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HPC & NWP

John von Neumann posing with the 
ENIAC computer, 1946 (photo 
courtesy of NOAA)
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Mitigating Impacts

• Detection
• Prediction
• Dissemination
• Forecast Offices
• Fire weather centers
• Aviation
• Air quality
• Transportation
• Water centers
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Benefits

Spanning Weather and Climate

11

•Short-Range Ensemble

•Global Forecast System

•North American Mesoscale 

•Rapid Refresh
• Regional Hurricane

• Waves • Global Ocean
• Space Weather

• Bays
• Storm Surge

•Global Dust

•Fire Wx
• Ozone

•Wave Ensemble•Land DA 

• HRRR • Tsunami • Nearshore Wave

•National Water Model

•Dispersion (smoke)

•North American Ensemble Forecast System

•Climate Forecast System

•Global Ensemble Forecast System

•North American Multi-Model Ensemble System

Slide from M.Farrar, EMC Modeling Strategy, 2017
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NWS Weather Forecast Models (2019)
constrained by HPC

NAM

HRRR

GFS

Higher resolution means
smaller area and

shorter forecasts 
• Global:  Global Forecast System (GFS)  (28 KM)

• Weeks: 0 - 16 day forecasts,  4x / day

• Regional:  North American Model (NAM)  (12KM)
• Days:  84 hours,  4x/day

• Regional:  High Resolution Rapid Refresh (3KM) 
• Hours:  36 hours,  24x/day
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Nesting:  GFS (global) + RapidRefresh + HRRR
RAP/HRRR: Hourly-Updating Weather Forecast Suite

Initial & Lateral 
Boundary 

Conditions

Initial & Lateral 
Boundary 

Conditions

13-km Rapid Refresh 
(RAPv4) – to 39h (Feb 2018)

3-km High-Resolution   
Rapid Refresh (HRRRv3) 

– to 36h (Feb 2018)

750-m HRRR nest                          
Scale-aware Physics 

Testing (ongoing)

3-km Storm-Scale 
Ensemble Analysis and 

Forecast (HRRRE)     
55% CONUS HRRR 

Experimental (ongoing)

3-km High-Resolution 
Rapid Refresh Alaska, 

Hawaii and Puerto Rico 
Testing (HRRR-AK, 

HRRR-HI, HRRR-PR) 
Experimental (ongoing)

3-km High-Resolution Time Lagged 
Ensemble (HRRR-TLE)

3-km HRRR-Smoke (VIIRS fire data)

Overview 13 June 201718th WRF Workshop 1C. Alexander, NOAA ESRL, June 2017, WRF Workshop
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Improved 
Weather 

Prediction

is a tradeoff between

• Computing

• Accuracy

• Time-to-solution

Model complexity

Ensem
bles

Global Weather System Components

Model resolution
13 KM

3 KM

1 KM

10-100s of members

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 10



Computational Challenges
• Processors are not getting faster
• ESPC HPC Working Group:  2016 -
• NOAA, NASA, DoE, DoD Navy, NCAR
• Discuss HPC challenges, limitations for weather & climate applications
• Position paper describing concerns
“HPC architectures are developing in the wrong direction for state-heavy, low 
computational intensity (CI) Earth system applications.” 
“NWP applications average less than 2% of peak performance, constrained by 
their ability to perform sufficient calculations for each expensive access to 
memory.”

Carman, et al. “Position Paper on High Performance Computing Needs in Earth 
System Prediction.” National Earth System Prediction Capability (ESPC) 
program. April 2017. https://doi.org/10.7289/V5862DH3
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• CPU, GPU TPU, FPGA, ARM
• Diversity
• Processor

• Clock speed, energy
• 10’s to 1000’s of cores
• Single, double, half precision

• Memory
• Size, speed, type

• Burden on compilers, standards
• Portability
• Performance
• Interoperability

Processor Technologies
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Node Technologies

• Increasing diversity
• Number of sockets, processors
• Tens to thousands of cores

• Memory
• Speed, bandwidth

• Communications
• Intra-socket
• Intra-node (PCIe, NVLINK)
• File system

•Many vendors, choices
• Performance, energy, cost

Intel Skylake dual-socket

Super-micro dual socket EPYC

Cray dual-socket ARM
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Application Performance – Single Node
Research model developed by NOAA ESRL/GSD (2010—2016)

• Directive-based (OpenACC, OpenMP, SMS), performance portable
• GPU is 2-3 times faster than CPU (Fermi to Pascal generation GPUs)

Uniform Icosahedral Grid
M.Govett, et. al.,  Parallelization and Performance of the NIM Weather 

Model on CPU, GPU and MIC Processors, BAMS, October 2017
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Application Performance – Single Node
MPAS model developed at NCAR

adopted by IBM Weather Company

• GPU is 3X faster than CPU (Volta versus 
Broadwell)

• Directive-based, performance portable
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120KM grid

40K points
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R.Loft, Sept 2018, ECMWF HPC Workshop

Non-uniform Icosahedral Grid
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FV3GFS Performance – Single Node
• Finite-Volume Cube-Sphere Model 

selected by NOAA NWS
• Designed for CPU
• Efficient use of cache memory

• Slower on GPU
• Code changes slowed down CPU
• Not performance portable

• Inefficiencies
• Limited parallelism
• Non-uniform cube-sphere grid
• Pervasive edge & corner calculations

• Ongoing efforts to address GPU 
performance challenges
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FV3 Dynamics Performance
24 core Haswell CPU

Pascal P100 GPU
2D & 3D loops

CPU 2D CPU - 3D Pascal - 3D

M. Govett, June 2018, PASC Symposium

Cube-sphere 
grid
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Advanced Node Technologies
• Diversity

• Performance, cost, power
• Complexity

NVIDIA DGX-2: 16 Tesla V100 GPUs, (81K GPU, 10K Tensor cores)
• 1.5 TB DDR4 RAM, 500 GB HBM2,   10kW power
• 300 GB/s NVLINK
• PCIe Gen3, 8x EDR IB / 100 Gigabit Ethernet

ORNL Summit Node

DOE Summit node:  
• IBM Power9 CPU,  6 V100 GPUs, 30K GPU cores
• 512 GB DDR4 RAM, 96 GB HBM2
• NVLINK, 50GB/s bandwidth per link
• PCIe Gen 4 (16GB/s) for inter-node, I/O

Summit System:  4600 nodes, 27K GPUs
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System Inter-connect Technologies

• Interconnect required for large HPC systems

• Weakness in large system deployments

• Applications use MPI communications

• Pack message buffer

• Inter-process communications

• Unpack message buffer

• Scalability a big challenge for 

application performance

Switch

Switch

100Gb/s 100Gb/s

S S

Dual-socket

CPU

S S

Dual-socket

CPU
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Application Scalability
• ECMWF Scalability Programme (2014 - )

• ESCAPE, NextGenIO, ESiWACE, ESCAPE-2
• Scaling, I/O, compilers, algorithms

• Targeting 1-3 KM resolution for global models

16%

45%

34%

GP_DYNAMICS SI_SOLVER SP_TRANSFORMS PHYSICS+RAD

Example: TCo7999 L62 (~1.25km)

Where do we spent the time ?The cost profile of a 1.25km IFS atmosphere simulation on Piz Daint (CPU only)

4880 MPI tasks x 12 threads
69 FC/day ~ 0.19 SYPD
single precision / FLT

75% comms; 
25% compute

~85.21 MWh / SY

Based on the Piz Daint, Swiss 
Cray XC50 Haswell, Aries 
interconnect, ~5000 nodes 
total

Nils Wedi, ESCAPE Project Presentation
ECMWF HPC Workshop, Sep 2018

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS October 29, 2014

IFS 1km: strong scaling on PizDaint

25

Goal ~1 year / Day

Many thanks to 
Thomas Schulthess & 
Maria Grazia Giuffreda !

Result of algorithmic 
changes and single precision

ESiWACE, DYAMOND project, 2017Operational weather prediction
would require 200-240 days / day
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• Computation
• Parallelism
• Algorithms
• Model grid

• Communications
• Frequency
• Data volume
• Overlapping
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14 KM resolution
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Scaling Factors
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Time to Solution
by the Numbers

Operational requirement: 5 days in 2250 seconds  (10 days in ~1.25 hours)

Resolution 28 KM 13 KM 6.50 KM 3.25KM
Time Step 225 sec 112.5 sec 56 sec 28 sec

CPU Nodes 64 256 1024 4096
CPU cores 1536 6144 24576 98304
Total Time 1094 1916 3357 5880
Dynamics 560 792 1120 1584

Communications 440 710 1146 1851

FV3GFS Performance
3 KM resolution, 5 day forecast

Weak Scaling

Runtimes in seconds for a 5 day forecast,   NOAA theia system with 24 cores Haswell nodes

Estimated PerformanceActual Performance
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Time to Solution
by the Numbers

Operational Requirement: 5 day in 2250 seconds (10 days in 1.25 hours)

Tile Size / MPI 48 x 48 24 x 48 24 x 24
CPU Cores 98,304 196,608 393,216
Total Time 5880 3962 2095
Dynamics 1584 1275 643

Communications 1851 1390 801

FV3GFS Performance
3 KM resolution, 5 day forecast

Strong Scaling

Estimated performance, NOAA theia system: 27,000 cores,  24 Haswell cores / node

• 393,216 cores = 16,384 CPU nodes
• 30% of runtime is for inter-process communications
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Performance and Scalability
CPU and GPU

2X faster compute does not mean 2X faster
This example is only 1.6X faster

Communications I/OComputation

2X faster compute

Typical model execution cycle

0 1 2 3 4 5 6 7 8 9 10 11

CPU CPU CPU CPU

GPU GPU GPU GPU
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Data Challenges

Data is only useful if it can be used
Observations
Assimilation
Prediction

Output
Distribution

Dissemination
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Observations
• More data than we can use 

• GOES, JPSS, cubesats, nano
• Radar, balloons, ships, planes
• Autos, cell, sensors, …

• Tremendous potential Ground-Based
Instruments
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Geostationary Operational 
Environmental Satellite (GOES) 

• 2012-2017:  GOES-13, GOES-14, GOES-15
– Scans every 3 hours, 10 bit precision
– 4 spectral bands @ 4KM 
– 1 visible band @ 1KM

• 2017 - ~2027:  GOES-16, GOES-17
– Scan every 15 minutes, 14 bit precision
– 14 spectral bands @ 2KM resolution
– 2 visible bands @ 0.5KM resolution
– High-res nest every 30-60 seconds

water vapor image
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Model Output: 14KM to 3KM resolution

• Each 3D variable:  pressure, temperature, moisture, winds, ….

• Model output:
14KM  - 10 model fields, 6 hourly output, 10 day forecast 400 GB per run

3KM    - 10 model fields, 3 hourly output, 10 day forecast 21.8 TB    (52X)
3KM    - 10 model fields,    hourly output,    2 day forecast 12.0 TB    (26X)

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 27

Resolution
(KM)

Vertical Levels Number of Grid 
Cells (Millions)

Total Cells
(Billions)

Increase
in Cells

Per field 
storage (SP)

14    (1x) 64        (1x) 3.5        (1) 0.25 1x 1 GB
3.5   (4x) 128      (2x) 56.6    (16) 5.4 21x 21 GB



Distribution
• Diverse user requirements
• Global, regional, local, observations 

products

• NWS AWIPS
• NOAA network is saturated
• Everyone gets same data

NWS Forecast Offices
Hurricane Prediction Center
Storm Prediction Center
National Water Center
Aviation Weather Center
Fire Weather Centers

State, Local, Public
- Floods, fire, winds, hail, …

NWS office

FAA Air Traffic Control

AWIPS Workstation

model outputdata center users
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State of Play for NWP (2019)
• Scientific advances increasingly constrained by 

computing, data
• HPC
• No expected increase in processing speed
• Limited increases in memory speed
• Parallelism & scalability limitations
• Operational time-to-solution constraints 

• Data
• Too much data to process
• Too many observations to use
• Too large to distribute

15 KM

3 KM
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Advancing Weather Prediction
in the next decade

Where do we go from here?

Data

HPC

Assimilation

NWP

Post-
Processing

Forecaster

Stakeholders

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019
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SuperComputing Machine Learning

Big Data

Technology Convergence
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#1 Improve Model Performance

computational
efficiency

scientific
accuracy

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019
32



Weather Prediction Models
- dynamics -

• What are the best models, approaches?
• algorithms, grids, time-step, physics, etc
• computational efficiency, scalability

Model Type Horizontal Grid Time-Step Staggering Models

Finite-volume Cube-sphere SISL A-grid, C-grid, D-grid FV3GFS

Finite-volume Icosahedral HEVI A-grid NICAM

Finite-volume Icosahedral HEVI C-grid MPAS, ICON

Finite-element Cube-sphere SISL C-grid LFRiC

Spectral-element Cube-sphere HEVI No staggering NUMA, Neptune, 
KIM

Spectral Polar HEVI No staggering IFS, GFS

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 33
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October 29, 2014

(hpc-
escape.eu)

Weather & Climate Dwarfs

Extract model dwarfs…
… explore 
alternative numerical 
algorithms …

… hardware 
adaptation …

… reassemble 
model and 
benchmark

P. Bauer, ECMWF ESCAPE Project Briefing, 2017
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Dwarf Development with GeoFLOW
Duane Rosenberg, Bryan Flynt, NOAA ESRL, 2018-2019

• GeoFLOW is an application framework to simplify dwarf 
development in order to evaluate computational efficiency vs 
scientific accuracy of various approaches

• C++ objects to define communications, grid, discretization & 
time-stepping operators

• Evaluate for 1-3KM global models on CPU, GPU, ARM, …

Icosahedral Finite Volume (IFV)
l Low order/low accuracy
l 2D, 3D control volumes
l Icosahedral grid
l Deep communication
l staggered (Arakawa) centering
l Explicit time step

Spectral Element (CG, DG)
l High order/high accuracy
l 2D, 3D elements
l Cube-sphere grid
l Shallow communication
l Un-staggered centering
l Explicit & semi-implicit time step

Focus Areas
Advection
+ Convection
+ Radiation
+ …
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Shallow Water Dwarf: A-grid versus C-grid staggering
Yonggang Yu, Ning Wang, Jacques Middlecoff, NOAA ESRL, 2018-2019

• Develop shallow water model for A-
grid and C-grid with identical design, 
grid construction, optimizations, …
• Replicate published dynamical core 

idealized test results for A-grid 
(NICAM), C-grid (MPAS)
• OpenMP, OpenACC, MPI 

parallelization
• Performance & scaling comparison 

for 3 KM resolution or finer scales
• NOAA system with 800 Pascal GPUs

• Published results expected soon

A-grid                                           C-grid

domain: 2

domain: 1

E1
E2

E3

S1S2
S3S2

S2 S3
S3

S1

S1

domain: 1
domain: 2

Evaluate performance, scaling and scientific accuracy
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Advection Dwarf

- dynamics -
28 KM resolution

 Compute  Communications Total

Scaling Patterns
• Computation

• Good parallelism

• Icosahedral grid

• Efficient algorithm

• Communications

• Minimal frequency

• Low data volume

• Some overlapping
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Weather Prediction Models
- physics -

• Convection, radiation micro-physics, surface 
& boundary layers, gravity & orographic wave 
drag
• Computationally expensive, complex 

interactions, limited parallelism
• Good potential for ML / DL

• Significantly faster than original code
• Extensive training required for non-linear 

formulations

• Krasnopolsky, V., A neural net emulator for 
microphysics schemes, 2017

• O’Gorman, P., Using machine learning to 
parameterize moist convection, 2018

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019 38



Weather Prediction Models
- chemistry -

• Simple to complex interactions
• Fire weather
• Air quality

• Computationally very expensive
• 5X more than dynamics, physics

• Candidates for ML / DL
• R.Ahmadov, J.Stewart, NOAA ESRL, 

Deriving relationships between 
weather and fire intensity from 
satellite data.  planned work
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Can we forecast behavior and atmospheric impacts of a fire 
spreading 80 football fields per minute?



#2 Improve Data Assimilation 
Performance

computational
efficiency

scientific
accuracy

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019
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Assimilation

HRRR:  3 KM resolution, 2M temperature
GOES-15:  4 KM resolution IR, 1 KM visible
Assimilation can handle every 100th point

update

• Improve initial state of the forecast model
• Variational, ensemble, hybrid approaches

• Complex, computationally expensive

Calculations
• Estimate model error, observation error
• Interpolate model to observation
• Adjust nearby grid points, other model 

fields (winds, temp, …)

OBSERVATIONS:  GOES-15 Satellite MODEL BACKGROUND STATE41
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FV3 (GSI+GOES)
(NOAA/NASA)

MPAS
(NCAR)

NEPTUNE
(NRL)

LFRic
(UKMO)

MOM6
(JCSDA/NOAA)

…

Radiosondes

Radiance
(AMSU-A)

Aircraft

Aerosols
(AOD)

Sea Ice
(fraction, thickness)

…

A Next-Generation 
Unified 

Data Assimilation
System

Slide, courtesy of JEDI project team, 2019
Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019
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Data Assimilation Computational Issues

• 3D Ensemble Based Assimilation
• 10-100 members, low resolution
• I/O, computational limitations

• 4D Variational Assimilation
• More accurate than ensemble 

methods
• ~3X slower than 3DVAR methods

• Investigating techniques to
improve performance Ensemble analysis and forecast cycle

Image courtesy of M.Bonavita (ECMWF)
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Advanced Data Assimilation Research
Isidora Jankov, Lidia Trailovic, Chris Harrop, NOAA ESRL/GSD, 2018-2019

• JEDI activities

• Shallow Water (SW) model with its Adjoint 

and Tangent Linear has been added to JEDI 

4DVar suite

• Testing of variety of features within JEDI 

framework

• Background Error Covariance (B) work

• Improving accuracy by adjusting the B matrix 

localization

The focus is on improving accuracy while maintaining/improving 

performance of DA systems
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Use of Machine Learning for Improved Initial Soil Moisture 
State in RAP/HRRR

Isidora Jankov, Jebb Stewart, Lidia Trailovic, NOAA ESRL/GSD, 2018-2019

• soil moisture field from CPC and HRRR for April 15, 
2018 

• similar features in the two data sets
• over Southeast U.S., CPC has higher values with a 

spatial pattern not present in HRRR
• potential room for improvement in HRRR 

representation of soil moisture.

Improvement of RAP/HRRR initial soil state field by using ML 
will be performed in two steps:

1) improve correlation between observed surface variables 
and soil state (currently used correlation is empirical and 
based on limited number of case studies)

2) 2) “nudge” the estimated soil moisture state by utilizing 
10.3 micron channel from GOES-16/17 for the CONUS with 
a spatial resolution of 2 km and temporal resolution of 5 
minutes

CPC HRRR

The effort will facilitate:
• more general use of the high-resolution GOES-16/17

ABI data set in data assimilation
• expansion of ML use in areas of Numerical Weather 

Prediction (NWP) and data assimilation.
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Feature Detection – Typhoons
Christina Bonfanti, Jebb Stewart, NOAA ESRL/GSD, 2018-2019

• Identify typhoons from satellite data
• Accurate Identification
• Early detection – prior to formation

• Training - 6 years of data
• Model output, satellite
• 11.5 hours (CPU), 3 minutes (GPU)
• 5 weeks (CPU),  3 hours (GPU)

• Inference
• 1 second (CPU), 40 milliseconds (GPU)
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#3 Getting Data to End-Users

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019
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• Data is too big to move
• Co-locate HPC & data
• On-demand access
• ML/DL driven analytics
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#4 Improve Software 
Architecture and 

Development Process
Design

Develop
Test

Commit
Refactor

Advancing U.S. Weather Prediction with Exascale HPC, March 19, 2019
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JEDI System Software Architecture
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Slide, courtesy of JEDI project team, 2019
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Conclusion
• Described challenges in current prediction system
• Computer hardware, applications, data volume, software

• Tremendous opportunity with convergence of HPC, Big Data and AI
• NVIDIA GPUs are a key technology

• I/O challenges, sensor networks, distributed assimilation not discussed
• Early in investigation of AI applied to weather prediction

• David Hall, NVIDIA, “Deep Learning for Improved Utilization of Satellite Data in Weather Forecasting”, 
Tuesday 10:00 – 11:00

• Sid Boukabara, NOAA, “Exploring using Artificial Intelligence for Remote Sensing, NWP and 
Situational Awareness”, ITSC-XXI Conference, November 2017

• Jebb Stewart, NOAA, Organizing committee, NOAA AI Conference, April 2019
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Additional Slides
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I/O Dwarf
• Configurable application to mimic model, DA I/O patterns

• Realistic projections for exascale
• 3KM global, 50 - 100 ensembles, hourly output

• Test & tune on our HPC systems
• Share with vendors
• Use for HPC procurements

I/O System I/O System
SYSTEM LAYER

APPLICATION LAYER

HARDWARE LAYER

NVRAM
Flash

Traditional Disks

netcdf grib parallel netcdf tiled I/O

I/O Profile: HRRR
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I/O - Impact of NVRAM on Data Access
Byte Addressable Hypercubes

• Longitude (3600)

• Latitude (1800)

• Atmospheric levels, Physical parameters (~200)

• Time steps (~100)

• Probabilistic pertubations (50)

@ double precision

• 9km 48 TiB

• 5km 192 TiB

• 1.25km 1.82 PiB

Not included: historical observations, multiple models, etc...
5EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Clients want to do different analytics 
across multiple axis

Tiago Quintino

ECMWF archives ~150TB / Day
Growing exponentially … 



Portability
• Directives

• OpenACC
• OpenMP

• Libraries
• MPI, netCDF

• Tools
• GridTools (CSCS)
• PSyclone (Ukmet)
• ATLAS    (ECMWF)

Ecosystems and Collaborations

§ COSMO
§ ICON
§ ESCAPE

§ NICAM

§ CSCS
§ …

Prod
uctiv

ity

Po
rta
bi
lit
y

Performance

Slide courtesy of Oliver Fuhrer, CSCS

GridTools
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Grid Tools Algorithmic Motifs

§ Regular and Structured grids
§ Algorithmic 3D stencils (almost)
§ Parallelism on the first 2 dimensions
§ Dependencies on the third

§ Parallel, Forward, Backward
§ Reductions
§ General boundary conditions
§ Halo-update
§ Combination of BC and Comm

3
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Atlas: a library for NWP and climate modelling

9

Deconinck et al. 2017

https://github.com/ecmwf
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