Anima Anandkumar

Caltech

INFUSING PHYSICS + STRUCTURE INTO MACHINE LEARNING

TRINITY OF AI/ML

ALGORITHMS

PHYSICS-INFUSED LEARNING

Learning = Computational Reasoning over Data & Priors

How to use Physics as a (new) form of Prior?

- Learnability
- Generalization

What are some of the hardest challenges for AI?

" Mens sana in corpore sano."

Juvenal in Satire X.

ROBOTICS * MOONSHOTS

Explorers Planetary, Underwater, and Space Explorers

Guardians Dynamic Event Monitors and First Responders

Dynamic Event Monitors and First Responders

Transformers Swarms of Robots Transforming Shapes and Functions

Transporters Robotic Flying Ambulances and Delivery Drones

MIND & BODY NEXT-GENERATION AI

Instinctive:

Fine-grained reactive Control

Behavioral:

Sense and react to human

Deliberative:

Making and adapting plans

Multi-Agent:

Acting for the greater good

PHYSICS-INFUSED LEARNING FOR ROBOTICS AND CONTROL

Learning = Computational Reasoning over Data & Priors

How to use Physics as a (new) form of Prior?

- Learnability
- Generalization

BASELINE: MODEL-BASED CONTROL (NO LEARNING)

(Value Iteration is also contraction mapping)

Robust Control (fancy contraction mappings)

- Stability guarantees (e.g., Lyapunov)
- Precision/optimality depends on error

LEARNING RESIDUAL DYNAMICS FOR DRONE LANDING

f = nominal dynamics \tilde{f} = learned dynamics

Use existing control methods to generate actions

- Provably robust (even using deep learning)
- Requires \tilde{f} Lipschitz & bounded error

CONTROL SYSTEM FORMULATION

Learn the Residual (function of state and control input)

• Dynamics:

• Control:

$$\begin{cases} \dot{\mathbf{p}} = \mathbf{v}, & m\dot{\mathbf{v}} = m\mathbf{g} + R\mathbf{f}_u + \mathbf{f}_a \\ \dot{R} = RS(\boldsymbol{\omega}), & J\dot{\boldsymbol{\omega}} = J\boldsymbol{\omega} \times \boldsymbol{\omega} + \boldsymbol{\tau}_u + \boldsymbol{\tau}_a \end{cases}$$
$$\begin{aligned} \mathbf{f}_u &= [0, 0, T]^\top \\ \boldsymbol{\tau}_u &= [\tau_x, \tau_y, \tau_z]^\top \end{aligned}$$
$$\begin{bmatrix} T \\ \tau_x \\ \tau_y \\ \tau_z \end{bmatrix} = \begin{bmatrix} c_T & c_T & c_T & c_T \\ 0 & c_T l_{\text{arm}} & 0 & -c_T l_{\text{arm}} \\ -c_T l_{\text{arm}} & 0 & c_T l_{\text{arm}} & 0 \\ -c_Q & c_Q & -c_Q & c_Q \end{bmatrix} \begin{bmatrix} n_1^2 \\ n_2^2 \\ n_3^2 \\ n_4^2 \end{bmatrix}$$

• Unknown forces & moments:

$$\mathbf{f}_a = [f_{a,x}, f_{a,y}, f_{a,z}]^\top$$
$$\boldsymbol{\tau}_a = [\tau_{a,x}, \tau_{a,y}, \tau_{a,z}]^\top$$

Learn the Residual

DATA COLLECTION (MANUAL EXPLORATION)

• Learn ground effect: $\tilde{F}(s, u) \rightarrow \mathbf{f}_a = [f_{a,x}, f_{a,y}, f_{a,z}]^\top$

Ongoing Research: Safe Exploration

• (s,u): height, velocity, attitude and four control inputs

PREDICTION RESULTS

GENERALIZATION PERFORMANCE ON DRONE

Spectral Regularized NN Conventional NN

Neural Lander: Stable Drone Landing Control using Learned Dynamics, ICRA 2019

CONTROLLER DESIGN (SIMPLIFIED)

Nonlinear Feedback Linearization:

$$u_{nominal} = K_{s}\eta \qquad \eta = \begin{bmatrix} p - p^{*} \\ v - v^{*} \end{bmatrix}$$
 Desired Trajectory (tracking error)

Feedback Linearization (PD control)

Cancel out ground effect $\tilde{F}(s, u_{old})$: $u = u_{nominal} + u_{residual}$ Requires Lipschitz & small time delay

STABILITY GUARANTEES

Assumptions:

Desired states along position trajectory bounded

Control updates faster than state dynamics

Learning error bounded (new): Bounded Lipschitz (through spectral normalization of layers

Stability Guarantee: (simplified)

$$\begin{aligned} & \begin{array}{l} \text{control gain} & \text{Time delay} & \text{Unmodeled} \\ \|\eta(t)\| \leq \|\eta(0)\| \exp\left\{\frac{\lambda & -\tilde{L}\rho}{C}t\right\} + \frac{\epsilon}{\lambda & -\tilde{L}\rho} \\ & \begin{array}{l} & \\ & \\ \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \end{array} \\ \\ & \begin{array}{l} & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \\ & \end{array} \\ & \begin{array}{l} & \\ & \end{array} \\ & \begin{array}{l} & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \\ & \end{array} \\ & \begin{array}{l} & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \\$$

Exponentially fast

CAST @ CALTECH LEARNING TO LAND

3D Landing Performance

TESTING TRAJECTORY TRACKING

Move around a circle super close to the ground

CAST @ CALTECH DRONE WIND TESTING LAB

TAKEAWAYS

Control methods => analytic guarantees (side guarantees)

Blend w/ learning => improve precision/flexibility

Preserve side guarantees (possibly relaxed)

Sometimes interpret as functional regularization (speeds up learning)

Blending Data Driven Learning with Symbolic Reasoning

AGE-OLD DEBATE IN AI

Symbols vs. Representations

Symbolic reasoning:

- Humans have impressive ability at symbolic reasoning
- Compositional: can draw complex inferences from simple axioms.

Representation learning:

- Data driven: Do not need to know the base concepts
- Black box and not compositional: cannot easily combine and create more complex systems.

Sameer Singh

Combining Symbolic Expressions & Black-box Function Evaluations in Neural Programs, ICLR 2018

SYMBOLIC + NUMERICAL INPUT

Goal: Learn a domain of functions (sin, cos, log...)

Training on numerical input-output does not generalize.

Data Augmentation with Symbolic Expressions

Efficiently encode relationships between functions.

Solution:

Design networks to use both

symbolic + numeric

Leverage the observed structure of the data

Hierarchical expressions

TASKS CONSIDERED

Omega Mathematical equation verification $\sin^2 \theta + \cos^2 \theta = 1$???

Omega Mathematical question answering $\sin^2 \theta + e^2 = 1$

OSolving differential equations

 $\frac{\frac{d^2 f(x)}{dx^2} + 4f(x) = \sin(2x)}{f(x) : \frac{1}{8}\sin(2x) - \frac{x}{4}\cos(2x)}$

EXPLOITING HIERARCHICAL REPRESENTATIONS

decimal tree for 2.5

Symbolic expression

Function Evaluation Data Point

Number Encoding Data Point

REPRESENTING MATHEMATICAL EQUATIONS

OGrammar rules

- $I \rightarrow = (E, E), \neq (E, E)$
- $E \rightarrow T, F_1(E), F_2(E, E)$
- $F_1 \rightarrow \sin, \cos, \tan, \ldots$
- $F_2 \rightarrow +, \wedge, \times, \text{diff}, \ldots$
- $T \rightarrow -1, 0, 1, 2, \pi, x, y, \dots,$

floating point numbers of precision 2

DOMAIN

Unary functions, F_1					Terminal, T		Binary, F_2
\sin	\cos	csc	sec	\tan	0	1	+
\cot	\arcsin	arccos	arccsc	arcsec	2	3	×
arctan	arccot	\sinh	\cosh	csch	4	10	\wedge
sech	anh	coth	arsinh	arcosh	0.5	-1	diff
arcsch	arsech	artanh	arcoth	\exp	0.4	0.7	
					π	x	

TREE-LSTM FOR CAPTURING HIERARCHIES

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

$$\sin(-2.5) = -0.6$$

DATASET GENERATION

Random local changes

Replace Node

Shrink Node

Expand Node

DATASET GENERATION

◎Sub-tree matching

Choose Node

Dictionary key-value pair

Replace with value's pattern

EQUATION VERIFICATION

EQUATION COMPLETION

EQUATION COMPLETION

3 🔷 🔍 NVIDIA.

TAKE-AWAYS

Vastly Improved numerical evaluation: 90% over function-fitting baseline. Generalization to verifying symbolic equations of higher depth

LSTM: Symbolic	TreeLSTM: Symbolic	TreeLSTM: symbolic + numeric
76.40 %	93.27 %	96.17 %

Combining symbolic + numerical data helps in better generalization for both tasks: symbolic and numerical evaluation.

TENSORS PLAY A CENTRAL ROLE

ALGORITHMS

TENSOR : EXTENSION OF MATRIX

TENSORS FOR DATA ENCODE MULTI-DIMENSIONALITY

Image: 3 dimensions Width * Height * Channels

Video: 4 dimensions Width * Height * Channels * Time

TENSORS FOR MODELS STANDARD CNN USE LINEAR ALGEBRA

TENSORS FOR MODELS TENSORIZED NEURAL NETWORKS

Jean Kossaifi, Zack Chase Lipton, Aran Khanna, Tommaso Furlanello, A

Jupyters notebook: https://github.com/JeanKossaifi/tensorly-notebooks

SPACE SAVING IN DEEP TENSORIZED NETWORKS

TENSORLY: HIGH-LEVEL API FOR TENSOR ALGEBRA

- Python programming
- User-friendly API
- Multiple backends: flexible + scalable
- Example notebooks

Jean Kossaifi

TENSORLY WITH PYTORCH BACKEND

AI REVOLUTIONIZING MANUFACTURING AND LOGISTICS

000

NVIDIA ISAAC — WHERE ROBOTS GO TO LEARN

NVIDIA DRIVE FROM TRAINING TO SAFETY

1. COLLECT & PROCESS DATA

1 1

1 1 1 1 1 1 1

2. TRAIN MODELS Cars Pedestrians Path Lanes Signs Lights

TAKEAWAYS

End-to-end learning from scratch is impossible in most settings

Blend DL w/ prior knowledge => improve data efficiency, generalization, model size

Obtain side guarantees like stability + safety,

Outstanding challenge (application dependent): what is right blend of prior knowledge vs data?

Thank you