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History of Electron Microscopy



Timeline of Cryo-EM for Complex Dynamics

2000              2010                2016                   2018                          Now

5 cryo-EM maps of 
ribosome at 15-18 Å. 
Joachim Frank et al. 
Nature. 2000.

8 cryo-EM maps of 
ribosome-tRNA complex
at 15-20 Å. Holger Stark 
et al. Nature. 2010.

13 cryo-EM maps of 
bacterial ribosome
assembly intermediates at 
4-5 Å. James R. Williamson 
et al. Cell. 2016.

5 cryo-EM maps of 
human spliceosome Bact

complex at 3.7-4.5 Å.  
Holger Stark et al. Cell. 
January 2018.

5 cryo-EM maps of human 
pre-40S ribosome subunit 
at 3.6-4.5 Å. Roland 
Beckman et al. Nature. 
June 2018.

7 cryo-EM maps of human 
26S proteasome-substrate 
intermediate complex at 
2.8-3.6 Å. Youdong Mao et 
al. Nature. November 2018.



Cryo-EM for Complex Dynamics of Human Proteasome

2012              2016 2017 2018                          Now

One cryo-EM map of 
human proteasome
at 8 Å. et al. Mol Cell. 

4 cryo-EM maps of 
human proteasome at 
3.6-8 Å. Chenet al. PNAS. 
2010.

7 cryo-EM maps of human 
proteasome regulatory 
particle at 4.5-9 Å. Lu et al. 
Mol. Cell. 

6 cryo-EM maps of 
human proteasome at 
3.6-6.5 Å.  Zhu et al. 
Nature Commun.. 

7 cryo-EM maps of human 
26S proteasome-substrate 
intermediate complex at 
2.8-3.6 Å. Dong et al. 
Nature. November 2018.



Single-Particle Reconstruction of Cryo-EM

Image Alignment and 
Classification Averaging Orientation Search 

and Reconstruction



Ubiquitin-Proteasome Pathway



For the discovery of ubiquitin-mediated protein degradation



The largest molecular machine for degradation
q 28 subunits in 20S core particle (CP)
q 19 subunits in 19S regulatory particle (RP)
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Fig. S1. Overview of the human 26S proteasome assembly. (A) Overview of the protein 
subunit organization in the proteasome holoenzyme from two orthogonal perspectives. The lid 
subcomplex includes Rpn3, Rpn5, Rpn6, Rpn7, Rpn8, Rpn9, Rpn11, Rpn12, Sem1; the base 
subunits include Rpn1, Rpn2, Rpt1, Rpt2, Rpt3, Rpt4, Rpt5 and Rpt6. The core particle is 
composed of seven a subunits a1-7 and seven b subunits b1-7. (B) Illustrative anatomy of the 
RP-CP subcomplex structure, with black silhouettes representing the central cross-section along 
the ATPase channel colored opaque blue. Dashed green curve illustrates the substrate-
translocation pathway across the channel to the proteolytic sites in the CP chamber. 



An assembly of multiple molecular sub-machines

q Ubiquitin receptor: 
capture ubiquitin-
tagged substrates

q Deubiquitinase: 
remove ubiquitin 
tags from the 
substrate

q AAA-ATPase 
Unfoldase: unfold 
the substrate

q Degradation 
chamber: degrade 
the substrate
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Substrate-engaged proteasome

Y. Dong, S. Zhang, …, Y. Mao. Nature 565: 49-55 (2018).



Substrate-engaged human proteasome

Y. Dong, S. Zhang, …, Y. Mao. Nature 565: 49-55 (2018).



Local resolution



High-resolution density maps

Y. Dong, S. Zhang, …, Y. Mao. Nature doi: 10.1038/s41586-018-0736-4 (2018).



Observation of single magnesium ions

Y. Dong, S. Zhang, …, Y. Mao. Nature doi: 10.1038/s41586-018-0736-4 (2018).



Substrate-processing dynamics



ATP hydrolysis powers the molecular motor



Dynamics of the motor unfolding substrate

q Coordination of three adjacent ATPases



Three modes of ATP hydrolysis



Workflow of Single-Particle Image Analysis

Particle 
Selection 2D Clustering Generating 

Initial Model
3D 

Classification
High-Resolution 

Refinement

Micrograph Pre-processing:
Gain/drift correction

Quality control

Density Map Post-processing:
B-factor correction

Local resolution measure

Particle Purification

Class Verification



Hierarchical focused 3D classification 



Comparison of approaches in analyzing protein 
dynamics

NMR Single-molecule FRET Small-angle X-
ray scattering

Cryo-EM

Time 
resolution/scal
e

fs ms ms ms to seconds

Real-time Yes Yes Yes Pseudo

Spatial 
resolution

angstrom >1 angstrom nanometer > 2.5 angstrom

Full atomic 
modelling

Yes No No Yes

Protein size <300kDa Any Any >100 kDa

Labeling Yes Yes No No

Energy 
landscaping

Complete Partial Low-resolution 
and partial

Complete



Summary of GPU acceleration for cryo-EM

Software GPU 
Acceleration

Based on Deep Learning

Motion Correction MotionCor2 Yes ms

CTF parameters GCtf Yes Yes
Particle picking DeepEM Yes nanometer

Deep 2D 
classification

ROME No No

3D classification RELION Yes Any

Deep 3D 
classification

ROME No No

Cryo-EM refinement RELION
CryoSPARC

Yes Low-resolution and 
partial



Convolutional Neural Network

The 6C-3S-12C-2S-12C-2S CNN we designed for KLH dataset.

Y. Zhu, Q. Ouyang, Y. Mao. BMC Bioinformatics 18, 348 (2017).
.
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The learned feature maps of an example input 
image

Input Image

Layer C1 Feature Maps Layer C3 Feature Maps Layer C5 Feature Maps

Layer S2 Feature Maps Layer S4 Feature Maps Layer S6 Feature Maps



DeepEM Algorithm Workflow

Training Data

Initial CNN parameters

Training CNN

Testing Data Output

Defined 
  Error?

Input Micrographs

Preprocessing

Determined CNN Model

Particle Recognition

    Filter based on 
Standard Deviation

Defined
Precision?

Over

N

Y
Y

N

Add FN and TP to training data

Tune hyper-param
eters



Keyhole Limpet Hemocyanim (KLH)
(a) Example of positives for KLH

Example of negatives for KLH

(b)
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Zhu, Y., et al. IEEE Trans. Med. Imaging 22, 1053-1062 (2003)
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Testing on some challenging datasets



Effect of training dataset sizes



DeepEM exhibits good performance on low SNR



DeepEM on GPU

q Geforce GTX 970, running Matlab 2016a and CUDA 
8.0: 40-190 seconds per micrograph

q Tesla K20c GPU with CUDA 8.0: 

Y. Zhu, Q. Ouyang, Y. Mao. BMC Bioinformatics 18, 348 (2017).
J. Zhang, …, F. Sun, F. Zhang. BMC Bioinformatics 20, 41 (2019).

of PIXER



Summary
q DeepEM outperforms existing programs in particle 

recognition, allowing particle picking, selection and 
verification in an integrated fashion.

q With better training dataset or iterative training, one 
can improve the accuracy of particle recognition. In 
other words, the program can be trained to be 
“smarter”.

q DeepEM can be easily applied to batch processing.
q We expect that DeepEM marks the inception of 

applications of modern AI technology in expediting 
cryo-EM structure determination.



Statistical Manifold Learning: Generative Tomographic Mapping

q The shortest line between two points si and sj in the latent space is 
mapped to geodesic line on a manifold between A(si) and A(sj) in the 
data space.

q Latent space: the structural difference resulting from changes in the 
image orientation and/or the molecular conformations 

q Data space: the Fourier transform of particle images
J. Wu, Y. Ma, C. Congdon, B. Brett, S. Chen, Q. Ouyang, Y. Mao. PLoS ONE 12, e0182130 (2017).



SML optimizes a MAP objective function
q The maximum-likelihood estimator

q The maximum-a-posterior (MAP) estimate

q Maximization of the objective allows a numeric 
solutions to the model parameters that define the 
mapping of latent variables to the manifold in the 
data space.

q We developed Expectation-Maximization algorithm 
with CTF embedded for numerical solution. 

J Wu et al. arXiv : 1604.04539 (2016). 



Contrast Transfer Function (CTF) and Aberration

q CTF is the Fourier transform of the point spread 
function of transmission electron microscope

q CTF characterize how the images are distorted by 
the aberration of objective lens



Combined Effect of CTF and Noise
q Noiseless and 

no CTF

q Noiseless with
CTF

q Heavy noise with
CTF



Expectation-maximization algorithm

q In the E-step, we evaluate the posterior probability

q In the M-step, we maximize the MAP estimator



Deep classification by SML

q There is a probability calculated for each image 
assigned to a given class

q The class average is CTF corrected and is a 
probability-weighted average.



SML vs. MAP: ~40% higher angular accuracy

Testing platform 
configuration: 
Intel Xeon processor 
E5-2670 with dual 
sockets, 16 
cores/socket HT 
disabled @2.6 GHz 
115W 64 GB RAM 
per compute node, 
14 compute nodes, 
Red Hat Enterprise 
Linux Server release 
6.5



Effect of SNR on angular error



Effect of dimensionality of latent space



Improved balance of class sizes



SML vs. MAP classification
SML                                         MAP (maximum a posteriori)

17,103 inflammasome particles are classified into 300 reference-free classes. Only 
classes whose particle numbers were larger than 9 are exhibited.



Deeper classification identifies hidden heterogeneity

Secondary MAP classification Secondary SML classification



1000 reference-free classes computed in a few hours



Deep classification improves initial reconstruction

ROME EMAN2
q ROME-based initial 

model:  234 best class 

averages selected from 

1000 reference-free 

classes of a cryo-EM 

dataset (117,471 images)

within 3 hours on a 

cluster of 512 CPU cores 

(32 nodes)

q EMAN2-based initial 

model: all 128 ref-free 

class averages 

calculated by EMAN2 for 

>8 hours using the same 

dataset.

q The resolution of the 

ROME-based initial 

model is 10-Å (50%) 

higher, show in the FSC 

plots on the left.



Access pattern
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Memory/cache optimization-code blocking for adaptive
search
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ROME vs. RELION: ~20-fold faster on the same hardware

q When GTM and ML algorithms in ROME are used for 
unsupervised deep classification, it outperforms RELION by 10-
20 times 



Performance of deep classification by ROME

q ROME can generate 1000 reference-free classes of 
real cryo-EM data within a few hours on a cluster of 
500 CPU cores (32 nodes)

q All other programs tested have crashed on the 
same dataset in our test clusters when doing this 
task



Speedup on Intel Xeon Phi Knights Landing processors

SOURCE: https://software.intel.com/en-us/articles/recipe-rome-1-0-sml-for-the-intel-xeon-phi-processor-7250

ROME1.0 SML 3 Workload Performance Improvement with the 
Intel® Xeon Phi™ Processor 
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Features in our ROME v1.0 system

q ROME (Refinement and Optimization with Machine-
lEarning) implements SML in HPC.

q Fully compatible with the I/O file format used in 
other software in structural biology and cryo-EM 
imaging, including RELION and SPIDER.

q Fully modernized code, designed and parallelized 
for Intel Xeon CPUs

q Designed to use both OpenMP and MPI.
q It can perform image classification at a scale of 

thousands of classes in a single run with improved 
accuracy, which is about 1-2 orders of magnitude 
greater than existing software in this area.



Performance of deep classification by ROME

q ROME can generate 1000 reference-free classes of real cryo-
EM data within a few hours on a cluster of 500 CPU cores (32 
nodes)

q All other programs tested have crashed on the same dataset 
in our test clusters when doing this task



Speedup on Intel Xeon Phi Knights Landing (KNL) 
processors

SOURCE: https://software.intel.com/en-us/articles/recipe-rome-1-0-sml-for-the-intel-xeon-phi-processor-7250

up to 
2.33X 
faster 



MAP3D benchmark dataset 1 : ribosomes wi/wo EFG

q5 nodes Intel(R) Xeon(R) CPU 
E5-2697 v4 @ 2.30GHz

qRELION 1.4

qROME 1.1.0



MAP3D benchmark dataset 2 : Plasmodium ribosome

q RELION 1.4

q ROME 1.1.0



MAP3D for KNL benchmark 
(3D classification/refinement)

platform CPU Recommended Customer Price
KNL Intel® Xeon PhiTM Processor 7230 16GB, 1.30 GHz, 64 core $1,992.00 
Broadwell Intel® Xeon® Processor E5-2697 v4 45M Cache, 2.30 GHz $2,702.00 
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Features in ROME v1.1.0 system

q ROME (Refinement and Optimization with Machine-
lEarning) implements SML and MAP3D in HPC.

q Fully compatible with the I/O file format used in 
other software in structural biology and cryo-EM 
imaging, including RELION and SPIDER.

q Fully modernized code, designed and parallelized 
for Intel Xeon CPUs

q Designed to use both OpenMP and MPI.
q It can perform image classification at a scale of 

thousands of classes in a single run with improved 
accuracy, which is about 1-2 orders of magnitude 
greater than existing software in this area.



Summary

q SML enables unsupervised deep classification at a 
greater scale.

q ROME, the first HPC software implementing SML 
algorithm, is optimized based on the modern 
standard of parallelization.

q Despite SML classification is mathematically more 
complicated than MAP classification, it is more 
suited for parallelization in the latest CPU 
architecture with a higher throughput of vector 
processing.



ROME Official Website
http://ipccsb.dfci.harvard.edu/rome



Solution to sample heterogeneity

L. Zhang et al. Science 
350: 404-409 (2015).



Acknowledgement

q Early work on substrate-free proteasome was done with 
collaboration with Prof. Marc Kirschner’s group at Harvard.

q Recent data were collected at Electron Microscopy Laboratory 
and Cryo-EM platform at PKU. 

q Most data processing was done at PKU HPC platform.
q Our work was partly funded by NSFC, Young 1000-Talent Plan, 

Intel Corporation, CLS@PKU and NIH.

Yuanchen Dong                      Shuwen Zhang                      Zhaolong Wu



Thank you for your attention!


