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TRINITY OF AI/ML

DATACOMPUTE

ALGORITHMS
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EXAMPLE AI TASK: IMAGE CLASSIFICATION
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DATA: LABELED IMAGES FOR TRAINING AI

Picture credits: Image-net.org, ZDnet.com

➢ 14 million images and 1000 categories.
➢ Largest database of labeled images.

➢ Images in Fish category.
➢ Captures variations of fish.
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MODEL: CONVOLUTIONAL NEURAL NETWORK
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➢ Deep learning: Many layers give large capacity for model to learn from data
➢ Inductive bias: Prior knowledge about natural images.
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MOORE’S LAW: A SUPERCHARGED LAW

➢ More than a billion 
operations per image.

➢ NVIDIA GPUs enable 
parallel operations.

➢ Enables Large-Scale AI.

COMPUTE INFRASTRUCTURE FOR AI: GPU
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PROGRESS IN TRAINING IMAGENET

Statista: Statistics Portal
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Error in making 5 guesses about the image category

Need Trinity of AI : Data + Algorithms + Compute
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TENSORS PLAY A CENTRAL ROLE

DATACOMPUTE

ALGORITHMS
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TENSOR : EXTENSION OF MATRIX
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WHY TENSORS?

13
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TENSORS FOR DATA
ENCODE MULTI-DIMENSIONALITY

Image: 3 dimensions
Width * Height * Channels

Video: 4 dimensions
Width * Height * Channels * Time
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INDEXING A TENSOR
Notion of a fiber

• Fibers = generalization of the concept of rows and columns for matrices

• Obtained by fixing all indices but one
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INDEXING A TENSOR
Notion of a slice

• Slices are obtained by fixing all indices but 2

• Useful to make examples by stacking matrices
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TENSOR DIAGRAMS
Succinct notation

• Represent only variables and indices (dimensions)

• Tensors = vertices, mode = edge, order = degree
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TENSORS OPERATIONS

TENSOR CONTRACTION PRIMITIVE
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TENSOR DIAGRAMS
Succinct notation

• Contraction on a given dimension: simply link the indices over which to 

contract together!
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EXAMPLE: DISCOVERING HIDDEN FACTORS
A Matrix of Measurements
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EXAMPLE: DISCOVERING HIDDEN FACTORS
Matrix Decomposition Methods

• Find low rank 
Approx. of matrix.

• Each component is a 
latent factor
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EXAMPLE: DISCOVERING HIDDEN FACTORS
Adding more dimensions to data through tensors

• Collect more 
data in another  
dimension.

• Represent it as 
a tensor. 

• How do we 
exploit this 
additional 
dimension?  
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EXAMPLE: DISCOVERING HIDDEN FACTORS
Low rank approximations of a tensor

• Decompose tensor into 
rank-1 components.

• Declare each component 
as a hidden factor

• Why is this more 
powerful than a matrix 
decomposition?
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MATRIX VS TENSOR DECOMPOSITION
Conditions for unique decomposition?

Unique when 
components are 
linearly independent

Unique only when 
components are 
orthogonal
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TENSOR DIAGRAMS
Notation for Tensor CP decomposition

• Contraction on a given dimension: simply link the indices over which to 

contract together!



Pairwise correlations

Third order correlations

TENSORS FOR HIGHER ORDER MOMENTS
WHY IS IT MORE POWERFUL?
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PRINCIPAL COMPONENT ANALYSIS (PCA)
Low-rank approximation of Covariance Matrix

• Problem: Find best rank-k projection of (centered) data

• Solution: Top Eigen components of Covariance matrix

• Limitation: Uses first two moments. Gaussian approx.

• But data tends to be far from Gaussian.
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UNSUPERVISED LEARNING TOPIC MODELS THROUGH TENSORS

Justice

Education

Sports

Topics
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UNSUPERVISED LEARNING TOPIC MODELS THROUGH TENSORS



30

TENSORS FOR MODELING:
TOPIC DETECTION IN TEXT

Co-occurrence 
of word triplets Topic 1 Topic 2



WHY TENSORS?
Statistical reasons:

• Incorporate higher order relationships in data

• Discover hidden topics (not possible with matrix methods)

Computational reasons:

• Tensor algebra is parallelizable like linear algebra.

• Faster than other algorithms for LDA 

• Flexible: Training and inference decoupled

• Guaranteed in theory to converge to global optimum

A. Anandkumar etal,Tensor Decompositions for Learning Latent Variable Models, JMLR 2014.



TENSOR-BASED TOPIC MODELING IS  FASTER

• Mallet is an open-source framework for topic modeling

• Benchmarks on AWS SageMaker Platform

• Bulit into AWS Comprehend NLP service.
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22x faster on average 12x faster on average

300000 documents
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TENSORS OPERATIONS

TENSOR CONTRACTION PRIMITIVE
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TENSORS FOR MODELS

STANDARD CNN USE LINEAR ALGEBRA 
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Jean Kossaifi, Zack Chase Lipton, Aran Khanna, Tommaso Furlanello, A

Jupyters notebook: https://github.com/JeanKossaifi/tensorly-notebooks

TENSORS FOR MODELS

TENSORIZED NEURAL NETWORKS



36

SPACE SAVING IN DEEP TENSORIZED NETWORKS
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TUCKER DECOMPOSITION
Generalizing Tensor CP decomposition
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TENSOR DIAGRAMS
Notation for Tucker Decomposition

• Contraction on a given dimension: simply link the indices over which to 

contract together!
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TENSORS FOR LONG-TERM FORECASTING

Difficulties in long term forecasting:

• Long-term dependencies

• High-order correlations

• Error propagation

39



RNNS: FIRST-ORDER MARKOV MODELS

Input state 𝑥𝑡 , hidden state ℎ𝑡 , output 𝑦𝑡 ,

ℎ𝑡= 𝑓 𝑥𝑡 , ℎ𝑡−1 ; 𝜃 ; 𝑦𝑡= 𝑔( ℎ𝑡; 𝜃)



TENSOR-TRAIN RNNS AND LSTMS

Seq2seq architecture

TT-LSTM cells 
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TENSOR DIAGRAMS
Notation for Tensor Train

• Contraction on a given dimension: simply link the indices over which to 

contract together!



C l i m a t e  d a t a s e tT r a f f i c  d a t a s e t

TENSOR LSTM FOR LONG-TERM FORECASTING

Rose Yu Stephan Zhang Yisong Yue



APPROXIMATION GUARANTEES FOR TT-RNN

Theorem: TT-RNN with m units approx. with error 𝜀

• Dimension d , tensor-train rank r. Window p.

• Bounded derivatives order k , smoothness C

• Approximation error : bias of best model in function class.

• No such guarantees exist for RNNs.

• Easier to approximate if function is smooth and analytic. 

• Higher rank and bigger window more efficient. 



T E N S O R L Y :  H I G H - L E V E L  A P I  F O R  T E N S O R  
A L G E B R A

• Python programming

• User-friendly API

• Multiple backends: flexible + 
scalable

• Example notebooks

Jean Kossaifi



TENSORLY WITH PYTORCH BACKEND

import tensorly as tl

from tensorly.random import tucker_tensor

tl.set_backend(‘pytorch’)

core, factors = tucker_tensor((5, 5, 5),

rank=(3, 3, 3))

core = Variable(core, requires_grad=True)

factors = [Variable(f, requires_grad=True) for f in factors]

optimiser = torch.optim.Adam([core]+factors, lr=lr)

for i in range(1, n_iter):

optimiser.zero_grad()

rec = tucker_to_tensor(core, factors)

loss = (rec - tensor).pow(2).sum()

for f in factors:

loss = loss + 0.01*f.pow(2).sum()

loss.backward()

optimiser.step()

Set Pytorch backend

Attach gradients

Set optimizer

Tucker Tensor form
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TENSORS FOR COMPUTE

TENSOR CONTRACTION PRIMITIVE



TENSOR PRIMITIVES?

• 1969 – BLAS Level 1: Vector-Vector

• 1972 – BLAS Level 2: Matrix-Vector

• 1980 – BLAS Level 3: Matrix-Matrix

• Now? – BLAS Level 4: Tensor-Tensor

History & Future
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Kim, Jinsung, et al. "Optimizing Tensor Contractions in CCSD (T) for Efficient Execution on GPUs." (2018).
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Thank you


