
Elena Agostini – SW Engineer, Nvidia
Chetan Tekur - Solution Architect, Nvidia
03/21/2019

PACKET PROCESSING ON GPU

2

TELEMETRY DATA ANALYSIS

3

RESEARCH PAPERS

APUNet: Revitalizing GPU as Packet Processing Accelerator

Zero-copy packet processing is highly desirable in APUNet for efficient utilization of the
shared memory bandwidth

Exploiting integrated GPUs for network packet processing workloads

Shared Physical Memory (SPM) and Shared Virtual Memory (SVM)

GASPP: A GPU-Accelerated Stateful Packet Processing Framework

Combines the massively parallel architecture of GPUs with 10GbE network interfaces

Fast and flexible: Parallel packet processing with GPUs and click

Reaching full line rate on four 10 Gbps NICs

PacketShader: A GPU-accelerated Software Router

40 Gbps throughput achieved

4

GTC - 2017

Highlights:

GPUs accelerate network traffic analysis

I/O architecture to capture and move
network traffics from wire into GPU
domain

GPU-accelerated library for network
traffic analysis

Future Challenges:

Optimize and evolve the GPU-based
network traffic analysis framework for
40GE/100GE Network

Deep Packet Inspection Using GPUs - Wenji Wu (Fermilab)

5

GTC - 2018

Best Practices and Results:

Use DPDK

Minimize data copying

Stateful, compute intensive processing to GPU

Reached 100% line rate at 10 GigE

Future Challenges:

GPU based I/O: Completely offload CPU

Reach line rate at 100 GigE

Practical GPU Based Network Packet Processing – Hal Purdy (ATT)

6

HIGH LEVEL PROBLEM STATEMENT

Building GPU accelerated network functions has its challenges

Each network function has following recurring tasks:

NIC-CPU-GPU or NIC-GPU interaction

Pipelining and buffer management

Deploying batch or flows to compute cores

Low latency and high throughput requirement

7

WHY GPU?

8

MOTIVATION

BW increase
More IO & Memory BW

Higher perf/cost
More compute @ lower cost

Agility
Software Defined Network : Programmability

Problem statement

GPU for Network Packet Processing

Source : IEEE

9

MOTIVATION
Common Workloads:

Packet forwarding

Encryption/Decryption

Intrusion Detection Systems

Stateful Traffic Classification

Pattern matching

Solutions:
Nvidia supports Machine Learning, Deep Learning and Custom Parallel Programming models

10

SETTING THE STAGE

11

GPUDIRECT TECHNOLOGIES

GPU

GPUDirect P2P

GPU

3rd party
device

GPUDirect
RDMA

GPUDirect
Async

GPUDirect P2P → data
GPUs master & slave
Over PCIe, NVLink1, NVLink2

GPUDirect RDMA → data
GPU slave, 3rd party device master
Over PCIe, NVLink2

GPUDirect Async → control
GPU, 3rd party device, master & slave
Over PCIe, NVLink2

12

Overview
GPUDIRECT RDMA

3rd party PCIe devices can directly read/write GPU memory

e.g. network card

GPU and external device must be under the same PCIe root
complex

No unnecessary system memory copies and CPU overhead

MPI_Send(gpu_buffer)

External modules:

Mellanox NIC required nv_peer_mem

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html

GPUDirect™	RDMA

13Source: https://blog.selectel.com/introduction-dpdk-architecture-principles/

Data Plane Development Kit
DPDK

• A set of data plane libraries and network
interface controller drivers for fast packet
processing

• Provides a programming framework for x86, ARM,
and PowerPC processors

• From user space, an application can directly
dialog with the NIC

• www.dpdk.org

14

Typical application layout
DPDK

device_port = prepare_eth_device();
mp = prepare_mempool();

while(1) {
//Receive a burst of packets
packets = rx_burst_packets(device_port, mp);

//Do some computation with the packets
compute(packets);

//Send the modified packets
tx_burst_packets(packets, device_port);

}

15

DPDK MEMORY MANAGEMENT

The mbuf library provides the ability to allocate and free buffers (mbufs) useful to store
network packets

Mbuf uses the mempool library: an allocator of a fixed-sized object in system memory

• DPDK makes the use of hugepages (to minimize TLB misses and disallow swapping)

• Each mbuf is divided in 2 parts: header and payload

• Due to the mempool allocator, headers and payloads are contiguous in the same memory area

Mbufs & Mempool

header payload

struct rte_mbuf mbuf0

header payload header payload

struct rte_mbuf mbuf1 struct rte_mbuf mbuf2

Mempool in sysmem

16

DPDK + GPU

17

DPDK + GPU

Exploit GPU parallelism

process in parallel the bursts of received packets with CUDA kernels

Goal

offload workload onto GPU working at line rate

Need to extend default DPDK

Memory management: mempool/mbufs visible from GPU

Workload: incoming packets are processed by the GPU

RX/TX still handled by the CPU

GPUDirect Async can't be used here (for the moment...)

Enhancing original implementation

18

DPDK + GPUDIRECT
Memory management: external buffers

payload

mbuf0

header

payload payload

mbuf1

Mempool – host pinned memory only

External memory reachable from GPU:
Host pinned memory or Device memory

header header

mbuf2

header…........

payload…........

Default DPDK mempool is not enough: mbufs in system (host) virtual memory�

New requirements: mbufs must be reachable from the GPU�

Solution: use external buffers feature (since DPDK 18.05)�

Mbuf payload resides in a different memory area wrt headers

mbufN-1

19

Application workflow
DPDK + GPUDIRECT

device_port = prepare_eth_device();
mp = nv_mempool_create();

while(1) {
//Receive a burst of packets
packets = rx_burst_packets(device_port, mp);

//Do some computation with the packets
kernel_compute<<<stream>>>(packets);
wait_kernel(stream);

//Send the modified packets
tx_burst_packets(packets, device_port);

}

20

DPDK + GPU
Workload: Multiple CUDA Kernels

Launch a CUDA kernel as soon as there is a new RX burst of packets

PCIe transactions only if mempool is in host pinned memory

Need to hide latency of every (CUDA kernel launch + cudaEventRecord)

When different CPU RX cores are launching different CUDA kernels there may be CUDA context lock overheads

21

DPDK + GPU
Workload: CUDA Persistent Kernel

Avoids kernel launch latencies and jitter
Still incurs latencies for CPU-GPU synchronization over PCIe
Fixed grid and shared memory configuration for lifetime of the kernel, may not be efficient for all stages of the pipeline
Harder to leverage CUDA libraries
With GPUDirect RDMA (GPU memory mempool) you need to "flush" NIC writes into device memory for consistency

S9653 – HOW TO MAKE YOUR LIFE EASIER IN THE AGE OF EXASCALE COMPUTING USING NVIDIA GPUDIRECT TECHNOLOGIES

22

DPDK + GPU
Workload: CUDA Graphs

23

DPDK + GPU
Workload: CUDA Graphs

24

DPDK EXAMPLE:
L2FWD VS L2FWD-NV

25

L2FWD

Vanilla DPDK simple example

L2fwd workflow:

RX a burst of packets

Swap MAC addresses (src/dst) in each packets

Initial bytes of packet payload

TX modified packets back to the source

No overlap between computation and
communication

Packet generator: testpmd

Workload on CPU

26

L2FWD-NV

Enhance vanilla DPDK l2fwd with NV API and GPU
workflow
Goals:

Work at line rate (hiding GPU latencies)
Show a practical example of DPDK + GPU

Mempool allocated with nv_mempool_create()
2 DPDK cores:

RX and offload workload on GPU
Wait for the GPU and TX back packets

Packet generator: testpmd
Not the best example:

Swap MAC workload is trivial
Hard to overlap with communications

Workload on GPU

27

L2FWD-NV PERFORMANCE

Testpmd as packet generator
Two Supermicro 4029GP-TRT2

Connected back-to-back
Ubuntu 16.04
CPU: Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz
GPU: Tesla V100, CUDA 10, NVIDIA driver 410
NIC: Mellanox ConnectX-5 (100 Gbps) with MOFED 4.4
PCIe: MaxPayload 256 bytes, MaxReadReq 1024 bytes

l2fwd-nv parameters:
8 cores (4 RX , 4 TX)
64 and 128 pkts x burst

One mempool for all the DPDK RX/TX queues

HW configuration

28

L2FWD-NV PERFORMANCE

Receiving data in GPU memory always the
better solution

GPUDirect RDMA required

With small messages < 512
does not inline data in GPU memory

exploring design options
Persistent kernel shows 10% better
performance

But significantly more complex to use
L2FWD has trivial compute
Latencies get overlapped with larger
workloads
Regular kernels are flexible and can
give similar performance

Data rate

29

L2FWD-NV PERFORMANCE
Additional considerations

With Intel NICs:
Ethernet Controller 10 Gigabit X540-AT2
Ethernet Controller XL710 for 40GbE QSFP+
Line rate reached, no packet loss

With large messages (> 1024):
Jumbo frames?

30

DPDK GPU + TELECOM
ANOMALY DETECTION

31

DESIGN OVERVIEW
Generator - Receiver

The generator keeps sending packets
simulating continuous network flow

The receiver has 3 DPDK cores:

RX and prepare packets

Trigger the inference model

Can't use persistent kernel

TX ACK back: is this anomalous traffic?

Overlap between computation and
communications

32

CONCLUSIONS

33

CONCLUSIONS

• Continue optimizations for throughput – CUDA graphs, inlining

• Implement Anomaly detection based on the work done for DLI course

• Looking to collaborate with Industry partners to accelerate more workloads.
Please reach out to us or Manish Harsh, mharsh@nvidia.com Global Developer
Relations, Telecoms

Next steps

