

www.ia.ac.cn

S9713:

Quantized Neural Networks and QEngine

Institute of Automation, Chinese Academy of Sciences

2019.3.18

Outline

Background Preliminary Network Quantization QEngine Summary

Outline

Background Preliminary Network Quantization QEngine Summary

Background: Applications of CNNs

Convolutional Neural Networks

Background: Real-World Applications

Revolution of Deep Neural Networks

Year	Model	Layers	Parameter	FLOPs	ImageNet Top-5 error
2012	AlexNet	5+3	60M	725M	16.4%
2013	Clarifai	5+3	60M	1.17B	11.7%
2014	VGG-19	16+3	143M	19.6B	7.32%
2014	GoogLeNet	22	6.8M	1.566B	6.67%
2015	Inception-V3	42	23.8M	5.7B	3.6%
2015	ResNet	152	19.4M	11.3B	3.57%
2016	Inception-V4	112	42.6M	12.25B	3.08%

Training : Big Data + Large Model + Powerful Resources

TITAN X FOR DEEP LEARNING

Train ResNet50 from many days to:

- Facebook: 1 hour
- Fast.ai: 18 min
- Tencent: 6.6 min
- Sony: 3.7 min
- Google: 2.2 min
- SenseTime: 1.5 min

Inference : Big Data + Large Model + Limited Resources

We need Network Compression and Acceleration

Outline

Background Preliminary Network Quantization QEngine Summary

Preliminary

Basic building block of CNN

Most of computation and parameters

Preliminary

2D convolution

Preliminary

Outline

Background Preliminary Network Quantization QEngine Summary

Network Compression and Acceleration

- Low-rank Decomposition
- Sparse/Pruning
- Quantization
- •

Low-Rank

- Single conv./fc. layer -> multiple layers
 - Faster computation
 - Fewer connection weights

Pruning

- Remove network connections
 - Fewer FLOPs (may not be faster)
 - Fewer connection weights

Network Compression and Acceleration

- Quantization
 - -Code-based Quantization
 - Scalar Quantization
 - Vector Quantization
 - Product Quantization
 - -Fixed point Quantization

Code-based Quantization

- Scalar quantization
 - Element level

Approximated

Code-based Quantization

- Vector quantization
 - Row/column level

Code-based Quantization

- Product quantization
 - Sub-Row/Sub-column level

Codebook From 256-bit to 2-bt

Approximated

Hashed-Net

• Determine the correspondence via hashing

Random Weight sharing

Hashing

W. Chen et al., "Compressing Neural Networks with the Hashing Trick". WUSTL&NVIDIA, ICML 2015.

Hashed-Net

• Test error vs. Compression factor

W. Chen et al., "Compressing Neural Networks with the Hashing Trick". WUSTL&NVIDIA, ICML 2015.

PQ for FC. layer

- Apply product quantization in fc. Layer
 - Split weighting matrix into sub-matrices
 - K-means clustering on each sub-matrix
 - Re-construct weighting matrix with clustering results

PQ for FC. layer

• Apply product quantization in fc. layer

Y. Gong et al., "Compressing Deep Convolutional Networks using Vector Quantization". Facebook, arXiv 2014.

Quantized-CNN

• Accelerate fc. layer with pre-computation and lookup tables

J. Wu et al., "Quantized Convolutional Neural Networks for Mobile Devices". CVPR 2016.

Quantized-CNN

• Results on mobile devices

J. Wu et al., "Quantized Convolutional Neural Networks for Mobile Devices". CVPR 2016.

Summary of Code-based Quantization

- Quantize weights with codebook(s)
 - Compression: floating-point numbers -> indices
 - Acceleration: via pre-computation and lookup tables

Fixed point Quantization

Fixed point Quantization: WHAT?

2-bit fixed-point quantization of sine function

3-bit fixed-point quantization of sine function.

Fixed point Quantization: WHY?

Fixed point Quantization: WHY?

Reducing Storage/Memory

Fixed point Quantization: WHY?

Reducing Storage/Memory

Higher Throughput

Fixed point Quantization: WHY?

Reducing Storage/Memory

Higher Throughput

More Energy Efficient

Operation:	Energy (pJ)
8b Add	0.03
16b Add	0.05
32b Add	0.1
16b FP Add	0.4
32b FP Add	0.9
8b Mult	0.2
32b Mult	3.1
16b FP Mult	1.1
32b FP Mult	3.7
32b SRAM Read (8KB)	5
32b DRAM Read	640

Mark Horowitz, "Computing's Energy Problem". ISSCC 2014.

Fixed point Quantization: WHY?

Reducing Storage/Memory

Higher Throughput

More Energy Efficient

Simplify Hardware Design

N-bit Fixed point Quantization: HOW?

 2^N values:

 $\underbrace{000...000}_{N-\text{bit}} \sim 111...111$

Non-uniform Quantization

Uniform Quantization

Logarithmic Quantization

Scalar quantization with/without constrains

	Non-uniform	Uniform	Logarithmic
0000	<i>C</i> _0	0	0
0001	<i>C</i> _1	1	1
0010	<i>C</i> -2	2	2
0011	<i>C</i> _3	3	4
0100	<i>C</i> -4	4	8
0101	<i>C</i> -5	5	16
0110	<i>C</i> _6	6	32
	•		•
	•		•
	•		•
1111	$C_{-}(2^{N}-1)$	$2^{N} - 1$	$2^{2^{N-2}}$

N-bit Fixed point Quantization: HOW?

Signed Quantization (weights/activations):

$$\{-(2^{n-1}-1)\Delta, \cdots, -2\Delta, -1\Delta, 0, \Delta, 2\Delta, \cdots, (2^{n-1}-1)\Delta\}$$

Unsigned Quantization (activations):

$$\{0, \Delta, 2\Delta, \cdots, (2^n - 1)\Delta\}$$

N-bit Fixed point Quantization: HOW?

3-bit Quantization for Normal Distribution

Signed: $\{-(2^{n-1}-1)\Delta, \cdots, -2\Delta, -1\Delta, 0, \Delta, 2\Delta, \cdots, (2^{n-1}-1)\Delta\}$

Weight/Activation Distribution for CNN

Figure 2: Distribution of weights & activations in a DCN design for CIFAR-10 benchmark.

Lin, Darryl, Sachin Talathi, and Sreekanth Annapureddy. "Fixed point quantization of deep convolutional networks." International Conference on Machine Learning. 2016.

Quantization

- Problem: $W \approx \alpha B$
- Optimization: $\min ||W \alpha B||^2$
- Solution(Iterative optimization):
 - Given alpha, optimize B:

$$B = sgn(w)\min\left\{\left|\frac{|w|}{\alpha} + 0.5\right|, 127\right\} \quad \text{Round() + Clip()}$$

– Given B, optimize alpha:

$$\alpha = \frac{\sum_i w_i b_i}{\sum_i b_i^2}$$

Performance of Quantization

Direct Quantization of Weights of AlexNet, on ImageNet Benchmark

acceptable

inacceptable

Alex	Net	Full	8-bit	7-bit	6-bit	5-bit	4-bit	3-bit	2-bit	1-bit
Uniform	Acc@Top-1	60.92%	60.85%	60.91%	60.42%	56.55%	49.17%	32.70%	5.61%	0.10%
	Acc@Top-5	81.84%	81.83%	81.77%	81.51%	78.35%	71.48%	52.33%	12.25%	0.50%
Logarithmic	Acc@Top-1	60.92%	59.10%	59.03%	59.80%	59.28%	59.40%	46.18%	4.17%	0.14%
	Acc@Top-5	81.84%	80.29%	80.40%	80.52%	80.50%	80.42%	69.27%	9.77%	0.60%

- Problems of Quantization:
 - Non-differentiable
 - Not continuous (not learn anything)

 $\operatorname{ROUND}(w+\delta) = w$

- Problems of Quantization:
 - Non-differentiable
 - Straight-through estimation
 - Not continuous
 - Two copies of weights
 - Fixed-point: for gradient computation
 - Floating-point: for gradient accumulation

Courbariaux M, Bengio Y, David J P. BinaryConnect: training deep neural networks with binary weights during propagations. International Conference on Neural Information Processing Systems. 2015.

- 1: Randomly initialize W
- 2: while not converge do
- 3: $W_b = q(W)$
- 4: Forward computation with input and W_b
- 5: Backward computation with output and W_b
- 6: Update $W = W \Delta W$
- 7: end while

- 1: Randomly initialize W
- 2: while not converge do
- 3: $W_b = q(W)$
- 4: Forward computation with input and W_b
- 5: Backward computation with output and W_b
- 6: Update $W = W \Delta W$
- 7: end while

 1: Randomly initialize W

 2: while not converge do

 3: $W_b = q(W)$

 4: Forward computation with input and W_b

 5: Backward computation with output and W_b

 6: Update $W = W - \Delta W$

 7: end while

 ΔW

- 1: Randomly initialize W
- 2: while not converge do
- 3: $W_b = q(W)$
- 4: Forward computation with input and W_b
- 5: Backward computation with output and W_b
- 6: Update $W = W \Delta W$
- 7: end while

BinaryConnect

min $L(B) = ||W - B||_F^2$ s.t. $B \in \{+1, -1\}^{C \times N}$

Deterministic Binarization:

Stochastic Binarization:

$$w_b = egin{cases} +1 & if \ w \geq 0 \ -1 & otherwise \end{cases}$$
 $w_b = egin{cases} +1 & with \ probability \ p = \sigma(w) \ -1 & with \ probability \ 1 - p \ \sigma(x) = clip(rac{x+1}{2}, 0, 1) = max(0, min(1, rac{x+1}{2})) \end{pmatrix}$

Courbariaux M, Bengio Y, David J P. BinaryConnect: training deep neural networks with binary weights during propagations. International Conference on Neural Information Processing Systems. 2015.

Binary-Weight Networks

BWN: min
$$L(B) = ||W - BA||_F^2$$

s.t. $B \in \{+1, -1\}^{C \times N}$

Mohammad et.al, "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks". ECCV 16

Binary Weight Network via Hashing

Instead of minimizing the quantization error of weights:

min $L(B) = ||W - B||_F^2$ $s.t. \ B \in \{+1, -1\}^{C \times N}$ (1) BinaryConnect (2) BWN min $L(B) = ||W - BA||_F^2$ $s.t. \ B \in \{+1, -1\}^{C \times N}$ (2) BWN

We minimize the quantization error of inner-product similarity:

min
$$L(B) = ||X^T W - X^T B||_F^2$$

s.t. $B \in \{+1, -1\}^{C \times N}$

Hu et al. "From Hashing to CNNs: Training Binary Weight Networks via Hashing". AAAI, 2018

Binary Weight Network via Hashing

Hashing:
$$g_r(w) = \begin{cases} 1, & r^T w \ge 0\\ 0, & r^T w < 0 \end{cases}$$

Inner-product Preserving Hashing

 $\min ||S - h(X)^T g(W)||_F^2 \quad \text{where } S = X^T W$

Hu et al. "From Hashing to CNNs: Training Binary Weight Networks via Hashing". AAAI, 2018

Binary Weight Network via Hashing

AlexNe	et
--------	----

ResNet-18

Method	Classification Accuracy			
wiediod	Top1	Top5		
BinaryConnect	35.4	61.0		
BWN	56.8	79.4		
SQ-BWN	51.2	75.1		
HWGQ-BWN	52.4	75.9		
BWNH (Ours)	58.5	80.9		

Method	Classification Accuracy			
	Top1	Top5		
Full-Precision	69.3	89.2		
BWN	60.8	83.0		
SQ-BWN	58.3	81.6		
HWGQ-BWN	61.3	83.9		
BWNH (Ours)	64.3	85.9		

Fixed-point Factorized Networks

Figure 1. New layers used in our FFN architecture to replace the original convolutional layers.

Incremental Quantization

One-step quantization v.s. Incremental Quantization

Zhou, Aojun, et al. "Incremental network quantization: Towards lossless cnns with low-precision weights." arXiv preprint arXiv:1702.03044 (2017).

XNOR-Net

- XNOR-Net
- Main idea: binary values * scaling factor

	Network Variations	Operations used in Convolution	Memory Saving (Inference)	Computation Saving (Inference)	Accuracy on ImageNet (AlexNet)
Standard Convolution	Real-Value Inputs 0.11 -0.210.34 ··· -0.25 0.61 0.52 ···	+ , - , ×	1x	1x	%56.7
Binary Weight	Binary Weights 0.11 -0.210.34 -0.25 0.61 0.52	+,-	~32x	~2x	%56.8
BinaryWeight Binary Input (XNOR-Net)	Binary Inputs 1 -11 ··· -1 1 1 ··· Binary Weights 1 -1 1 ···	XNOR , bitcount	~32x	~58x	%44.2

Mohammad et.al, "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks". ECCV 16

DoReFa-Net

Zhou et.al, "DoReFa-Net: Training low bitwidth convolutional neural networks with low bitwidth gradients". arXiv:1606.06160, 2016

Summary of Fixed-point Quantization

- Quantize weights with low-bit representation
 - Compression: floating numbers -> fixed-point numbers
 - Accelerate via fixed-point operation
 - Energy efficiency

Outline

Background Preliminary Network Quantization QEngine Summary

- A lite, high-performance and modular deep learning inference engine for embedded devices.
- Designed and developed by Institution of Automation, Chinese Academy of Science.

Q-Engine Architecture

NNSaveLoader

NNSaveLoader

Q-Engine Architecture

NNCompiler

1. Combining and fusing layers

Convolution and ReLU Activation

FullyConnected and ReLU Activation

Scale and Activation

Convolution and Element-Wise Sum

Convolution and Scale

. . .

2. Sparse and Int8 Operator Supports

Higher Compression Rate

Low-Precision Approximation

Speed-up Computation

NNCompiler

3. Optimize Memory Management

- Dramatically reduce memory footprint
- Lower memory consumption
- Higher throughput

4. Automatic Algorithm Selection

NNLib : Computing kernel library for mobile devices

High performance direct convolution

- Sparse direct convolution / (sparse GEMM)
- int8 direct convolution / (int8 GEMM)

NNLib : Computing kernel library for mobile devices

Direct convolution: Compute convolution directly without reordering inputs

	conv1	conv2	conv3	conv4	conv5	conv6	conv7	conv8	conv9	conv10
Im2col	30.1	108.3	26.0	43.0	25.3	86.9	37.8	15.2	30.4	22.9
MEC	14.0	65.0	31.1	47.6	14.6	44.1	15.7	9.5	18.8	21.9
QEngine	10.4	49.9	17.3	25.8	12.9	33.1	12.1	5.9	13.8	13.3

Runtime of different algorithms/ms

Memory overhead of different algorithms/MB

	conv1	conv2	conv3	conv4	conv5	conv6	conv7	conv8	conv9	conv10
Im2col	6.31	10.48	5.52	8.16	11.23	10.88	8.98	3.31	5.01	4.57
MEC	3.57	4.88	4.49	6.61	5.96	6.06	4.16	2.70	2.59	3.36
QEngine	1.92	3.48	3.97	5.83	3.85	3.65	1.75	1.50	1.39	2.76

[1] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[2] M. Cho and D. Brand. MEC: memory-efficient convolution for deep neural network. CoRR, abs/1706.06873, 2017.

NNLib : Computing kernel library for mobile devices

Sparse direct convolution & Int8 direct convolution

		conv1	conv2	conv3	conv4	conv5	conv6	conv7	conv8	conv9	conv10
Dense (direct)		10.4	49.9	17.3	25.8	12.9	33.1	12.1	5.9	13.8	13.3
Sparse (direct)	50%	9.12	36.42	12.62	18.99	10.08	27.38	10.65	5.16	9.90	9.55
	75%	6.38	23.44	8.20	11.93	6.96	17.47	7.45	3.42	6.48	5.99
	90%	4.01	14.09	4.11	6.22	4.57	10.12	4.81	2.27	4.06	3.37
Int8 (direct)		7.83	28.61	8.87	13.12	8.96	21.72	10.20	4.50	8.54	6.85

Runtime of different algorithms/ms

BenchMark@Snapdragon820E

DragonBoard[™] 820E (Arrow)

SoC	Qualcomm® Snapdragon™ 820E
CPU	custom 64-bit Kryo quad-core CPU up
	to 2.15GHz
RAM	Quad-channel, 16bit, 3GB PoP LPDDR4
	SDRAM designed for 1866 MHz CLK

BenchMark@HUAWEI Hikey 970

QEngine@CPU VS Hikey970@NPU

HK970:

SOC Kirin970 ARM Cortex-A73 MPCore4 @up to2.36GHz, ARM Cortex-A53 MPCore4 @up to1.8GHz NPU Cambricon1A single core

Summary

- Quantization
 - -Code-based and fixed point quantization
 - Scalar, vector, product quantization
 - Uniform, non-uniform, logarithmic quantization
 - -Weight, activation, gradient quantization
 - Storage, memory, computation, energy efficient
- QEngine

– A light-weight framework for **Efficient Inference**

Thank you!

yfzhang@nlpr.ia.ac.cn