21 GB
400 GB per run

21.8TB  (52X)
12.0TB (26X)
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Distribution

* Diverse user requirements
* Global, regional, local, observations

products

° NWS AW|PS AWIPS Worstation

* NOAA network is saturated NWS Forecast Offices
* Everyone gets same data Hurricane Prediction Center
Storm Prediction Center
National Water Center
Aviation Weather Center
Fire Weather Centers

State, Local, Public == i
data center model output U585 _Floods, fire, winds, hail, ... FAA Air Traffic Control

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 28




State of Play for NWP (2019)

* Scientific advances increasingly constrained by
computing, data

* HPC

* No expected increase in processing speed
* Limited increases in memory speed

* Parallelism & scalability limitations

e Operational time-to-solution constraints

* Data

* Too much data to process
* Too many observations to use
* Too large to distribute

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 29



= Assimilation a2 RS ‘ : : Stakeholders
Processing

Advancing Weather Prediction
in the next decade

Where do we go from here?

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019
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Technology Convergence
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#1 Improve Model Performance

A

scientific
accuracy

>
computational

efficiency

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019
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Weather Prediction Models
- dynamics -

 What are the best models, approaches?
* algorithms, grids, time-step, physics, etc
* computational efficiency, scalability

Finite-volume Cube-sphere SISL A-grid, C-grid, D-grid
Finite-volume Icosahedral HEVI A-grid

Finite-volume Icosahedral HEVI C-grid
Finite-element Cube-sphere SISL C-grid
Spectral-element Cube-sphere HEVI No staggering
Spectral Polar HEVI No staggering

FV3GFS
NICAM
MPAS, ICON
LFRIC

NUMA, Neptune,
KIM

IFS, GFS

G.Mengaldo, et.al.,Current and Emerging Time-integration Strategies in Global Numerical Weather and

Climate Prediction, https://doi.org/10.1007/s11831-018-9261-8(0123456789().,-vo

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019
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Weather & Climate Dwarfs

(hpc-
escape.eu)

... hardware
adaptation ...

Extract model dwarfs.

... explore

alternative numerical ... reassemble

algorithms ... model and
benchmark

S ECMWF

MeteoSwiss pmi

. :
& DA S @ wersormance g\.oHeo e B Cooptaysys Bull (N> B
e RMI 2 A

P. Bauer, ECMWEF ESCAPE Project Briefing, 2017
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Dwart Development with GeoFLOW

Duane Rosenberg, Bryan Flynt, NOAA ESRL, 2018-2019

GeoFLOW is an application framework to simplify dwarf
development in order to evaluate computational efficiency vs
scientific accuracy of various approaches

C++ objects to define communications, grid, discretization &

time-stepping operators

Evaluate for 1-3KM global models on CPU, GPU, ARM, ...

Horizontal Grid
(Latitude-Longitude)

Vertical Grid ) =
(Height or Pressure) | oL

lcosahedral Finite Volume (IFVV)  Spectral Element (CG, DQG)

. Low order/low accuracy .
« 2D, 3D control volumes .
« lcosahedral grid .
« Deep communication .
. staggered (Arakawa) centering «
. Explicit time step .

High order/high accuracy

2D, 3D elements

Cube-sphere grid

Shallow communication
Un-staggered centering

Explicit & semi-implicit time step

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019

Physical Processes in a Model

uuuuuuuuuuu

Focus Areas
Advection
+ Convection
+ Radiation
+ ...
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Shallow Water Dwarf: A-grid versus C-grid staggering
Yonggang Yu, Ning Wang, Jacques Middlecoff, NOAA ESRL, 2018-2019

Evaluate performance, scaling and scientific accuracy

* Develop shallow water model for A- A-grid C-grid
grid and C-grid with identical design,
grid construction, optimizations, ...

* Replicate published dynamical core
idealized test results for A-grid
(NICAM), C-grid (MPAS)

* OpenMP, OpenACC, MPI
parallelization

* Performance & scaling comparison
for 3 KM resolution or finer scales

* NOAA system with 800 Pascal GPUs
* Published results expected soon



. Advection Dwarf
Scaling Patterns - dynamics -

28 KM resolution

* Computation 1.20
* Good parallelism 100
* |cosahedral grid
* Efficient algorithm 080
>
* Communications c 060
* Minimal frequency % 0.40
 Low data volume = -
, S 0.20
* Some overlapping
-
g— 0.00
o 20 40 80 160
@)
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Weather Prediction Models
- physics -

e Convection, radiation micro-physics, surface
& boundary layers, gravity & orographic wave
drag

* Computationally expensive, complex
interactions, limited parallelism

* Good potential for ML / DL

 Significantly faster than original code

* Extensive training required for non-linear
formulations

* Krasnopolsky, V., A neural net emulator for
microphysics schemes, 2017

 O’Gorman, P,, Using machine learning to
parameterize moist convection, 2018

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 38



Weather Prediction Models

- chemistry -

° Slmple to complex Interactions Can we forecast behavior and atmospheric |mpacts of a f|re ¥
spreading 80 football fields per mmute? & pe i

* Fire weather
* Air quality

 Computationally very expensive
* 5X more than dynamics, physics

* Candidates for ML / DL

 R.Ahmadov, J.Stewart, NOAA ESRL,
Deriving relationships between

weather and fire intensity from 5
. 8 kilometers # - aigs " 1
Satel I Ite d ata . plannEd Work CamrbrFi?e, Butte Coun.ty, Célifér;ié‘: GA ' : Landsat 8 data courtesy of the U.S. Geélogicéi SurveS/

November 8th, 2018 - Natural colors with IR highlights Processed by Pierre Markuse
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#2 Improve Data Assimilation
Performance

A

scientific
accuracy

>
computational

efficiency



Assimilation

* Improve initial state of the forecast model
e Variational, ensemble, hybrid approaches

 Complex, computationally expensive

GOES-15: 4 KM resolution IR, 1 KM visible
Assimilation can handle every 100t point

W

Calculations

* Estimate model error, observation error

* Interpolate model to observation

* Adjust nearby grid points, other model
fields (winds, temp, ...)

HRRR: 3 KM resolution, 2M temperature

g U U1Y U

A 2018 M) U - DE

ather Prediction with Exascale HPC, March 19, 2019
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What Is JEDI?

FV3 (GSI+GOES)
(NOAA/NASA)

MPAS
(NCAR)

NEPTUNE
(NRL)

LFRic
(UKMO)

MOM6
(JCSDA/NOAA)

A Next-Generation
Unified

Data Assimilation

System

Slide, courtesy of JEDI project team, 2019

Radiosondes

Radiance
(AMSU-A)

Aircraft

Aerosols
(AOD)

Sea Ice
(fraction, thickness)




Data Assimilation Computational Issues

* 3D Ensemble Based Assimilation
 10-100 members, low resolution 4D-Var trajectories — )
* 1/0, computational limitations [First guesses

L._‘ E“f.._?_‘ - ...-_‘_._-"

e 4D Variational Assimilation
e More accurate than ensemble

methods N - —
e ~3X slower than 3DVAR methods Oamaﬁon\?! == \_Om,w on
* Investigating techniques to 1 l r l —

09:00 12:00 15:00 18:00 21:00 Time (urc)

Ensemble analysis and forecast cycle
Image courtesy of M.Bonavita (ECMWF)

improve performance
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Advanced Data Assimilation Research
Isidora Jankov, Lidia Trailovic, Chris Harrop, NOAA ESRL/GSD, 2018-2019

The focus is on improving accuracy while maintaining/improving
performance of DA systems

- ] _ AT
* JEDI activities B = N 1 E (xk = x)(xk = x)
* Shallow Water (SW) model with its Adjoint e T k=l
and Tangent Linear has been added to JEDI y o e e I:':
4DVar suite \

* Testing of variety of features within JEDI

framework D
 Background Error Covariance (B) work T - \ IZZ
* Improving accuracy by adjusting the B matrix y v
localization




Use of Machine Learning for Improved Initial Soil Moisture

State in RAP/HRRR
Isidora Jankov, Jebb Stewart, Lidia Trailovic, NOAA ESRL/GSD, 2018-2019

CPC

Calculated Soil Moisture (mm)
APR 15, 2018

HRRR

(((((

soil moisture field from CPC and HRRR for April 15,

2018

similar features in the two data sets

over Southeast U.S., CPC has higher values with a
spatial pattern not present in HRRR

potential room for improvement in HRRR
representation of soil moisture.

Improvement of RAP/HRRR initial soil state field by using ML
will be performed in two steps:

1) improve correlation between observed surface variables
and soil state (currently used correlation is empirical and
based on limited number of case studies)

2) 2) “nudge” the estimated soil moisture state by utilizing
10.3 micron channel from GOES-16/17 for the CONUS with
a spatial resolution of 2 km and temporal resolution of 5
minutes

The effort will facilitate:

* more general use of the high-resolution GOES-16/17
ABI data set in data assimilation

e expansion of ML use in areas of Numerical Weather
Prediction (NWP) and data assimilation.



Feature Detection — Typhoons
Christina Bonfanti, Jebb Stewart, NOAA ESRL/GSD, 2018-2019

* |dentify typhoons from satellite data
* Accurate ldentification
e Early detection — prior to formation

* Training - 6 years of data

* Model output, satellite ‘
* 11.5 hours (CPU), 3 minutes (GPU) : 2015-08-20100:00.0

* 5 weeks (CPU), 3 hours (GPU) - \!

* Inference
e 1 second (CPU), 40 milliseconds (GPU)
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#3 Getting Data to End-Users

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019

47



Big Data Handling #7 Cloud Services

e Data is too big to move

e Co-locate HPC & data
* On-demand access
* ML/DL driven analytics

‘/

g ML /DL .
@ &
AN /

information E
|n5|ghts

pixels

i - oy S
N e 40wl 7 )
.
grids

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 48



#4 Improve Software
Architecture and
Development Process

Design
Develop
Test
Commit

Refactor




JEDI System Software Architecture

Fortran FMS + FV3

B / MODEL, TLM &
ADJOINT
MODEL FIELDS,
LAYER __ GEOMETRY INCREMENT &
CLASSES COVARIANCE
S o MATRIX B &
= f o LOCALIZATION
- o | &
Q. >
af e
------------------------------------------ XN AR G
C++
JEDI LAYER
(model agnostic)
— Slide, courtesy of JEDI project team, 2019
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Conclusion

* Described challenges in current prediction system
 Computer hardware, applications, data volume, software

* Tremendous opportunity with convergence of HPC, Big Data and Al
* NVIDIA GPUs are a key technology

* |/O challenges, sensor networks, distributed assimilation not discussed

 Early in investigation of Al applied to weather prediction

* David Hall, NVIDIA, “Deep Learning for Improved Utilization of Satellite Data in Weather Forecasting”,
Tuesday 10:00 - 11:00

* Sid Boukabara, NOAA, “Exploring using Artificial Intelligence for Remote Sensing, NWP and
Situational Awareness”, ITSC-XXI Conference, November 2017

* Jebb Stewart, NOAA, Organizing committee, NOAA Al Conference, April 2019
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Additional Slides
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/O Dwarf

Configurable application to mimic model, DA 1/O patterns

 Realistic projections for exascale i tonks = Treats -
* 3KM global, 50 - 100 ensembles, hourly output :

Test & tune on our HPC systems

Share with vendors

* Use for HPC procurements
I/O Profile: HRRR ™"~
APPLICATION LAYER
netcdf grib parallel netcdf tiled 1/0

HARDWARE LAYER

NVRAM
Flash
Advancing U.S. eathffgr(ﬂiiﬁ‘e)cﬁmitbligﬁgale
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/O - Impact of NVRAM on Data Access

Byte Addressable Hypercubes ﬂ Eﬂﬂé]ﬂﬂﬂ@

 Longitude (3600)

« Latitude (1800) . : :
Clients want to do different analytics
» Atmospheric levels, Physical parameters (~200) across multiple axis

* Time steps (~100)

. I : ““
Probabilistic pertubations (50) ‘::;:::::‘
SO
. RS
@ double precision ‘ti.i""=”
- 9km 48 TiB =§§=§i='===
. 5km 192 TiB H‘HHH’I:’::
~§.~=’!=’i
+ 1.25km 1.82 PiB N\592 Tiago Quintino

: e . . ECMWEF archives ~150TB / Day
Not included: historical observations, multiple models, efc... Growing exponentially ...

o
L v ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 5



Portability

e Directives

* OpenACC
* OpenMP

e Libraries

* MPI, netCDF

* Tools

e GridTools (CSCS)
* PSyclone (Ukmet)

* ATLAS

(ECMWF)

Ecosystems and Collaborations G rl dTOO I S

COSMO
ICON
ESCAPE
NICAM
CSCS

ETHziirich

Slide courtesy of Oliver Fuhrer, CSCS
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Grid Tools Algorithmic Motifs

= Regular and Structured grids

= Algorithmic 3D stencils (almost)
= Parallelism on the first 2 dimensions
= Dependencies on the third
= Parallel, Forward, Backward
= Reductions
= General boundary conditions
= Halo-update K
= Combination of BC and Comm

COSMO Performance - Stencils Percentage of Total Time
— = I COSMO-E Member |/
.,H [ COSMO-1 |

I Vertical Diffusion |
I l]I] | ﬁnﬂi] S

@ Bundesamt fiir Meteorologie und e
" CSCS 9 Klimatologie MgteoSchweiz E'" zuri Ch

~Solver

Heating

Fast Waves

- Temperature
Conversion
| Diabatic Latent

5 labew
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Atlas: a library for NWP and climate modelling

https://github.com/ecmwf
FunctionSpace

Finite Volume\ Spectral Transforms Finite Element Discontinuous
Spectral Element

'\ \/\
AVAVAVAVAVAVAY.
WAVAVAVAVAVAVAY

S, AAVAY %4 \ /\/
VAYaVavav.
‘é" .‘.',‘,'.4'&”

s VAVAVA .
VAV AVAVAVaATaraY
L TAVAVAVAVAY4
VAVAVAVAVA:
‘ "é"'
e

Partitions with halos Deconinck et al. 2017
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