UNIFIED MEMORY FOR DATA
ANALYTICS AND DEEP LEARNING
Nikolay Sakharnykh, Chirayu Garg, and Dmitri Vainbrand, Thu Mar 19, 3:00 PM
RAPIDS
CUDA-accelerated Data Science Libraries

DASK / SPARK

PYTHON

RAPIDS

cuDF cuML cuGraph

DL FRAMEWORKS

cuDNN

CUDA

APACHE ARROW on GPU Memory
MORTGAGE PIPELINE: ETL


```python
In [ ]: client.run(initialize_rmm_pool)

In [ ]: start_time = time.time()

# NOTE: The ETL calculates additional features which are then dropped before creating the XGBoost DMatrix.
# This can be optimized to avoid calculating the dropped features.

gpu_dfs = {}
gpu_time = 0
quarter = 1
year = start_year

while year <= end_year:
    for file in glob(os.path.join(perf_data_path + "/Performance_" + str(year) + "Q" + str(quarter) + "*")):
        gpu_dfs.append(process_quarter_gpu(year=year, quarter=quarter, perf_file=file))
        count += 1
        quarter += 1
    if quarter == 5:
        year += 1
        quarter = 1
    wait(gpu_dfs)

In [ ]: client.run(cudf_.gdf_rmm_finalize)

In [ ]: client.run(initialize_rmm_no_pool)
```
MORTGAGE PIPELINE: PREP + ML

GTC EU KEYNOTE RESULTS ON DGX-1

Mortage workflow time breakdown on DGX-1 (s)

ETL
PREP
ML
MAXIMUM MEMORY USAGE ON DGX-1

Tesla V100 limit - 32GB

GB

1 2 3 4 5 6 7 8

GPU ID
ETL INPUT

https://rapidsai.github.io/demos/datasets/mortgage-data

original input set

112 quarters (~2-3GB)

240 quarters (1GB)
CAN WE AVOID INPUT SPLITTING?

GPU memory usage (GB) - ETL (112 parts)

GPU memory usage (GB) - ETL (original dataset)

Tesla V100 limit - 32GB

OOM CRASH
ML INPUT

Some # of quarters are used for ML training
CAN WE TRAIN ON MORE DATA?

GPU memory usage (GB) - PREP (112->20 parts)

Tesla V100 limit - 32GB

OOM CRASH

GPU memory usage (GB) - PREP (112->28 parts)
HOW MEMORY MANAGED IN RAPIDS

In []: client.run(initialize_rmm_pool)

In []:
```python
##time

# NOTE: The ETL calculates additional features which are then dropped before creating the XGBoost DMatrix.
# This can be optimized to avoid calculating the dropped features.

gpu_dfs = []
gpu_time = 0
quarter = 1
year = start_year
count = 0
while year <= end_year:
    for file in glob(os.path.join(perf_data_path, "*/Performance_*", str(year) + "Q" + str(quarter) + "+")):    
        gpu_dfs.append(process_quarter_gpu(year=year, quarter=quarter, perf_file=file))
        count += 1
        quarter += 1
    if quarter == 5:
        year += 1
        quarter = 1
wait(gpu_dfs)
```

In []: client.run(cudf_gdf.rmm_finalize)

In []: client.run(initialize_rmm_no_pool)

Load the data from host memory, and convert to CSR

In []:
```python
##time

gpu_dfs = [delayed(DataFrame.from_arrow)(gpu_df) for gpu_df in gpu_dfs[:part_count]]
gpu_dfs = [gpu_df for gpu_df in gpu_dfs]
wait(gpu_dfs)

tmp_map = [{(gpu_df, list(client.who_has(gpu_df).values()))[0]} for gpu_df in gpu_dfs]
new_map = {}
for key, value in tmp_map:
    if value not in new_map:
```
RAPIDS MEMORY MANAGER

https://github.com/rapidsai/rmm

RAPIDS Memory Manager (RMM) is:

- A replacement allocator for CUDA Device Memory
- A pool allocator to make CUDA device memory allocation faster & asynchronous
- A central place for all device memory allocations in cuDF and other RAPIDS libraries
WHY DO WE NEED MEMORY POOLS

cudaMalloc/cudaFree are synchronous
• block the device

cudaMalloc/cudaFree are expensive
• cudaFree must zero memory for security
• cudaMalloc creates peer mappings for all GPUs

Using cnmem memory pool improves RAPIDS ETL time by 10x

cudaMalloc(&buffer, size_in_bytes);
cudaFree(buffer);
RAPIDS MEMORY MANAGER (RMM)
Fast, Asynchronous Device Memory Management

C/C++

RMM_ALLOC(&buffer, size_in_bytes, stream_id);
RMM_FREE(buffer, stream_id);

Python: drop-in replacement for Numba API

dev.ones = rmm.device_array(np.ones(count))
dev.twos = rmm.device_array_like(dev.ones)
also rmm.to_device(), rmm.auto_device(), etc.

Thrust: device vector and execution policies

#include <rmm_thrust_allocator.h>
rmm::device_vector<int> dvec(size);
thrust::sort(rmm::exec_policy(stream)->on(stream), ...);
MANAGING MEMORY IN THE E2E PIPELINE

```python
In [ ]:
client.run(initialize_rmm_pool)
```

```python
In [ ]:
@@time
# NOTE: The ETL calculates additional features which are then dropped before creating the XGBoost DMatrix.
# This can be optimized to avoid calculating the dropped features.

gpu_dfs = []
gpu_time = 0
quarter = 1
year = start_year
count = 0
while year <= end_year:
     for file in glob(os.path.join(perf_data_path + "/*/Performance_*" + str(year) + "Q" + str(quarter) + "*")):
          gpu_dfs.append(process_quarter_gpu(year=year, quarter=quarter, perf_file=file))
     count += 1
     quarter += 1
     if quarter == 5:
          year += 1
          quarter = 1
wait(gpu_dfs)
```

```python
In [ ]:
client.run(cudf._gdf.rmm_finalize) 
```

```python
In [ ]:
client.run(initialize_rmm_no_pool) 
```

Load the data from host memory, and convert to CSR

```python
In [ ]:
@@time

gpu_dfs = [delayed(DataFrame.from_arrow)(gpu_df) for gpu_df in gpu_dfs[:part_count]]
gpu_dfs = [gpu_df for gpu_df in gpu_dfs]
wait(gpu_dfs)
tmp_map = [(gpu_df, list(client.who_has(gpu_df).values()))[0] for gpu_df in gpu_dfs]
new_map = {}
for key, value in tmp_map:
     if value not in new_map:
```
KEY MEMORY MANAGEMENT QUESTIONS

• Can we make memory management easier?
• Can we avoid artificial pre-processing of input data?
• Can we train on larger datasets?
SOLUTION: UNIFIED MEMORY

Empty GPU memory → Partially Occupied GPU memory → Fully Occupied GPU memory → Oversubscription

Evict

Page on GPU
Page on GPU (oversubscribed)

CPU Memory
HOW TO USE UNIFIED MEMORY IN CUDF

Python

```python
from librmm_cffi import librmm_config as rmm_cfg
rmm_cfg.use_pool_allocator = True  # default is False
rmm_cfg.use_managed_memory = True  # default is False
```
IMPLEMENTATION DETAILS

Regular RMM allocation:

```cpp
if (rmm::Manager::usePoolAllocator()) {
    RMM_CHECK(rmm::Manager::getInstance().registerStream(stream));
    RMM_CHECK_CNMEM(cnmemMalloc(reinterpret_cast<void**>(ptr), size, stream));
} else if (rmm::Manager::useManagedMemory())
    RMM_CHECK_CUDA(cudaMallocManaged(reinterpret_cast<void**>(ptr), size));
else
    RMM_CHECK_CUDA(cudaMalloc(reinterpret_cast<void**>(ptr), size));
```

Pool allocator (CNMEM):

```cpp
if (mFlags & CNMEM_FLAGS_MANAGED) {
    CNMEM_DEBUG_INFO("cudaMallocManaged(%lu)\n", size);
    CNMEM_CHECK_CUDA(cudaMallocManaged(&data, size));
    CNMEM_CHECK_CUDA(cudaMemPrefetchAsync(data, size, mDevice));
} else {
    CNMEM_DEBUG_INFO("cudaMalloc(%lu)\n", size);
    CNMEM_CHECK_CUDA(cudaMalloc(&data, size));
}
```
1. UNSPLIT DATASET “JUST WORKS”

GPU memory usage (GB) - ETL (original dataset) - cudaMalloc

GPU memory usage (GB) - ETL (original dataset) - cudaMallocManaged

Tesla V100 limit - 32GB
2. SPEED-UP ON CONVERSION

25% speed-up on PREP!

```python
In [1]: client.run(initialise_row_pool)

In [2]: %time
   # NOTE: The ETL calculates additional features which are then dropped before creating the XGBoost DMatrix.
   # This can be optimized to avoid calculating the dropped features.
   
gpu_dfs = []
gpu_time = 0
quarter = 1
year = start_year
count = 0
while year <= end_year:
    for file in glob(os.path.join(perf_data_path + "\performance_", str(year) + "0" + str(quarter) + "*.csv")):
        gpu_dfs.append(process_quarter_gpu(year=year, quarter=quarter, perf_file=file))
    count += 1
    quarter += 1
    if quarter == 5:
        year += 1
        quarter = 1

wait(gpu_dfs)

In [3]: client.run(get_row_time[3:10])

In [4]: client.run(get_row_time_no_pool)

Load the data from host memory, and convert to CSR

In [5]: %time
   
gpu_dfs = [delayed(totalsframe_from_arrow)(gpu_df) for gpu_df in gpu_dfs];part_count]
   
gpu_dfs = [gpu_df for gpu_df in gpu_dfs]

wait(gpu_dfs)

tmp_map = [(gpu_df, list(client.who_has(gpu_df).values())[0]) for gpu_df in gpu_dfs]
new_map = {}
for key, value in tmp_map:
    if value not in new_map:
```
3. LARGER ML TRAINING SET

![Graph showing time in seconds for different scenarios](image)

- **20 quarters cudaMalloc**
- **20 quarters cudaMallocManaged**
- **28 quarters cudaMalloc**
- **28 quarters cudaMallocManaged**

OOM!
UNIFIED MEMORY GOTCHAS

1. UVM doesn’t work with CUDA IPC - careful when sharing data between processes
 Workaround - separate (small) cudaMalloc pool for communication buffers
 In the future it will work transparently with Linux HMM

2. Yes, you can oversubscribe, but there is danger that it will just run very slowly
 Capture Nsight or nvprof profiles to check eviction traffic
 In the future RMM may show some warnings about this
RECAP

Just to run the full pipeline on the GPU you need
- carefully partition input data
- adjust memory pool options throughout the pipeline
- limit training size to fit in memory

Unified Memory
- makes life easier for data scientists - less tweaking!
- improves performance - sometimes it’s faster to allocate less often & oversubscribe
- enables easy experiments with larger datasets
MEMORY MANAGEMENT IN THE FUTURE

Contribute to RAPIDS: https://github.com/rapidsai/cudf

Contribute to RMM: https://github.com/rapidsai/rmm
UNIFIED MEMORY FOR DEEP LEARNING
FROM ANALYTICS TO DEEP LEARNING

<table>
<thead>
<tr>
<th>Data Preparation</th>
<th>Machine Learning</th>
<th>Deep Learning</th>
</tr>
</thead>
</table>

![Data Preparation Image](image1)
![Machine Learning Image](image2)
![Deep Learning Image](image3)
PYTORCH INTEGRATION

PyTorch uses a caching allocator to manage GPU memory

- Small allocations distributed from fixed buffer (for ex: 1 MB)
- Large allocations are dedicated cudaMalloc’s

Trivial change

- Replace cudaMalloc with cudaMallocManaged

Immediately call cudaMemPrefetchAsync to allocate pages on GPU

- Otherwise cuDNN may select sub-optimal kernels
PYTORCH ALLOCATOR VS RMM

PyTorch Caching Allocator

- Memory pool to avoid synchronization on malloc/free
- Directly uses CUDA APIs for memory allocations
- Pool size not fixed
- Specific to PyTorch C++ library

RMM

- Memory pool to avoid synchronization on malloc/free
- Uses Cnmem for memory allocation and management
- Reserves half the available GPU memory for pool
- Re-usable across projects and with interfaces for various languages
WORKLOADS

Image Models

ResNet-1001

DenseNet-264

VNet
WORKLOADS

Language Models

Word Language Modelling

Dictionary Size = 33278
Embedding Size = 256
LSTM units = 256
Back propagation through time = 1408 and 2800
WORKLOADS

Baseline Training Performance on V100-32GB

<table>
<thead>
<tr>
<th>Model</th>
<th>FP16</th>
<th></th>
<th>FP32</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Batch Size</td>
<td>Samples/sec</td>
<td>Batch Size</td>
<td>Samples/sec</td>
</tr>
<tr>
<td>ResNet-1001</td>
<td>98</td>
<td>98.7</td>
<td>48</td>
<td>44.3</td>
</tr>
<tr>
<td>DenseNet-264</td>
<td>218</td>
<td>255.8</td>
<td>109</td>
<td>143.1</td>
</tr>
<tr>
<td>Vnet</td>
<td>30</td>
<td>3.56</td>
<td>15</td>
<td>3.4</td>
</tr>
<tr>
<td>Lang_Model-1408</td>
<td>32</td>
<td>94.9</td>
<td>40</td>
<td>77.9</td>
</tr>
<tr>
<td>Lang_Model-2800</td>
<td>16</td>
<td>46.5</td>
<td>18</td>
<td>35.7</td>
</tr>
</tbody>
</table>

Optimal Batch Size Selected for High Throughput

All results in this presentation are using PyTorch 1.0rc1, R418 driver, Tesla V100-32GB
GPU OVERSUBSCRIPTION

Upto 3x Optimal Batch Size

ResNet-1001

DenseNet-264
GPU OVERSUBSCRIPTION

Fill
GPU OVERSUBSCRIPTION

Evict
GPU OVERSUBSCRIPTION

Page Fault-Evict-Fetch
GPU OVERSUBSCRIPTION

Results

<table>
<thead>
<tr>
<th>Model</th>
<th>FP16</th>
<th></th>
<th>FP32</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Batch Size</td>
<td>Samples/sec</td>
<td>Batch Size</td>
<td>Samples/sec</td>
</tr>
<tr>
<td>ResNet-1001</td>
<td>202</td>
<td>10.1</td>
<td>98</td>
<td>5</td>
</tr>
<tr>
<td>DenseNet-264</td>
<td>430</td>
<td>22.3</td>
<td>218</td>
<td>12.1</td>
</tr>
<tr>
<td>VNet</td>
<td>32</td>
<td>3</td>
<td>32</td>
<td>1.1</td>
</tr>
<tr>
<td>Lang_Model-1408</td>
<td>44</td>
<td>8.4</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>Lang_Model-2800</td>
<td>22</td>
<td>4.1</td>
<td>22</td>
<td>4.9</td>
</tr>
</tbody>
</table>
GPU OVERSUBSCRIPTION

Page Faults - ResNet-1001 Training Iteration
Add `cudaMemPrefetchAsync` before kernels are called

```c
cudaMemPrefetchAsync(...) // input, output, wparam
cudnnConvolutionForward(...)
-----------------------------
cudaMemPrefetchAsync(...) // A, B, C
kernelPointWiseApply3(...)
```
GPU OVERSUBSCRIPTION

No Prefetch vs Manual API Prefetch
GPU OVERSUBSCRIPTION

Speed up from Manual API Prefetch

Observe upto 1.6x speed-up
GPU OVERSUBSCRIPTION
Prefetch Only When Needed

Prefetch memory before kernel to improve performance

cudaMemPrefetchAsync takes CPU cycles - degrades performance when not required

Automatic prefetching needed to achieve high performance
DRIVER PREFETCH
Aggressive driver prefetching

Driver initiated (density) prefetching from CPU to GPU

GPU pages tracked as chunk of smaller sysmem page

Driver logic: Prefetch rest of the GPU page when 51% is migrated to GPU

Change to 5%

Observe up to 20% gain in performance vs default settings
FRAMEWORK FUTURE

Framework can develop intelligence to insert prefetch before calling GPU kernels

Smart evictions: Activation’s only

Lazy Prefetch: Catch kernel calls right before execution and add prefetch calls

Eager Prefetch - Identify and add prefetch calls before the kernels are called

nn.Conv2d(...) \(\leftarrow\) (Hook)

Replace:
nn.Prefetch(…)
nn.Conv2d(…)

Execute Parallelly
TAKEAWAY

Unified Memory oversubscription solves the memory pool fragmentation issue

Simple way to train **bigger models** and on **larger input data**

 - Minimal user effort, no change in framework programming
 - Frameworks can get better performance by adding prefetch’s

Try it out and contribute:

https://github.com/rapidsai/cudf

https://github.com/rapidsai/rmm