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In this session, you will see how Al enables to..

.. transform a video clip
into a 3D volume...

Develop an
auto-focus system...

..Improve orthopedic
and brain surgery...

..and reconstruct
my carotid in real-time !
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But first, who are we?

W, I MFusion

« Company founded in 2012
In Munich, Germany

* Private and independent R&D lab
In medical imaging and computer vision

« Software framework deployed in various
clinical products and used by large
companies, start-ups and research labs
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What we do

g) Project Consulting
& From feasibility studies to implementation

Research & Development

Solving challenging problems with state-of-the-art algorithms
Software Development Kit

ImFusion SDK serves as an ideal platform for R&D

Implementation & Integration — OEM
Running our software within your medical product
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Technology Portfolio

E (T

Image Registration Navigation Machine Learning 3D Scanning & RGB-D

Point Clouds and Meshes 3D Freehand Ultrasound Cone-Beam CT Diffusion Tensor Imaging More...
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PART 1
QUICK INTRO
TO ULTRASOUND

W IMmFusion



Ultrasound for Medical Applications

-~

Credit: Yale University
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Problem #1: US is difficult to acquire
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Problem #2: US images are hard to read
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Problem #2: US images are hard to read

PHILIPS

EFAST
C6-2
29Hz
15.0cm

Shadows

r._, |mFUSIOﬁ March 20th, 2019 9/59



Problem #2: US images are hard to read

PHILIPS

EFAST
C6-2
29Hz
15.0cm

Shadows Mirroring
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Problem #3: US lack anatomical context
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..but ultrasound has a huge potential
v’ Portable
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..but ultrasound has a huge potential
v Portable v Cheap

v’ Real-time acquisition
- suitable for OR
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..but ultrasound has a huge potential
v Portable v Cheap v Safe

7 N\

v’ Real-time acquisition
- suitable for OR
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v" High spatial
resolution

Ourvision Al and GPU computing to unlock this potential
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Real-Time 2D Image Analysis

Image Filtering Image Segmentation

= R ——— =
—, G = o —— —— ————
e = ZzN >
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Real-Time 2D Image Analysis

Image Filtering Image Segmentation

= P ——— =
e ———, = ot ——— ————
- Y =

For many clinical applications, we need 3D information
(measurements, navigation during surgery, etc.)
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From 2D to 3D: Hardware Solutions

Motorized
Transducer
“‘wobbler”

Fusion

Matrix

Philips xMatrix

Tracking
(optical or
electro-magnetic)

B

[

March 20th, 2019
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Tracked 3D Ultrasound Sweeps

Ultrasound Sweep
2D ultrasound frames, each associated with a 4x4 matrix (position + orientation)

| s
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PART 2
ORTHOPEDIC SURGERY

in partnership with

stryker
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From planning to navigated surgery
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ted surgery
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rom planning to navigated surgery
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marker frame
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rom planning to navigated surgery

Before During
surgery Surgery
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Current workflow

1 Acquire CT/MR image before the operation
Segment the bones and detect landmarks

r._, |mFUS|Oﬁ March 20th, 2019 17/59



Current workflow

1 Acquire CT/MR image before the operation 2 Open the region of surgery
Segment the bones and detect landmarks Digitize landmarks on the patient’s bone

r._, ImFUSIOﬁ March 20th, 2019



Current workflow

1 Acquire CT/MR image before the operation 2 Open the region of surgery
Segment the bones and detect landmarks Digitize landmarks on the patient’s bone

3 Register pre-op/intra-op landmarks

r._, ImFUSIOﬁ March 20th, 2019



Current workflow

1 Acquire CT/MR image before the operation 2 Open the region of surgery
Segment the bones and detect landmarks Digitize landmarks on the patient’s bone

3 Register pre-op/intra-op landmarks 4 Navigate using the pre-op data

r._, ImFUSIOﬁ March 20th, 2019



Current workflow

1 Acquire CT/MR image before the operation 2 Open the region of surgery
Segment the bones and detect landmarks Digitize landmarks on the patient’s bone

3 Register pre-op/intra-op landmarks 4 Navigate using the pre-op data

r._, ImFUSIOﬁ March 20th, 2019



Ultrasound-based workflow

1 Acquire CT/MR image before the operation 2 Acquire a tracked 3D Ultrasound sweep
Segment the bones Extract the bone surface

4 Navigate using the pre-op data
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Ultrasound-based workflow

1 Acquire CT/MR image before the operation 2 Acquire a tracked 3D Ultrasound sweep
Segment the bones Extract the bone surface

3 Register pre-op/intra-op bone surface 4 Navigate using the pre-op data
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Deep Learning for Bone Detection
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Deep Learning for Bone Detection
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Network Architecture for Segmentation

U-Net Architecture
(most popular for medical image segmentation)

output
| segmentation
4 map

o
1% *:,: 3 H" "’] = conv 3x3, ReLU
i o oo s ' S copy and crop
-l — ¢ - # max pool 2x2
: ° ¥ 1024 L 4 up-conv 2x2
:I’QH | = conv 1x1

from https://Imb.informatik.uni-freiburg.de/people/ronneber/u-net/
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Bone Segmentation Results

UsImage  Random Forest Neural Network The segmentation is then refined at the pixel-level
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Bone Segmentation Results

USImage  Random Forest Neural Network
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Bone Segmentation Results

USImage  Random Forest Neural Network

If tracking data is available

for each frame, a 3D

segmentation can be
generated
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Point Cloud to Surface Registration

Optimization problem
Minimize the distance between each point and the closest point on the surface
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Point Cloud to Surface Registration

Optimization problem
Minimize the distance between each point and the closest point on the surface
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Fusion with pre-operative image

Salehi & Prevost et al.

Precise Ultrasound
Bone Registration with
Learning-Based
Segmentation and
Speed of Sound
Calibration

MICCAI 2077
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Extension to multiple bones
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Extension to multiple bones

Train a neural network on different bones separately
by encoding them as multiple channels
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Optimize the system accuracy by leveraging Al
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Optimize the system accuracy by leveraging Al

The who

v Ac

Bone surface can be more or less fuzzy
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Optimize the system accuracy by leveraging Al

Tracking camera

o

Position

Temporal delay
between images and
position information

How to synchronize
them ?

Ultrasound system

Images

W IMmFusion
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Optimize the system accuracy by leveraging Al

US systems assume a constant speed of sound
However, sound travels at different speeds in fat and muscle

US System Assumption
1540 m/s
Fat
1470 m/s
Muscle
1620 m/s

FUSIOn March 20th, 2019



Optimize the system accuracy by leveraging Al
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Optimize the system accuracy by leveraging Al

The whole system needs to be precisely calibrated
v Acquisition parameters must be optimized
v’ System must be calibrated geometrically and temporally

v Speed of sound must be compensated

Such processes are usually tedious and complex

..but we can leverage our real-time algorithms to solve them!
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1) Parameter Tuning - Auto-Focus for Cameras

Cameras can automatically find the region of interest in an image
A and optimize the acquisition parameters

Focus

v

Exposure Time
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1) Parameter Tuning - Auto-Focus for Ultrasound!

N i . _ \ A

Focus
Frequency
Brightness
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1) Automatic Acquisition Parameter Tuning
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1) Automatic Acquisition Parameter Tuning

Focus is equal to the
depth of the bone
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1) Automatic Acquisition Parameter Tuning

« Focusis equal to the
depth of the bone

* Frequency also depends
on the depth of the bone
(high frequencies
do not travel deep
enough)
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1) Automatic Acquisition Parameter Tuning

« Focusis equal to the
depth of the bone

* Frequency also depends
on the depth of the bone
(high frequencies
do not travel deep
enough)

« Brightness
can be adjusted by
computing intensity
statistics
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LIVE DEMO
AUTO-FocCus

- —— - - —————

IN partnership with
( - Cephasonics Ulerasound
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2) Calibrations

Speed of sound correction Temporal calibration

< o LIS DN et S e k‘:’Q\&:ﬁ@.\-“ Ry g .

< R R R R i A SR L S N\ RS R BUTRC S R R B v

2 AN

Scan-lines
average
direction

Salehi & Prevost et al.
Precise Ultrasound Bone Registration with Learning-Based Segmentation and Speed of Sound Calibration
MICCAI 207/
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PART 3

NEURO SURGERY
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From planning to brain surgery

 Brain surgery usually planned on pre-operative MR
Where is the tumor? How big is it?
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From planning to brain surgery

 Brain surgery usually planned on pre-operative MR
Where is the tumor? How big is it?

* In the OR, very difficult to follow a surgical plan

* Brain Sh|ft When the skull is Opeﬂed, Preoperative MRI

gravity causes the brain to collapse . ( 3 (
Ao wrt \ k. rl

Intraoperative MRI
bone ﬂap

Lu, Jun-Feng, et al. Neurolmage: Clinical 2 (2013): 132-142
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* Brain Sh|ft When the skull is Opeﬂed, Preoperative MRI

gravity causes the brain to collapse ( 3 (
Ao wrt \ k. r’

» |dea: Acquire ultrasound during surgery Intraoperative MRI
Deformable registration to the MR image s bong flap

- Planning can be used w KM‘%

k’ lnferlor

Lu, Jun-Feng, et al. Neurolmage: Clinical 2 (2013): 132-142
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MRI to 3D Ultrasound Registration
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MRI to 3D Ultrasound Registration
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MICCAI CuRIOUS Challenge 2018

Correction of Brainshift with Intra-Operative Ultrasound
https://curious?018.grand-challenge.org

Wolfgang Wein JO0 € : CﬁafFenge, presented to:
Brain-shift correct Wit ' {f
registration and landn ) \ A Wolfgang Wein.

s X2 In recognition of exceffenge of the method entitled “Brain

shift correction with image-based registration and its
accuracy evaluation” in the CuR10US MICCAT 2018
Challenge on Correction of Brainshi
with Intra-Operative Ultrasound.

Medtronic
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https://curious2018.grand-challenge.org/

Not an Al method !

Similarity Measure: Instead of correlating US intensities with two channels
of simulated information from CT as in [13], we use LC? to correlate US with
both the MRI intensity values p and its spatial gradient magnitude g = |Vp|.
The local LC? value is computed for each pixel x; in each ultrasound image,
considering a neighborhood §2(x;) of m pixels. For each patch of m pixels, the
contribution of MRI intensity values p and gradient magnitudes g are unknown.
Therefore, we define an intensity function f(x;) as a function of the transformed
MRI intensities p; = p(T'(x;)) and gradients g; = g(T'(x;)) = |Vpi| as:

f(xi) = api + Bgi +, (1)

where y; = {a, 3,7} denotes the unknown parameters of the influence of the MRI
intensities and gradients within £2(x;). They can be estimated by minimizing the
difference of the intensity function and the ultrasound image intensity u;:

2

o uy gl
M|B] - where M = A B (2)

Um Pm gm 1

which can be solved using ordinary least squares with the pseudo-inverse of M.
This results in a parameter triple y; for each pixel x;, which is only depending
on the neighborhood 2(x;) and therefore compensating for changing influences
of tissue interfaces or organ-internal intensities. The local similarity is then:

V|2
2, lu(xi) — My
Yoy, Var(u(x;))
The overall similarity is the weighted sum of eq. 3 with the local variance of the
US image. This suppresses regions without structural appearance, therefore al-

lowing to cope with ultrasonic occlusions implicitly, without the need to simulate
them.

Su,M)=1— (3)

Wein et al.

Global Registration of
Ultrasound to MRI Using the LC2
Metric for Enabling
Neurosurgical Guidance
MICCAI 20753

.. but still computationally intensive> GPU implementation

Top 3 methods were not based on machine learning

W IMmFusion

March 20th, 2019




PART 4
ULTRASOUND FOR
VASCULAR IMAGING

in partnership with

PILR))

WWWw.piurimaging.com

W ImMmFusion



Vascular Imaging

e \Visualization of blood vessels

» Multiple clinical applications, e.qg.

» Stenosis/Aneurysm Management
and Surveillance

» Fistula Planning and Monitoring
» Vascular Mapping

 Typically performed with a CT or MR
scanner after injection of contrast agents
- Expensive, long, toxic
- Not suited for screening or monitoring
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Vascular Imaging

e \Visualization of blood vessels

» Multiple clinical applications, e.qg.

» Stenosis/Aneurysm Management
and Surveillance

» Fistula Planning and Monitoring
» Vascular Mapping

 Typically performed with a CT or MR
scanner after injection of contrast agents
- Expensive, long, toxic
- Not suited for screening or monitoring

source: piurimaging.com
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From 2D to 3D US - without External Hardware

Existing
Hardware
Solutions

Motorized Transducer
“wobbler”

N\
NN
N )

Limited field of view
Temporal artifacts

Matrix Array
“3d probe”

Tracking
(optical/EM)

Limited field of view
Decreased image quality

Expensive
Not portable

Our Goal

W ImMmFusion

Image-Based
Reconstruction

No hardware
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Hardware
Solutions

Motorized Transducer Matrix Array Tracking
“wobbler” “3d probe” (optical/EM)
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Temporal artifacts Decreased image quality Not portable
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W ImMmFusion

Image-Based
Reconstruction
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Image-based Motion Reconstruction

Frame-to-frame motion estimation

T1 22

Algorithm

Tiso
Rigid Transformation
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Image-based Motion Reconstruction

Frame-to-frame motion estimation

Tis0 Toss  Tasg
7 N N —

Algorithm

Tiso
Rigid Transformation
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Image-based Motion Reconstruction

In-plane motion
IS easy to detect
(optical flow, block matching)
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Image-based Motion Reconstruction

In-plane motion Out-of-plane motion
IS easy to detect is much more difficult
(optical flow, block matching) because the image content changes
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Image-based Motion Reconstruction

In-plane motion Out-of-plane motion
IS easy to detect is much more difficult
(optical flow, block matching) because the image content changes

The more the content changes,
the higher the out-of-plane displacement

Patch
similarity

Out-of-plane
> Displacement t,

r._, |mFUS|Oﬁ March 20th, 2019 40/59



Image-based Motion Reconstruction

In-plane motion Out-of-plane motion
IS easy to detect is much more difficult
(optical flow, block matching) because the image content changes
Standard approach
The more the content changes, Speckle decorrelation

the higher the out-of-plane displacement
« Split pair of images
into patches
« 2D vector field + 1,
= 3D vector field
« Mask non-speckle areas
« Fitarigid transformation

Patch
similarity

Out-of-plane
> Displacement t,
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Machine Learning for Tracking Estimation

Issues of speckle decorrelation

Correlation
Out-of-plane
Displacement

>

>

« Decorrelation is very difficult to model
(depends on the tissues, on the acquisitions
parameters, etc.)

« Physical model assumes Rayleigh conditions

« Errors add up through the entire pipeline
(2D registration, decorrelation,
transformation fitting)
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Machine Learning for Tracking Estimation

Issues of speckle decorrelation Our End-to-end Approach
Correlation 4 One model to solve the whole problem
\ D?sglgigﬁgﬁt pair of images = transformation parameters
>
+  Decorrelation is very difficult to model Convolutional
(depends on the tissues, on the acquisitions Neural Network

parameters, etc.)
« Physical model assumes Rayleigh conditions

« Errors add up through the entire pipeline
(2D registration, decorrelation,
transformation fitting)
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Training Data Acquisition

No need for manual labeling
We just need to acquire a lot of tracked sweeps
(but calibration must be super accurate)

\
’
‘

800 sweeps (400k frames)
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Neural Network Architecture

Images (I;,15)

Consecutive frames
encoded as a
multi-channel image

W IMmFusion

Y

Convolution bxbxb4
(stride 2) + RelLU

Convolution 3x3x64
(stride 2) + RelL.U

Y

Y

Convolution 5xbx64
(stride 2) + RelLU

Convolution 3x3x64
(stride 2) + RelLU

Y

Y

Max Pooling 2x2
(stride 2)

Max Pooling 2x2
(stride 2)

(z19) pa1oauuo) Ajin

Regression
L2 loss

Y

(9) pa10auuo) Ajn4

[l
»®

—t
<

1ndinQ

x

O @© O
<

3 translation + 3 rotation parameters
(probe motion between the 2 images)
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Trick #1: Use the optical flow

Pre-compute the optical flow (in-plane motion)
and use it as additional channel

2-channel input 4-channel input
2 ultrasound images 2 ultrasound images + 2D vector field
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Trick #1: Use the optical flow

| 5
Y
Convolution 5x5x64 Convolution 3x3x64
(stride 2) + RelLU (stride 2) + RelLU
@ iy t
(@) (- M X
13 = |
) Q -
T .v Y o o y o
= Convolution 5x5x64 Convolution 3x3x64 = > 2 t; S
g (stride 2) + RelLU (stride 2) + RelLU o] D =
Images (I;,1,) o o 2 e, =
. > 2 1e
i3 Y Y = &) y
1 Max Pooling 2x2 Max Pooling 2x2 - 8,
(stride 2) (stride 2)
Optical Flow
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Trick #2: Use the Inertial Measurement Unit

| A
Y \
Convolution 5x5x64 Convolution 3x3x64
(stride 2) + RelLU (stride 2) + RelLU
@) i t
S = e
8 S K
2 u ! - o, o
= Convolution 5x5x64 Convolution 3x3x64 = > 3 t; S
® (stride 2) + RelLU (stride 2) + RelLU qQ 2 | g =
Images (I3,1,) o © 23 . =
2 G =16
5. Y Y = &) y
? Max Pooling 2x2 Max Pooling 2x2 - 0,
(stride 2) (stride 2)
Ao
io
f]
......... 3]
)
=
D
('D
. Inertial B, MY
Optical Flow Measurement g.MU
Unit eyIMU
74
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3D Reconstructions with IMU

Reconstruction of sweeps with strong motions and rotations
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3D Reconstructions with IMU

Reconstruction of sweeps with strong motions and rotations

Reconstruction of a sweep
following the great saphenous vein (more than 60cm)
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Quantitative Results

Accuracy study conducted on 800 US sweeps on various anatomies

260
BN linear motion
70 - B speckle decorrelation 30 = B
g B CNN (proposed) 240 e
£ 601 ) 25 B
- E o =
& 50- = 2 20
S & 5
— 40- Z 200 515
= 3 p
4= ISR ) B
) 30 A _5 180 E 10
e :
o 27 160 | di ’
>
mlO- O,J___J___
140 L | B I |
0 150 200 250 basic shift wave tilt
Phantom Forearms Lower legs actual sweep length (mm) sweep type
. . 0
Outperforms state-of-the-art methods Median drift of 5% over long sweeps
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More Quantitative Results

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

3D freehand ultrasound without external tracking using deep learning )
Raphael Prevost®*, Mehrdad Salehi®", Simon Jagoda? Navneet Kumar? Julian Sprung®, -
Alexander Ladikos? Robert Bauer®, Oliver Zettinig® Wolfgang Wein®

ImFusion GmbH, Agnes-Pockels-Bogen 1, Munich, Germany

b Computer Aided Medical Procedures (CAMP), TU Munich, Munich, Germany
¢ Piur Imaging GmbH, Vienna, Austria

ARTICLE INFO ABSTRACT

Amf{é’ history: This work aims at creating 3D freehand ultrasound reconstructions from 2D probes with image-based
Received 8 February 2018 tracking, therefore not requiring expensive or cumbersome external tracking hardware. Existing model-

Revised 5 June 2013 based approaches such as speckle decorrelation only partially capture the underlying complexity of ul-
Accepted 6 June 2018 pp P y p y cap! ying plexity

- X trasound image formation, thus producing reconstruction accuracies incompatible with current clinical
Available online 15 June 2018 . . N . - .

requirements. Here, we introduce an alternative approach that relies on a statistical analysis rather than

Keywords: physical models, and use a convolutional neural network (CNN) to directly estimate the motion of suc-

3D freehand ultrasound cessive ultrasound frames in an end-to-end fashion. We demonstrate how this technique is related to

Deep learning prior approaches, and derive how to further improve its predictive capabilities by incorporating addi-

Motion estimation

0 tional information such as data from inertial measurement units (IMU). This novel method is thoroughly
[nertial measurement unit

evaluated and analyzed on a dartaset of 800 in vivo ultrasound sweeps, yielding unprecedentedly accurate
reconstructions with a median normalized drift of 5.2%. Even on long sweeps exceeding 20 cm with com-
plex trajectories, this allows to obtain length measurements with median errors of 3.4%, hence paving the
way toward translation into clinical routine.

© 2018 Elsevier B.V. All rights reserved.

All papers and references available on www.imfusion.com
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LIVE DEMO
CAROTID RECONSTRUCTION

in partnership with

—- Cephasonics Ultrasound
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What if one sweep is not enough?
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What if one sweep is not enough?
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What if one sweep is not enough?
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What if one sweep is not enough?

Anatomical structures do not match
because of compression
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What if one sweep is not enough?

Anatomical structures do not match
because of compression
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Decompression Model

 Skin surface locally modeled as a circle
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Decompression Model

 Skin surface locally modeled as a circle
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Decompression Model

 Skin surface locally modeled as a circle
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Decompression Model

 Skin surface locally modeled as a circle
« Displacements are optimized by maximizing image similarity in the overlapping regions
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Decompression Model

 Skin surface locally modeled as a circle
« Displacements are optimized by maximizing image similarity in the overlapping regions
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Multi-scan Decompression Algorithm

Fusion

Y Views
l2o] |k
» Annotations

» Selection [vascular 1]
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Wide Field-of-View Reconstruction

=[5 vcBm 2018

8th EUROGRAPHICS Workshop on
VISUAL COMPUTING FOR BIOLOGY AND MEDICINE - Granada [Spain), 20-2] September 2018

Best Paper Award

resented t

ristian Schulte zu Berge, 'gang Wein, Mehraa I, Frederik Bender Ultrasound Decompression

for their work

Ult dD ion fi . .
Large ::;::‘I)c‘lir;f-vgxr:zzzzssﬁ:c;;ns for La rge FIeId-Of_VIeW
Reconstructions

EG vCBM 2018
B

Schulte zu Berge et al.

VCBM 2018 General Chairs Chairs Best Paper Committee  ,
e 7, DSt ¢ ’:’f /) / /
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CONCLUSION
THE FUTURE OF
ULTRASOUND IMAGING

Fusion



Let's recap
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Let's recap

 Ultrasound acquisition can be made easier and less tedious

Auto-tuning of the parameters Real-time anatomy recognition Trackingless 3D Reconstruction
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Let's recap

Auto-tuning of the parameters Real-time anatomy recognition Trackingless 3D Reconstruction

« Ultrasound improves both surgery workflows and diagnostics/monitoring

Vascular

“f‘};"j Orthopedic Neuro
' imaging

SV surgery surgery
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Let's recap

With Al + GPU computing + advanced algorithms,
US becomes more accessible and create new applications
.. maybe even replace other modalities in the long run
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ImFusion Suite: The ideal platform for R&D

ImFusion Suite allows to align meshes
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ImFusion Suite: The ideal platform for R&D
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Download the ImFusion Suite demo
= www.imfusion.com

Image Visualization,

1
ol
&,

J v Segmentation, Registration,
Mesh/Point Cloud Processing,
S ...and more!
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ImFusion x NVIDIA

NVIDIA Clara initiative for transparent access to accelerated computing
(closer to the sensor/raw data for certain applications & high-end systems
vs. in the cloud for point-of-care ultrasound)

Cephasonies Ulerasound MAYO
5 GE Healthcare ( Slurions CLINIC
® ImFusion

SUBTL@CAL ’ g < ? W

W ImFusion

FREE 3D IMAGE
| Nuance CJ KHEIRON
CINEMATIC VOLUME WEB SUBTLE @ MEDICAL
==
> = 2
L -

VisAGE IMAGING' !!a:: aidence

#= infer 3

ARTERYS Ve iz imagic

NVIDIA Clara SDK Clara Developers

source: https://developer.nvidia.com/clara
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https://developer.nvidia.com/clara

ImFusion SDK x CLARA Rendering Server

Y saveAs C!use all ‘ —E]Impurt @ Recent ‘ uﬁ Algorithms E Settings <@ View @ Help | < @ m'

5 open L save >

<
D

b T o

X/ Views
| | FT | ;
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X/ Annotations

\\ Line Segment

X/ Selection [US]
First 1 C O Last
Foass 1 &

Lock last v

(M): US - Tracker 1.00
(2): US I 1.00
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THANK YOU!

Auto-tuning of the parameters Tracking-less 3D ultrasound

Multi-modal registration

Raphael Prevost



