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• Science 3.0: HPC + ML 

– Apply GPUs to accelerate models where physics is 
rigorous.

– Replace parameterizations with Machine Learning 
emulators where the physics is phenomenological.

• Initial results are encouraging…

• But much more work needs to be done to prove these 
ideas out!

Talk Summary
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What’s driving future of prediction? ESP!

• Then:

– Weather prediction(5-10 days)

– GAP

– Climate projections (decades-centuries)

• Divisions between meteorology and climate are breaking 
down!

– Discoveries of predictability driven by the ocean and land surface 

• Now: Earth System Prediction (ESP) filling that GAP

– Sub-seasonal (Weeks)

– Seasonal (Months)

– Climate predictions  (years to decades)

• Making these predictions will require significantly more 
computing power.
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• Due to insufficient computing power ESMs can’t resolve 
key phenomena.

• Scientists try to describe the unresolved scales using 
human-crafted physics parameterizations.

• ESM’s software complexity grows, driven by the 
increasing complexity of these parameterizations. 

• Growing architectural complexity hinders the ability to 
port and optimize ESM codes on new architectures. 

• Due to insufficient computing power ESMs can’t resolve 
key phenomena.

Earth System Modeling Catch 22



Shortened presentation titleShortened presentation titleCombining numerical modeling and ML
5

Simulation of 2012 Tropical Cyclones at 4 km resolution 

– Courtesy of Falko Judt, NCAR

Model for Prediction Across Scales - Atmosphere (MPAS-A)
A Global Meteorological Model & Future ESP Component
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• Fully compressible non-hydrostatic 

equations written in flux form

• Finite Volume Method on staggered 

grid

– The horizontal momentum normal to 

the cell edge (u) is sits at the cell 

edges. 

– Scalars sit at the cell centers

• Split-Explicit timestepping scheme

– Time integration 3rd order Runge-Kutta

– Fast horizontal waves are sub-cycled 

6

MPAS: the algorithmic description
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3/19/2019UCAR CONFIDENTIAL
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Sneaky
pentagons

Horizontal Vertical

MPAS Grids…

Local Refinement
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Parallel Decomposition via Metis
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MPAS Time-Integration Design

There are ~350 halo exchanges /timestep!
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Physics (Called before dynamics)
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Microphysics (called after dynamics)
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MPAS Component SLOC Where it runs

Dynamics 10,000 GPU

Radiative Transport 37,000 CPU 

Land Surface Model 21,000 CPU

Other physics 42,000 GPU

Total 110,000

MPAS: The Code inventory
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• Achieve portability across CPU and GPU architectures 
without sacrificing CPU performance

• Minimize use of architecture-specific code:

#ifdef _GPU_

:

#endif 

• Manage porting/optimization costs

– Use OpenACC to enable CPU-GPU portability

• Use all the hardware (CPU & GPU) available

– After all we paid for it!

13

Goals of MPAS-GPU Portability Project

Part of our team: 
UW students and 
PGI experts.
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• Test case: MPAS-A dry dynamical core

• System 1: IBM “WSC” supercomputer 
– AC922 node with 6, 16 GB V100 GPUs;

– 2x 22-core IBM Power-9 CPUs;

– Compiler: PGI 18.10

– 2x IB interconnect; IBM Spectrum MPI

• System 2:  NVIDIA “Prometheus” supercomputer
– DGX-1 node with 8, 16 GB V100 GPUs;

– 2x 18-core Intel Xeon v4 (BWL) CPUs;

– Compiler: PGI 18.10

– 4x IB interconnect; OpenMPI 3.1.3

• System 3: NCAR Cheyenne supercomputer
– 2x 18-core Intel Xeon v4 (BWL)

– Intel compiler 17.0.1

– 1x EDR IB interconnect; HPE MPT 2.16 MPI

14

Scaling Benchmark Test Systems 
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Strong Scaling V100 vs v4 Xeon at 10 km and 15 km
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GPU speed relative to dual socket Intel Xeon v4 nodes
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Weak scaling of MPAS-A dry dycore (56 level, SP) on GPUs
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• Module level allocatable variables (20 in number) were 
unnecessarily being copied by compiler from host to device to 
initialize them with zeroes. Moved the initialization to GPUs.

• dyn_tend: eliminated dynamic allocation and deallocation of  
variables that introduced H<->D data copies. It’s now  
statically created.

• MPAS_reconstruct: originally kept on CPU was ported to GPUs.

• MPAS_reconstruct: mixed F77 and F90 array syntax caused 
compiler to serialize the execution on GPUs. Rewrote with F90 
constructs.

• Printing out summary info (by default) for every timestep 
consumed time. Turned into debug option.

18

Optimizing MPAS-A dynamical core: Lessons Learned
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Improving MPAS-A halo exchange performance: coalescing kernels

Coalescing these 9 kernels should drop MPI overhead by 50%
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MPI & NOAH control path 

CPU – SW/LW Rad & NOAH

GPU – everything else 

Proc 0

Proc 1

Node

Overlapping Radiation Calculation:
Process Layout (Example) 

Asynch I/O process 

Idle processor
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Distribution of times to transfer 
general physics input fields from 
integration to radiation tasks for 
the 60-km uniform mesh on 
Cheyenne.

576 total tasks (16 nodes x 36 
cores)
352 integration tasks
224 radiation tasks

Co-locating radiation and integration tasks
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Projected full MPAS-A model performance 

MPAS-A estimated timestep budget for 40k pts per GPU 

dynamics (dry)

dynamics (moist)

physics

radiation comms

halo comms

0.139 sec

0.03 sec

0.085 sec

0.003 sec

0.06 sec

0.018 sec

Total time: 0.275 sec/step
15 km -> 64 V100 GPUs
Throughput ~0.9 years/day
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• PCAST:

– When do results first begin to differ between CPU and GPU?

• MPAS Validation Tool

– When is different still right?

23

Debugging MPAS-A: Tools

SLOW and WRONG FAST and RIGHT

FAST and WRONG CPU and RIGHT
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Debugging MPAS-A: PCAST

• PGI Compiler Assisted Software Testing (PCAST) 
• Helps test for program correctness, and determine points of 

divergence. 
• New in PGI 19.1 Compilers!
• Tells when CPU and GPU results diverge. 
• There are three ways to invoke PCAST:

– With the autocompare compiler flag
– Through the pgi_compare run-time call
– Through the acc_compare run-time call

PCAST sfclay1d:1008 Float
idx: 3 FAIL ABS act: 1.69916935e+01 exp: 1.69919109e+01 tol: 9.99999975e-05

idx: 7 FAIL ABS act: 2.56341431e+02 exp: 2.56343323e+02 tol: 9.99999975e-05
idx: 9 FAIL ABS act: 4.80718613e+01 exp: 4.80722618e+01 tol: 9.99999975e-05
idx: 10 FAIL ABS act: 1.20188065e+01 exp: 1.20190525e+01 tol: 9.99999975e-05
idx: 11 FAIL ABS act: 2.40540451e+02 exp: 2.40539322e+02 tol: 9.99999975e-05
idx: 12 FAIL ABS act: 3.09436970e+01 exp: 3.09440041e+01 tol: 9.99999975e-05

24

Is this numerical amplification of roundoff errors, or a bug?
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• Identify physically based criteria to assist 
the validation (remove any “noise” in the 
data that can be attributed to realistic and 
anticipated considerations)

• Select different regions globally: 
mountains, deserts, oceans, ice-caps
– Model imbalances over high terrain differ from 

domains over flat surfaces

– Initial conditions routinely bias conditions differently 
between polar and tropical regions

– Scatter domains around the globe so that day and 
night are considered

Correctness: MPAS Validation Tool
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Six domains to cover extremes

Correctness: MPAS Validation Tool
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• A = Standard case, -O3, r4
• B = Standard case, -O0, r8
• C = A + GPU-ized code, run on CPUs
• D = A + different physics

Test Cases

Test Theta Qv U

A vs B 0.07 0.03 0.003

A vs C 0.000 0.02 0.000

A vs D 1.00 1.00 0.14

Probability Reject Null Hypothesis
0 => Same Data
> 0.95 => “Significant differences”

MPAS Validation Script Output
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• Some differences PCAST detected were red-herrings.

– Low-order bit numerical accuracy issues in single precision 
got amplified in the physics to O(10-3).

– Eventually we realized that these differences didn’t 
significantly influence core state variables.

• Passing Fortran arrays between F90 (dynamics) and F77 
(physics) styles confused the PGI compiler, especially 
deep in the physics call tree. 

– Some arrays became “new” instead of “present” and correct 
values were replaced with uninitialized arrays.

• MPAS-A physics had several loops with goto statements.

– Made debugging extremely difficult.

– Code was rewritten, in the end was not a source of bugs.

28

Bill and Ted’s Excellent Physics GPU Port



Shortened presentation titleShortened presentation titleCombining numerical modeling and ML

• Consider this code snippet:

subroutine foo

real, allocatable :: a(:,:)
:
allocate(a(nx,ny,nz))
call bar(a(1,1,1))
deallocate(a)

:
allocate(a(nx,ny,nz-1))
call bar(a(1,1,1))
deallocate(a)

end subroutine foo

• The OpenACC compiler had a hard time determining the array 
size. This forced us to use several host copies to ensure that 
the OpenACC compiler got the right size.

29

Excellent Physics GPU Port (part 2)

subroutine bar (a)
real a(nx,*)
:
end subroutine bar
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• Junk data copied from host due to data scoping 
errors. 

– Root cause: model complexity + large team size

– However, thanks to PCAST, this was the least of our 
problems.

• Array transpositions between physics and dynamics 
were doing “sneak” computations.

– We missed these, much to our misfortune.

• Final score:

30

Excellent Physics GPU Port (part 3)

2 2 2
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• PCAST was a lifesaver throughout this process, single 
handedly converted months of work to weeks. 
– providing a flag that can enable comparisons of all variables 

for every kernel instead of from “host directive” locations;

– pointing the exact line number of the code where the deviation 
occurred. 

• MPAS Validation scripts have vital in sorting out red 
herrings. 
– The scripts’ simplicity and versatility helped to narrow down 

numerical issues on GPU. 

• Other than the F77 issues, the PGI Fortran OpenACC
compiler was robust w.r.t F90 code. 

• It’s not what you don’t know that gets you into trouble it’s 
what you know for sure that just ain’t so.

31

Excellent Physics GPU Port: Lessons Learned
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• Due to insufficient computing power ESMs can’t resolve 
key phenomena.

• Scientists try to describe the unresolved scales using 
human-crafted physics parameterizations.

• ESM’s software complexity grows, driven by the 
increasing complexity of these parameterizations. 

• Growing architectural complexity hinders the ability to 
port and optimize ESM codes on new architectures. 

• Due to insufficient computing power ESMs can’t resolve 
key phenomena.

Earth System Modeling Catch 22 (reminder)
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Domain 
Science

Machine 
Learning 

and 
Statistics

HPC
Modeling 
Expertise

Science 3.0: Blending Machine Learning and Traditional HPC  

NCAR’s Strength: Science 2.0

HPC + ML: Science 3.0 

33
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Why machine-learned emulation? The per-core performance of conventional 
computer architectures has stagnated, and models are getting increasingly 
complex. Replacing human-crafted parameterizations with machine learning 
algorithms may simplify, accelerate and improve models.

• Sub-grid-scale turbulence  -Drs. Kosovic & Haupt (RAL), Gagne (AIML)
• improved representation of the surface layer in meteorological models

• Cloud microphysics  - Drs. Gettelman (CGD), Gagne & Sobhani (AIML)
• improved weather and climate modeling

• Interplanetary coronal mass ejection (CME) - Drs. Gibson (HAO), Flyer (AIML) 
• space weather prediction

• Seasonal weather patterns - Drs. Sobhani (AIML) & DelVento (CISL)
• Seasonal prediction of dangerous hot weather in the Eastern U.S.

AIML: New Machine Learning Group at NCAR

AIML Founding Research Focus: model emulation 
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Time t Time t+𝛥t

Dynamics

Human-crafted
“Physics” 
ML-based 
Emulator

Credit: D.J. Gagne, NCAR

35

Replacing Models with Emulation
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Machine Learning Research and Applications

Surface Layer Parameterization

• In atmospheric models Monin-

Obukhov similarity relations are used 

to determine surface fluxes and 

stresses 

• Stability functions are determined 

experimentally from field studies 

under nearly ideal atmospheric flow 

conditions characterized by 

horizontally homogeneous flat 

terrain and stationarity
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Machine Learning Research and Applications

Surface Layer Parameterization

• …but, even under such idealized 

conditions, in particular under stable 

stratification, there is large variation in 

stability functions determined from 

different field studies

• Goal: Use Machine Learning to replace 

M-O Similarity Theory in NWP Models
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Machine Learning Research and Applications

Surface Layer Parameterization
• Random Forest on Idaho Dataset (trained on 2016, 2017 and test results shown 

on 2015 data)

• Lower error and higher R2 than M-O Similarity Theory for Friction Velocity
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Machine Learning Research and Applications

Surface Layer Parameterization
• Random Forest on Idaho Dataset (trained on 2016, 2017 and test results shown 

on 2015 data)

• Lower error and higher R2 than M-O Similarity Theory for Temperature Scale
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R2 MAE

Idaho Test Dataset Friction Velocity Temperature Scale Moisture Scale Friction Velocity Temperature Scale Moisture Scale

MO Similarity 0.85 0.42 0.077 0.203

RF Trained on Idaho 0.91 0.80 0.41 0.047 0.079 0.023

RF Trained on Cabauw 0.88 0.76 0.22 0.094 0.139 0.284

R2 MAE

Cabauw Test Dataset Friction Velocity Temperature Scale Moisture Scale Friction Velocity Temperature Scale Moisture Scale

MO Similarity 0.90 0.44 0.115 0.062

RF Trained on Cabauw 0.93 0.82 0.73 0.031 0.030 0.055

RF Trained on Idaho 0.90 0.77 0.49 0.074 0.049 0.112

ML algorithm wins more “away games” than M-O theory

If you train an ML algorithm with data from one place, 
does it work in another?
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● Precipitation formation is a critical 
uncertainty for weather and climate 
models.

● Different sizes of drops interact to 
evolve from small cloud drops to large 
precipitation drops.

● Detailed codes (right) are too 
expensive for large scale models, so 
empirical approaches are used.

● Let’s emulate one (or more)
● Goal: put a detailed treatment into a 

global model and emulate it using ML 
techniques.

● Good test of ML approaches: can they 
reproduce a complex process, but with 
simple inputs/outputs?

Sd-coal model output animation 
Credit: Daniel Rothenberg

Emulating Cloud Microphysics: Motivation

41



Shortened presentation titleShortened presentation titleCombining numerical modeling and ML

Ultimate Goal: Predict evolution of hydrometeor size distributions

42

Credit: Gagne & Gettelman, NCAR
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Neural network microphysics 
emulates distribution and 
exact values of bin 
microphysics more closely 
than bulk microphysics

Emulated 

Bin - too expensive for 
climate  

Bulk - affordable for climate  

Credit: Gagne & Gettelman, NCAR

Microphysics Emulator Results
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• Ensuring interpretability & reproducibility of ML emulator 
results.

• Conditioning/scaling inputs are critical to the successful 
formulation of a successful emulator. 

• Tuning emulator hyper-parameters for optimal performance.

• Representing extreme/unusual events in the emulator’s 
training data. 

• Getting ML emulators to respect constraints. 

• Ensuring ML model robustness under iterative maps (time 
integration).

Outstanding emulator challenges

44
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• Science 3.0: HPC + ML 

– Apply GPUs to accelerate models where physics is 
rigorous.

– Replace parameterizations with Machine Learning 
emulators where the physics is phenomenological.

• Initial results are encouraging…

• But much more work needs to be done to prove these 
ideas out!

Talk Summary

45
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Thanks!

46


