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TRINITY OF AI/ML

DATACOMPUTE

ALGORITHMS



PHYSICS-INFUSED LEARNING

Data Priors

Learning = Computational Reasoning over Data & Priors

+Learning =

How to use Physics as a (new) form of Prior?
• Learnability

• Generalization
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What are some of the hardest 

challenges for AI?
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“ Mens sana in corpore sano.”

Juvenal in Satire X.
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Explorers
Planetary, Underwater, and Space Explorers

Transformers
Swarms of Robots Transforming Shapes and Functions

Guardians
Dynamic Event Monitors and First Responders

Transporters
Robotic Flying Ambulances and Delivery Drones

Partners
Robots Helping and Entertaining People

ROBOTICS
MOONSHOTS
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MIND & BODY
NEXT-GENERATION AI

Fine-grained reactive Control

Instinctive:
Making and adapting plans

Deliberative:

Sense and react to human

Behavioral:
Acting for the greater good

Multi-Agent:
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PHYSICS-INFUSED LEARNING FOR ROBOTICS AND CONTROL

Data Priors

Learning = Computational Reasoning over Data & Priors

+Learning =

How to use Physics as a (new) form of Prior?
• Learnability

• Generalization
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BASELINE: MODEL-BASED CONTROL (NO LEARNING)

𝑠𝑡+1 = 𝐹 𝑠𝑡 , 𝑢𝑡 + 𝜖

New State

Current State

Current Action (aka control input)

Unmodeled Disturbance / Error

Robust Control (fancy contraction mappings)

• Stability guarantees (e.g., Lyapunov)

• Precision/optimality depends on error

(Value Iteration is also contraction mapping)



LEARNING RESIDUAL DYNAMICS FOR DRONE LANDING

𝑠𝑡+1 = 𝑓 𝑠𝑡 , 𝑎𝑡 + ሚ𝑓 𝑠𝑡 , 𝑎𝑡 + 𝜖

New State

Current State

Current Action (aka control input)

Unmodeled Disturbance

𝑓 = nominal dynamics
ሚ𝑓 = learned dynamics

Use existing control methods to generate actions

• Provably robust (even using deep learning)

• Requires ሚ𝑓 Lipschitz & bounded error
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CONTROL SYSTEM FORMULATION

• Dynamics:

• Control:

• Unknown forces & moments:

Learn the Residual
(function of state and control input)

Learn the Residual
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DATA COLLECTION (MANUAL EXPLORATION)

• Learn ground effect:

• (s,u): height, velocity, attitude and four control inputs

෨𝐹 𝑠, 𝑢 →

Spectral-Normalized
4-Layer Feed-Forward

Spectral Normalization: 
Ensures ෩𝑭 is Lipshitz
[Bartlett et al., NeurIPS 2017]
[Miyato et al., ICLR 2018]

Ongoing Research: 

Safe Exploration
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PREDICTION RESULTS
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GENERALIZATION PERFORMANCE ON DRONE

Our Model Baseline
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Spectral Regularized NN Conventional NN

Neural Lander: Stable Drone Landing Control using Learned Dynamics, ICRA 2019
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CONTROLLER DESIGN (SIMPLIFIED)

Nonlinear Feedback Linearization:

Cancel out ground effect  ෨𝐹(𝑠, 𝑢𝑜𝑙𝑑):

𝑢𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 𝐾𝑠𝜂

Feedback Linearization (PD control)

𝜂 =
𝑝 − 𝑝∗

𝑣 − 𝑣∗
Desired Trajectory
(tracking error)

𝑢 = 𝑢𝑛𝑜𝑚𝑖𝑛𝑎𝑙 + 𝑢𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
Requires Lipschitz & small time delay
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STABILITY GUARANTEES

Assumptions: 

Desired states along position trajectory bounded

Control updates faster than state dynamics

Learning error bounded (new): Bounded Lipschitz (through spectral normalization of layers

Stability Guarantee:(simplified)

𝜂(t) ≤ 𝜂(0) exp
𝜆 − ෨𝐿𝜌

𝐶
𝑡 +

𝜖

𝜆 − ෨𝐿𝜌

⟹ 𝜂(t) →
𝜖

𝜆𝑚𝑖𝑛 𝐾 − ෨𝐿𝜌

Exponentially fast

Unmodeled 
disturbance

Lipschitz of NN

Time delaycontrol gain
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CAST @ CALTECH
LEARNING TO LAND
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TESTING TRAJECTORY TRACKING

Move around a circle super close to the ground
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CAST @ CALTECH
DRONE WIND TESTING LAB
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TAKEAWAYS

Control methods => analytic guarantees

Blend w/ learning => improve precision/flexibility

Preserve side guarantees

Sometimes interpret as functional regularization

(side guarantees)

(possibly relaxed)

(speeds up learning)
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Blending Data Driven Learning 

with Symbolic Reasoning
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AGE-OLD DEBATE IN AI

Symbolic reasoning:

• Humans have impressive ability at symbolic reasoning

• Compositional: can draw complex inferences from simple 
axioms.

Representation learning: 

• Data driven: Do not need to know the base concepts

• Black box and not compositional: cannot easily combine and 
create more complex systems. 

Symbols vs. Representations

Combining Symbolic Expressions & Black-box Function Evaluations in Neural Programs, ICLR 2018

Forough
Arabshahi

Sameer
Singh
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SYMBOLIC + NUMERICAL INPUT

Goal: Learn a domain of functions (sin, cos, log…)

Training on numerical input-output does not generalize.

Data Augmentation with Symbolic Expressions 

Efficiently encode relationships between functions.

Solution: 

Design networks to use both

symbolic + numeric

Leverage the observed structure of the data

Hierarchical expressions
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TASKS CONSIDERED

◎Mathematical equation verification
○ sin2 𝜃 + cos2 𝜃 = 1 ???

◎Mathematical question answering 
○ sin2 𝜃 +

2
= 1

◎Solving differential equations 
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EXPLOITING HIERARCHICAL REPRESENTATIONS

Symbolic expression Function Evaluation Data Point Number Encoding Data Point
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REPRESENTING MATHEMATICAL EQUATIONS

◎Grammar rules
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DOMAIN
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TREE-LSTM FOR CAPTURING HIERARCHIES
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DATASET GENERATION

◎Random local changes

Replace Node Shrink Node Expand Node
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DATASET GENERATION

◎Sub-tree matching

Dictionary key-value pairChoose Node Replace with value’s pattern 



Majority Class Sympy LSTM : sym TreeLSTM : sym TreeLSTM:sym+num

Generalization 50.24% 81.74% 81.71% 95.18% 97.20%

Extrapolation 44.78% 71.93% 76.40% 93.27% 96.17%
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EQUATION COMPLETION
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EQUATION COMPLETION
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TAKE-AWAYS

Vastly Improved numerical evaluation: 90% over function-fitting baseline.

Generalization to verifying symbolic equations of higher depth

Combining symbolic + numerical data helps in better generalization for 
both tasks: symbolic and numerical evaluation.

LSTM: Symbolic TreeLSTM: Symbolic TreeLSTM: symbolic + numeric

76.40 % 93.27 % 96.17 %
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TENSORS PLAY A CENTRAL ROLE

DATACOMPUTE

ALGORITHMS
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TENSOR : EXTENSION OF MATRIX
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TENSORS FOR DATA
ENCODE MULTI-DIMENSIONALITY

Image: 3 dimensions
Width * Height * Channels

Video: 4 dimensions
Width * Height * Channels * Time
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TENSORS FOR MODELS

STANDARD CNN USE LINEAR ALGEBRA 
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Jean Kossaifi, Zack Chase Lipton, Aran Khanna, Tommaso Furlanello, A

Jupyters notebook: https://github.com/JeanKossaifi/tensorly-notebooks

TENSORS FOR MODELS

TENSORIZED NEURAL NETWORKS
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SPACE SAVING IN DEEP TENSORIZED NETWORKS
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T E N S O R L Y :  H I G H - L E V E L  A P I  F O R  T E N S O R  
A L G E B R A

• Python programming

• User-friendly API

• Multiple backends: flexible + 
scalable

• Example notebooks

Jean Kossaifi
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TENSORLY WITH PYTORCH BACKEND

import tensorly as tl

from tensorly.random import tucker_tensor

tl.set_backend(‘pytorch’)

core, factors = tucker_tensor((5, 5, 5),

rank=(3, 3, 3))

core = Variable(core, requires_grad=True)

factors = [Variable(f, requires_grad=True) for f in factors]

optimiser = torch.optim.Adam([core]+factors, lr=lr)

for i in range(1, n_iter):

optimiser.zero_grad()

rec = tucker_to_tensor(core, factors)

loss = (rec - tensor).pow(2).sum()

for f in factors:

loss = loss + 0.01*f.pow(2).sum()

loss.backward()

optimiser.step()

Set Pytorch backend

Attach gradients

Set optimizer

Tucker Tensor form
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AI
REVOLUTIONIZING 
MANUFACTURING 
AND LOGISTICS
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NVIDIA ISAAC —
WHERE ROBOTS 
GO TO LEARN
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Cars Pedestrians Path

Lanes Signs Lights

Cars Pedestrians Path

Lanes Signs Lights

1. COLLECT & PROCESS DATA 2. TRAIN MODELS

3. SIMULATE 4. DRIVE

NVIDIA DRIVE
FROM TRAINING TO SAFETY
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TAKEAWAYS

End-to-end learning from scratch is impossible in most settings

Blend DL w/ prior knowledge => improve data efficiency, 
generalization, model size

Obtain side guarantees like stability + safety,

Outstanding challenge (application dependent): 

what is right blend of prior knowledge vs data?
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Thank you


