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INFUSING PHYSICS + STRUCTURE
INTO MACHINE LEARNING




TRINITY OF Al/ML

ALGORITHMS

COMPUTE




PHYSICS-INFUSED LEARNING

Learning

Data + @

Learning = Computational Reasoning over Data & Priors




What are some of the hardest
challenges for Al?



“ Mens sana In corpore sano.”

Juvenal in Satire X.



ROBQTICS *
MOGOWNSHOTS

Guardians

Dynamic Event Monitors and First Responders

Transformers

Swarms of Robots Transforming Shapes and Functions

Partners
Robots Helping and Entertaining People
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MIND & BODY
NEXT-GENERATION Al

Deliberative:
Making and adapting plans

Instinctive:

Fine-grained reactive Control

Multi-Agent:

Acting for the greater good

Behavioral:

Sense and react to human




PHYSICS-INFUSED LEARNING FOR ROBOTICS AND CONTROL

Learning

Data + @

Learning = Computational Reasoning over Data & Priors




BASELINE: MODEL-BASED CONTROL (NO LEARNING)

New State Current Action (aka control input)

\

Ser1 = F(sp,uy) + €

/ Unmodeled Disturbance / Error
Current State

(Value Iteration is also contraction mapping)




LEARNING RESIDUAL DYNAMICS FOR DRONE LANDING

f = nominal dynamics

~

f = learned dynamics

Current Action (aka control input)
New State

N VAN

Ser1 = f(spap) + f(sp,ar) + €

\ / Unmodeled Disturbance

Current State




Dynamics:

Control:

Unknown forces & moments:

CONTROL SYSTEM FORMULATION

Learn the Residual
(function of state and control input)

p=1v, mv = mg + Rf, + {,

R=RS(w), Jw=JwXw+T, +7,

f, =10,0,7]"

_ T
Tu = [Txa Ty, Tz]
cT cT cT cT
0 CTlarIn 0 —CTlarn']
_CTlarnl 0 CTlarIn 0
—CQ CQ —CQ CQ

T Learn the Residual

[Tcz. s Ta,ys Ta,z

ANVIDIA.



DATA COLLECTION (MANUAL EXPLORATION)

Spectral Normalization:

Ensures F is Lipshitz
[Bartlett NeurlPS 2017]
[Miyato et al., ICLR 2018]

\

Spectral-Normalized

150 200 4-Layer Feed-Forward
time (s)
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Learn ground effect:F(s, uw) - Ua?fuvafﬂz]T Ongoing Research:

Safe Exploration
(s,u): height, velocity, attitude and four control inputs

ANVIDIA.



PREDICTION RESULTS

—— RelLU Network prediction
Ground effect physical model with different u
Ground truth
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GENERALIZATION PERFORMANCE ON DRONE

Spectral Regularized NN Conventional NN

Training set
domain

‘A_;‘ ]
omain
I

Guanya Xichen Michael
Shi Shi O’Connell

/ )

Rose Kamyar Soon-Jo

Vertical Velocit
y Yu Azizzadenesheli  Chung

Neural Lander: Stable Drone Landing Control using Learned Dynamics, ICRA 2019



CONTROLLER DESIGN (SIMPLIFIED)
Nonlinear Feedback Linearization:

_K Desired Trajectory
Unominal = BsT] n= v — 1 (tracking error)

\

Feedback Linearization (PD control)

Cancel out ground effect F(s,u,q): AU = Unominal T Uresidual

Requires Lipschitz & small time delay

15 SANVIDIA.



STABILITY GUARANTEES

Assumptions:
Desired states along position trajectory bounded
Control updates faster than state dynamics

Learning error bounded (new): Bounded Lipschitz (through spectral normalization of layers

Stability Guarantee:(simplified)

control gain Time delay Unmodeled

W N disturbance
A p /j € —
b+ ——%-

In®ll < lln(O)llexp {T o7

Lipschitz of NN
€

Amin (K) i Z,O

= [In(®Il -

Exponentially fast

16
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CAST @ CALTECH
LEARNING TO LAND

3D Landing Performance



TESTING TRAJECTORY TRACKING

Move around a circle super close to the ground
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CAST @ CALTECH
DRONE WIND TESTING LAB




TAKEAWAYS

Control methods => analytic guarantees

(side guarantees)

Blend w/ learning => improve precision/flexibility

Preserve side guarantees (possibly relaxed)

Sometimes interpret as functional regularization

(speeds up learning)

20
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Blending Data Driven Learning
with Symbolic Reasoning



AGE-OLD DEBATE IN Al

Symbols vs. Representations

Symbolic reasoning:
 Humans have impressive ability at symbolic reasoning

« Compositional: can draw complex inferences from simple
axioms.

Representation learning:
« Data driven: Do not need to know the base concepts

« Black box and not compositional: cannot easily combine and
create more complex systems.

Forough Sameer
Arabshahi Singh

Combining Symbolic Expressions & Black-box Function Evaluations in Neural Programs, ICLR 2018

ANVIDIA.



SYMBOLIC + NUMERICAL INPUT

Goal: Learn a domain of functions (sin, cos, log...)

Training on numerical input-output does not generalize. I l
Data Augmentation with Symbolic Expressions

Efficiently encode relationships between functions.

Solution:

Design networks to use both

symbolic + humeric

Leverage the observed structure of the data

Hierarchical expressions

ANVIDIA.



TASKS CONSIDERED

©Mathematical equation verification
O sin’6 +cos?f=1 7

©Mathematical question answering
O sin2f+ =1

©Solving differential equations

TLE) 1 4f(2) = sin(2x)

f(z): £sin(2z) — £ cos(2x)




EXPLOITING HIERARCHICAL REPRESENTATIONS

3/\

W) (1]
sin”(6) + 0082(9) =1 sin(—2. decimal tree for 2.5

B d 2 & w f 2ge

Symbolic expression Function Evaluation Data Point Number Encoding Data Point



REPRESENTING MATHEMATICAL EQUATIONS

©Grammar rules

I — =(E,E), #E,F)
E — T F(F),F5(E,F)
F7 — sin, cos, tan, . ..

Fs — + A, x, diff, . ..

17 — —1,0,1,2,m,x,y,...,

floating point numbers of precision 2




DOMAIN

Unary functions, Terminal, T’ Binary, F5

sin COS CSC sec tan 0 1

cot arcsin  arccos arccsc  arcsec
arctan arccot sinh cosh csch

sech tanh coth arsinh  arcosh

arcsch arsech artanh arcoth exp

4
0.5
0.4

7
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TREE-LSTM FOR CAPTURING HIERARCHIES

[s it true? Are they the same?

[—‘j Wil
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DATASET GENERATION

©@Random local changes

Replace Node Shrink Node Expand Node



DATASET GENERATION

©Sub-tree matching

Choose Node Dictionary key-value pair Replace with value’s pattern
SANVIDIA.



100.00%

90.00%

80.00%

70.00%

ACCURACY

60.00%

50.00%

40.00%

EQUATION VERIFICATION

/

/

Majority Class

Sympy

LSTM : sym

TreeLSTM : sym

Generalization

50.24%

81.74%

81.71%

95.18%

== xtrapolation

44.78%

71.93%

76.40%

93.27%




pred

prob

0.9999
0.9999
0.9999
0.9999

EQUATION COMPLETION

cos(—M) = —0.57

pred modelErr trueErr

3 1.8e—5 1.7e—1
2.17 1.9e—5  9.9e—5
2.16 2.6e—5  3.9e—4
218 1.9e—4 O




EQUATION COMPLETION
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@+ Tree-LSTM
Tree-LSTM+data
@ LSTM

ANVIDIA.




TAKE-AWAYS

Vastly Improved numerical evaluation: over function-fitting baseline.

Generalization to verifying symbolic equations of higher depth

LSTM: Symbolic TreeLSTM: Symbolic TreeLSTM: symbolic + numeric

76.40 % 93.27 % 96.17 %

Combining symbolic + numerical data helps
symbolic and numerical evaluation.




TENSORS PLAY A CENTRAL ROLE

ALGORITHMS

COMPUTE




TENSOR : EXTENSION OF MATRIX




TENSORS FOR DATA
ENCODE MULTI-DIMENSIONALITY

JImage: 3 dimensions Video: 4 dimensions
Width * Height * Channels Width * Height * Channels * Time



TENSORS FOR MODELS
STANDARD CNN USE LINEAR ALGEBRA




TENSORS FOR MODELS
TENSORIZED NEURAL NETWORKS

Low-rank weights

G-9

Jean Kossaifi, Zack Chase Lipton, Aran Khanna, Tommaso Furlanello, A

Jupyters notebook: https://github.com/JeanKossaifi/tensorly-notebooks



SPACE SAVING IN DEEP TENSORIZED NETWORKS
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—— Top-1 accuracy
65 —— Top-5 accuracy

0 20 40
Space savings (in %




TENSORLY: HIGH -

* Python programming
e User-friendly API

* Multiple backends: flexible +
scalable

 Example notebooks

Jean Kossaifi

Bt () « e
= ' A e
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/
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TENSORLY WITH PYTORCH BACKEND

import tensorly as tl
from tensorly.random import tucker tensor

tl.set backend(‘pytorch’)
core, factors = tucker tensor((5, 5, 5),
rank=(3, 3, 3))
core = Variable(core, requires grad=True)
factors = [Variable(f, requires grad=True) for f in factors]

optimiser = torch.optim.Adam([core]+factors, lr=1lr)

for 1 in range(l, n iter):
optimiser.zero grad()
rec = tucker to tensor (core, factors)
loss = (rec - tensor) .pow(2) .sumf()
for £ in factors:
loss = loss + 0.01*f.pow(2) .sumf()

loss.backward/()
optimiser.step()

ANVIDIA.



Al
REVOLUTIONIZING ‘}» -

MANUFACTURING &
AND LOGISTICS
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NVIDIA ISAAC —
WHERE ROBOTS
GO TO LEARN
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TAKEAWAYS

End-to-end learning from scratch is impossible in most settings

Blend DL w/ prior knowledge => improve data efficiency,
generalization, model size

Obtain side guarantees like stability + safety,

Outstanding challenge (application dependent):

what is right blend of prior knowledge vs data?

ANVIDIA.



Thankyou



