
Kate Clark, Mathias Wagner

S9708 - STRONG SCALING HPC APPLICATIONS:
BEST PRACTICES WITH A LATTICE QCD CASE STUDY

 2

AGENDA

Lattice Quantum Chromodynamics

QUDA

Bandwidth Optimization

Latency Optimization

Multi-node scaling

NVSHMEM

Summary

!3

QUANTUM CHROMODYNAMICS

The strong force is one of the basic forces of nature  
(along with gravity, em and weak)

It’s what binds together the quarks and gluons in the proton and the neutron
(as well as hundreds of other particles seen in accelerator experiments)

Responsible for the particle zoo seen at sub-nuclear scales (mass, decay rate, etc.)

QCD is the theory of the strong force
It’s a beautiful theory…  
 
 
 …but

!"#$%&'()*$+%",-"#$.#(/01,(-23$$4$$5678$95:;;$$4$$8&1)*$;<$=>;; X

3",6@0*,/7*A#"./0

! V*0$0$6./A*<.6-2$(,$"#0$"A$-*0$'&,()$A"1)0,$"A$#&-O10$+&?"#R$
F(-*$R1&/(-2<$0?0)-1"K&R#0-(,K<$&#@$-*0$F0&H$A"1)03P

! 6-h,$F*&-$'(#@,$-"R0-*01$-*0$B",6@0$&#@$A#"./0$(#$-*0$E1"-"#$
+&#@$-*0$#0O-1"#<$&,$F0??$&,$*O#@10@,$"A$"-*01$E&1-()?0,$,00#$(#$
&))0?01&-"1$0cE01(K0#-,3P

V*"K&,$M0AA01,"#$C&-("#&?$7))0?01&-"1$i&)(?(-2
i01K($C&-("#&?$7))0?01&-"1$G&'"1&-"12

h⌦i = 1

Z

Z
[dU]e�

R
d4xL(U)⌦(U)

!4

LATTICE QUANTUM CHROMODYNAMICS

Theory is highly non-linear ⇒ cannot solve directly

Must resort to numerical methods to make predictions 

Lattice QCD
Discretize spacetime ⇒ 4-d dimensional lattice of size Lx x Ly x Lz x Lt

Finite spacetime ⇒ periodic boundary conditions

PDEs ⇒ finite difference equations

Consumer of 10-20% of public supercomputer cycles

Traditionally highly optimized on every HPC platform for the past 30 years

Andre Walker-Loud S91010: Accelerating our Understanding of Nuclear Physics and the Early Universe

Jiqun Tu S9330: Lattice QCD with Tensor Cores

!5

STEPS IN AN LQCD CALCULATION

1. Generate an ensemble of gluon field configurations “gauge generation”
Produced in sequence, with hundreds needed per ensemble
Strong scaling required with 100-1000 TFLOPS sustained for several months
50-90% of the runtime is in the linear solver
O(1) solve per linear system
Target 164 per GPU

2. “Analyze” the configurations
Can be farmed out, assuming ~10 TFLOPS per job
Task parallelism means that clusters reign supreme here
80-99% of the runtime is in the linear solver  
Many solves per system, e.g., O(106)
Target 244-324 per GPU

D↵�
ij (x, y;U) �

j (y) = ⌘↵i (x)

or Ax = b

Simulation Cost ~ a-6 V5/4

!6

LATTICE QCD IN A NUTSHELL
h⌦i = 1

Z

Z
[dU]e�

R
d4xL(U)⌦(U)

Multi GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011

theory'
!

experiment)
!

Brookhaven*Na,onal*Laboratory*Large&Hadron&Collider& Davies'et#al#

 7

NVIDIA POWERS WORLD'S FASTEST SUPERCOMPUTER

27,648
Volta Tensor Core GPUs

Summit Becomes First System To Scale The 100 Petaflops Milestone

122 PF 3 EF
HPC AI

!8

STRONG SCALING

Multiple meanings
Same problem size, more nodes, more GPUs
Same problem, next generation GPUs
Multigrid - strong scaling within the same run (not discussed here)

To tame strong scaling we have to understand the limiters
Bandwidth limiters
Latency limiters

 9

QUDA

!10

QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)
• Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD,

Chroma, CPS, MILC, TIFR, etc.
• Provides:

— Various solvers for all major fermionic discretizations, with multi-GPU support
— Additional performance-critical routines needed for gauge-field generation

• Maximize performance
– Exploit physical symmetries to minimize memory traffic
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– Domain-decomposed (Schwarz) preconditioners for strong scaling
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR)
– Multi-source solvers
– Multigrid solvers for optimal convergence

• A research tool for how to reach the exascale

!11

QUDA CONTRIBUTORS

§ Ron Babich (NVIDIA)
§ Simone Bacchio (Cyprus)
§ Michael Baldhauf (Regensburg)
§ Kip Barros (LANL)
§ Rich Brower (Boston University)
§ Nuno Cardoso (NCSA)
§ Kate Clark (NVIDIA)*
§ Michael Cheng (Boston University)
§ Carleton DeTar (Utah University)
§ Justin Foley (Utah -> NIH)
§ Joel Giedt (Rensselaer Polytechnic Institute)
§ Arjun Gambhir (William and Mary)
§ Steve Gottlieb (Indiana University)
§ Kyriakos Hadjiyiannakou (Cyprus)

§ Dean Howarth (BU)
§ Bálint Joó (Jlab)
§ Hyung-Jin Kim (BNL -> Samsung)
§ Bartek Kostrzewa (Bonn)
§ Claudio Rebbi (Boston University)
§ Hauke Sandmeyer (Bielefeld)
§ Guochun Shi (NCSA -> Google)
§ Mario Schröck (INFN)
§ Alexei Strelchenko (FNAL)
§ Jiqun Tu (Columbia)
§ Alejandro Vaquero (Utah University)
§ Mathias Wagner (NVIDIA)*
§ Evan Weinberg (NVIDIA)*
§ Frank Winter (Jlab)

10 years - lots of contributors

*this work

!12

LINEAR SOLVERS

QUDA supports a wide range of linear solvers

CG, BiCGstab, GCR, Multi-shift solvers, etc.

Condition number inversely proportional to mass

Light (realistic) masses are highly singular

Naive Krylov solvers suffer from critical slowing down at decreasing mass

Entire solver algorithm must run on GPUs
Time-critical kernel is the stencil application
Also require BLAS level-1 type operations

while (|rk|> ε) {
•βk = (rk,rk)/(rk-1,rk-1)
•pk+1 = rk - βkpk

 qk+1 = A pk+1
•α = (rk,rk)/(pk+1, qk+1)
•rk+1 = rk - αqk+1
•xk+1 = xk + αpk+1

•k = k+1
}

conjugate
gradient

!13

MAPPING THE DIRAC OPERATOR TO CUDA

• Finite difference operator in LQCD is known as Dslash

• Assign a single space-time point to each thread
V = XYZT threads, e.g., V = 244 => 3.3x106 threads

• Looping over direction each thread must
– Load the neighboring spinor (24 numbers x8)

– Load the color matrix connecting the sites (18 numbers x8)
– Do the computation

– Save the result (24 numbers)

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity
• QUDA reduces memory traffic

Exact SU(3) matrix compression (18 => 12 or 8 real numbers)
Use 16-bit fixed-point representation with mixed-precision solver

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

Dx,x0 =
x x

x

x−

x−

U x



U
x

μ

μ

ν

X[0]

X[1]

!14

SINGLE GPU PERFORMANCE
“Wilson Dslash” stencil

Tesla V100
CUDA 10.1
GCC 7.3

“strong scaling”

0

500

1000

1500

2000

2500

3000

8121620242832

GF
LO

PS

Lattice length

half (1-GPU) single (1-GPU) double (1-GPU)

1115 GB/s

1119 GB/s

1013 GB/s

cf. STREAM 850 GB/s

 15

BANDWIDTH OPTIMIZATION

!16

GENERATIONAL COMPARISON
Fµν kernel - batched 3x3 multiplication

0

1000

2000

3000

4000

9-35% of peak

G
FL

O
PS

0

250

500

750

1000

4-21% of peak
0.00

1500.00

3000.00

4500.00

6000.00

6-37% of peak

0

1500

3000

4500

6000

K80 P100 V100

G
FL

O
PS

0

250

500

750

1000

0

1000

2000

3000

4000

!17

QUDA’S AUTOTUNER

QUDA includes an autotuner for ensuring optimal kernel performance

virtual C++ class “Tunable” that is derived for each kernel you want to autotune

By default Tunable classes will autotune 1-d CTA size, shared memory size, grid size

Derived specializations do 2-d and 3-d CTA tuning

Tuned parameters are stored in a std::map and dumped to disk for later reuse

Built in performance metrics and profiling

User just needs to
State resource requirements: shared memory per thread and/or per CTA, total number of threads

Specify a tuneKey which gives each kernel a unique entry and break any degeneracy

!18

SINGLE GPU PERFORMANCE
“Wilson Dslash” stencil

Tesla V100
CUDA 10.1
GCC 7.3

“strong scaling”

0

500

1000

1500

2000

2500

3000

8121620242832

GF
LO

PS

Lattice length

half blocksize=32 single blocksize=32 double blocksize-32

half tuned single tuned double tuned

1180 GB/s

1291 GB/s

1312 GB/s

cf Perfect L2 roofline  
~ 1700 GB/s

!19

RECOMPILE AND RUN
Autotuning provides performance portability

G
Fl

op
/s 0

500

1,000

1,500

2,000

2007 2008 2010 2012 2014 2016 2017

Code from 2008 runs unchanged

!20

MULTI GPU BUILDING BLOCKS

Halo packing Kernel

Interior Kernel

Halo communication

Halo update Kernel

Multi GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011

Halo packing Kernel

Interior Kernel

Halo communication

Halo update Kernel

Multi-dimensional Kernel Computation

2-d example

• Checkerboard updating scheme
employed, so only half of the sites are
updated per application

• Green: source sites

• Purple: sites to be updated

• Orange: site update complete

Multi-dimensional Kernel Computation

Step 1

• Gather boundary sites into contiguous
buffers to be shipped off to
neighboring GPUs, one direction at a
time.

Multi-dimensional Kernel Computation

Step 1

• Gather boundary sites into contiguous
buffers to be shipped off to
neighboring GPUs, one direction at a
time.

Multi-dimensional Kernel Computation

Step 1

• Gather boundary sites into contiguous
buffers to be shipped off to
neighboring GPUs, one direction at a
time.

Multi-dimensional Kernel Computation

Step 1

• Gather boundary sites into contiguous
buffers to be shipped off to
neighboring GPUs, one direction at a
time.

Multi-dimensional Kernel Computation

Step 2

• An “interior kernel” updates all local
sites to the extent possible. Sites
along the boundary receive
contributions from local neighbors.

Multi-dimensional Kernel Computation

Step 3

• Boundary sites are updated by a series
of kernels - one per direction.

• A given boundary kernel must wait for
its ghost zone to arrive

• Note in higher dimensions corner sites
have a race condition - serialization of
kernels required

Multi-dimensional Kernel Computation

Step 3

• Boundary sites are updated by a series
of kernels - one per direction.

• A given boundary kernel must wait for
its ghost zone to arrive

• Note in higher dimensions corner sites
have a race condition - serialization of
kernels required

Multi-dimensional Kernel Computation

Step 3

• Boundary sites are updated by a series
of kernels - one per direction.

• A given boundary kernel must wait for
its ghost zone to arrive

• Note in higher dimensions corner sites
have a race condition - serialization of
kernels required

Multi-dimensional Kernel Computation

Step 3

• Boundary sites are updated by a series
of kernels - one per direction.

• A given boundary kernel must wait for
its ghost zone to arrive

• Note in higher dimensions corner sites
have a race condition - serialization of
kernels required

!31

BENCHMARKING TESTBED

DGX-1V
8x V100 GPUs
Hypercube-Mesh NVLink
4x EDR for inter-node communication
Optimal placement of GPUs and NIC for GDR

CUDA 10.1, GCC 7.3, OpenMPI 3.1

NVIDIA Prometheus Cluster

!32

METHODOLOGY

Gain insight from multi-GPU single node performance
Simulate strong scaling, with 1x2x2x2 topology on 8 GPUs
Use “Wilson Dslash” stencil

Then move to multi-node…

Binding script with explicit NUMA binding and NIC assignment
https://github.com/lattice/quda/wiki/Multi-GPU-Support#maximizing-gdr-performance

 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 mlx5_0 mlx5_2 mlx5_1 mlx5_3 CPU Affinity
 GPU0 X NV1 NV1 NV2 NV2 SYS SYS SYS PIX SYS PHB SYS 0-19,40-59
 GPU1 NV1 X NV2 NV1 SYS NV2 SYS SYS PIX SYS PHB SYS 0-19,40-59
 GPU2 NV1 NV2 X NV2 SYS SYS NV1 SYS PHB SYS PIX SYS 0-19,40-59
 GPU3 NV2 NV1 NV2 X SYS SYS SYS NV1 PHB SYS PIX SYS 0-19,40-59
 GPU4 NV2 SYS SYS SYS X NV1 NV1 NV2 SYS PIX SYS PHB 20-39,60-79
 GPU5 SYS NV2 SYS SYS NV1 X NV2 NV1 SYS PIX SYS PHB 20-39,60-79
 GPU6 SYS SYS NV1 SYS NV1 NV2 X NV2 SYS PHB SYS PIX 20-39,60-79
 GPU7 SYS SYS SYS NV1 NV2 NV1 NV2 X SYS PHB SYS PIX 20-39,60-79
 mlx5_0 PIX PIX PHB PHB SYS SYS SYS SYS X SYS PHB SYS
 mlx5_2 SYS SYS SYS SYS PIX PIX PHB PHB SYS X SYS PHB
 mlx5_1 PHB PHB PIX PIX SYS SYS SYS SYS PHB SYS X SYS
 mlx5_3 SYS SYS SYS SYS PHB PHB PIX PIX SYS PHB SYS X

Legend:

 X = Self
 SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
 NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
 PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
 PXB = Connection traversing multiple PCIe switches (without traversing the PCIe Host Bridge)
 PIX = Connection traversing a single PCIe switch
 NV# = Connection traversing a bonded set of # NVLinks

nvidia-smi topo -m

https://github.com/lattice/quda/wiki/Multi-GPU-Support#maximizing-gdr-performance

!33

LEGACY IMPLEMENTATION (2011)

Early CUDA had no interoperability with MPI

Stage MPI buffers in CPU memory

Early large-scale machines ~1 GPU / node

GPUs relatively slower

Host staging reasonable approach

Fig. 3. Spinor ghost zones and communication steps: We show the source
spinor on the sending device (top) assuming Nvec = 4, corresponding to
6 blocks from Fig. 2. The grey buffers at the end correspond to the ghost
zones. The top 3 blocks correspond to the P+4 projected components, while
the lower 3 blocks nearer the ghost zone correspond to P�4. Data from
the back faces (green) needs to be gathered into a communications buffer
on the sending host and likewise for the forward face (orange). The faces
are then transferred to the receiving host via QMP/MPI. Once transferred the
faces are transferred to the ghost zones on the receiving device (bottom of
diagram), which then uses the data directly from the ghost zones, hence the
corresponding faces have been greyed out.

kernel. The device-to-host transfers are achieved through the
use of separate cudaMemcpy calls (one for each face block),
with half precision requiring an extra cudaMemcpy for the face
of the normalization array. Once on the host, all of these blocks
are contiguous in memory, allowing for a single message
passing in each direction. The received faces are sent to the
device using a single cudaMemcpy for each face (with an extra
cudaMemcpy required for each of the normalization faces in
half precision) and placed in the end zone of the spinor field.
Finally the Wilson-clover kernel is executed.

2) Overlapping Communication and Computation: Our
second implementation aimed to overlap all of the commu-
nication with the computation of the internal volume. To do
so, the CUDA streaming API was used, which allows for a
CUDA kernel to execute asynchronously on the GPU at the
same time that data is being transferred between the device
and host using cudaMemcpyAsync.4

Additionally this makes use of non-blocking MPI commu-
nication possible: after the backward face has been transferred
to the host, the MPI exchange of this face to its neighbor is
overlapped with the transfer of the forward face from device
to host. In turn, when the first face has been received, this
can be sent to the device while the second face is being
communicated. This approach requires three CUDA streams:
one to execute the kernel on the internal volume, one for the
face send backward / receive forward, and one for the face
send forward / receive backward. An additional required step is
that the streams responsible for gathering the faces to the host
must be synchronized, using cudaStreamSynchronize, before
message passing can take place to ensure transfer completion.
In principle, we could also overlap the host-to-device transfer

4The Fermi architecture improves upon this model by allowing for bidirec-
tional transfers over the PCI-E bus.

of the second face and the computation involving the first face.
This would yield a minimal speedup at best, since the time
spent executing the face kernel is not the limiting factor, and
it may actually reduce overall performance since the kernel
would be updating half as many sites at a time, reducing
parallelism and potentially decreasing kernel efficiency.

E. Parallelizing the Linear Solver
Aside from the parallelization of the sparse matrix vector

product, the only other required addition to the code was the
insertion of MPI reductions for each of the linear algebra
reduction kernels.

VII. SOLVER PERFORMANCE RESULTS

A. Details of the Numerical Experiments
Our numerical experiments were carried out on the “9g”

cluster at Jefferson Laboratory. This cluster is made up of 40
nodes containing 4 GPUs each, as well as an additional 16
nodes containing 2 GPU devices each that are interconnected
by QDR InfiniBand on a single switch. In this study, we
focused our attention primarily on the partition made up of the
16 InfiniBand connected nodes, with one or two exceptions.
The nodes themselves utilize the Supermicro X8DTG-QF
motherboard populated with two Intel Xeon E5530 (Nehalem)
quad-core processors running at 2.4 GHz, 48 GiB of main
memory, and two NVIDIA GeForce GTX 285 cards with 2
GiB of device memory each.

The nodes run the CentOS 5.4 distribution of Linux with
version 190.29 of the NVIDIA driver. The QUDA library
was compiled with CUDA 2.3 and linked into the Chroma
software system using the Red Hat version 4.1.2-44 of the
GCC/G++ toolchain. Communications were performed using
version 2.3.2 of the QCD Message Passing library (QMP) built
over OpenMPI 1.3.2. In all our tests we ran in a mode with
one MPI process bound to each GPU.

The numerical measurements were taken from running the
Chroma propagator code and performing 6 linear solves for
each test (one for each of the 3 color components of the
upper 2 spin components), with the quoted performance results
given by averages over these solves. Statistical errors were
also determined but are generally too small to be seen clearly
in the figures. Importantly, all performance results are quoted
in terms of “effective Gflops” that may be compared with
implementations on traditional architectures. In particular, the
operation count does not include the extra work done to
reconstruct the third row of the link matrix.

We carried out both strong and weak scaling measurements.
The strong scaling measurements used lattice sizes of V =
243 � 128 and V = 323 � 256 sites respectively. Both the
lattice sizes and the Wilson-clover matrix had their parameters
chosen so as to correspond to those in current use by the
Anisotropic Clover analysis program of the Hadron Spectrum
collaboration. The lattices used were weak field configurations.
Such configurations are made by starting with all link matrices
set to the identity, mixing in a small amount of random noise,
and re-unitarizing the links to bring the links back to the

!34

SINGLE NODE PERFORMANCE
Host Staging

Host-Device transfers and MPI exchange dominate the execution

Interior kernel

Packing kernel

Halo t Halo z Halo y

244 half precision timeline

!35

SINGLE NODE PERFORMANCE
Host Staging

0

500

1000

1500

2000

2500

3000

8121620242832

GF
LO

PS

Lattice length

half single double

half (1-GPU) single (1-GPU) double (1-GPU)

DGX-1V, 1x2x2x2 partitioning

!36

ENABLING NVLINK COMMUNICATION

Three possible ways to utilize NVLink inter-GPU connections
1.) Use CUDA-aware MPI

Easiest
Can just work out of the box

2.) Copy Engines
Bandwidth

3.) Direct reading / writing from kernels
Least latency since a single kernel can write to multiple GPUs

!37

SINGLE NODE PERFORMANCE
Copy Engines

Interior kernelPacking kernel Halo t Halo z Halo y

Communication is completely hidden when using NVLink at larger volumes

244 half precision timeline

!38

SINGLE NODE PERFORMANCE
Copy Engines

0

500

1000

1500

2000

2500

8121620242832

GF
LO

PS

Lattice length

half (copy engine) single (copy engine) double (copy engine)

half (staging) single (staging) double (staging)

Latency limitedBandwidth limited

DGX-1V, 1x2x2x2 partitioning

 39

LATENCY OPTIMIZATION

!40

STRONG SCALING

Multiple meanings
Same problem size, more nodes, more GPUs
Same problem, next generation GPUs
Multigrid - strong scaling within the same run (not discussed here)

To tame strong scaling we have to understand the limiters
Bandwidth limiters
Latency limiters

Look at scaling of a half precision Dslash with 164 local volume on one DGX-1

!41

WHAT IS LIMITING STRONG SCALING

Staging MPI transfers through host memory

classical host staging

D2H copies H2D copy t H2D copy y H2D copy z

DGX-1,164 local volume, half precision, 1x2x2x2 partitioning

Interior kernel

Packing kernel

Halo t Halo z Halo y

297 µs

!42

API OVERHEADS

Staging MPI transfers through host memory

CPU overheads and synchronization are expensive

Pack Interior

Halo zD2H copies Halo t Halo y

H2D copy H2D copy H2D copy

Sync

DGX-1,164 local volume, half precision, 1x2x2x2 partitioning

!43

P2P TRANSFERS

Staging MPI transfers through host memory

use NVLink, only 1 copy instead of D2H + H2D pair, higher bandwidth

DGX-1,164 local volume, half precision, 1x2x2x2 partitioning

P2P copies

Interior kernelPacking kernel

160 µs

Halo t, y, z

!44

FUSING KERNELS

Staging MPI transfers through host memory

halo kernels do not saturate GPU

DGX-1,164 local volume, half precision, 1x2x2x2 partitioning

P2P copies

Interior kernelPacking kernel Fused Halo

129 µs

!45

REMOTE WRITE

Staging MPI transfers through host memory

Packing kernel writes to remote GPU using CUDA IPC

DGX-1,164 local volume, half precision, 1x2x2x2 partitioning

Interior kernelPacking kernel Fused Halo

Interior kernelPacking kernel Fused Halo

SyncSync

89 µs

!46

MERGING KERNELS

Staging MPI transfers through host memory

Packing and interior merged with remote write (ok for intranode)

DGX-1,164 local volume, half precision, 1x2x2x2 partitioning

Fused Packing /interior kernel Fused Halo

Packing + Interior kernel Fused Halo

SyncSync

73 µs

!47

LATENCY OPTIMIZATIONS

a) baseline
b) use P2P copies
c) fuse halo kernels
d) use remote write to neighbor GPU
e) fuse packing and interior

reduces overhead through
fewer API calls
fewer kernel launches

still CPU synchronization and API overheads

Different strategies implemented
Title

0

180

360

540

720

900

a b c d eG
Fl

op
/s

DGX-1,164 local volume, half precision, 1x2x2x2 partitioning

POLICY AUTOTUNING

What policy to use?

(CE vs remote write) ⊗ (Zero copy vs GDR vs staging) ⊗ kernel fusion

extended the autotuner to go beyond kernel tuning

Pe
rfo

rm
an

ce
 v

er
su

s
C

op
y

En
gi

ne
s

0

0.425

0.85

1.275

1.7

Lattice Length per GPU

8 12 16 20 24 28 32

half / remote write
half / fused pack
double / remote write
double / fused pack

Multi GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011

Dslash scaling, DGX-1V

No single optimal policy

!48

!49

CUDA AWARE MPI

preferred over manual host staging
can use CUDA IPC for intra-node
heuristics for transfer protocol

performance is implementation dependent

Great for inter-node
use GPUDirect RDMA
used in QUDA

Hit or miss for strong scaling

0

500

1,000

1,500

2,000

2,500

8 12 16 20 24 28 32

half single double

G
Fl

op
/s

solid: CUDA IPC 
dashed: CUDA-aware MPI

Lattice length L (volume L4)

!50

MULTI-NODE SCALING

Host staging 

autotuner will pick detailed policy

0

20,000

40,000

60,000

80,000

100,000

120,000

8 16 32 64 128 256

half single double

G
Fl

op
/s

DGX-1,643x128 global volume

#GPUs

!50

MULTI-NODE SCALING

Host staging 

Intranode with CUDA IPC

autotuner will pick detailed policy

G
Fl

op
/s

0

20,000

40,000

60,000

80,000

100,000

120,000

8 16 32 64 128 256

double single half

DGX-1,643x128 global volume

#GPUs

!50

MULTI-NODE SCALING

Host staging 

Intranode with CUDA IPC
 
CUDA IPC + GPU Direct RDMA

autotuner will pick detailed policy

G
Fl

op
/s

0

20,000

40,000

60,000

80,000

100,000

120,000

8 16 32 64 128 256

half single double

DGX-1,643x128 global volume

#GPUs

 51

NVSHMEM

 52

NVSHMEM

Implementation of OpenSHMEM, a Partitioned Global Address Space (PGAS) library
Defines API to (symmetrically) allocate memory that is remotely accessible

Defines API to access remote data
One-sided: e.g. shmem_putmem, shmem_getmem

Collectives: e.g. shmem_broadcast

NVSHMEM features
 Symmetric memory allocations in device memory
 Communication API calls on CPU (standard and stream-ordered)
 Allows kernel-side communication (API and LD/ST) between GPUs
 Interoperable with MPI

GPU centric communication

 53

NVSHMEM STATUS

Research vehicle for designing and evaluating GPU-centric workloads
Early access (EA2) available – please reach out to nvshmem@nvidia.com
Main Features
 NVLink and PCIe support
 InfiniBand support (new)
 X86 and Power9 (new) support
 Interoperability with MPI and OpenSHMEM (new) libraries

Limitation: current version requires device linking (see also S9677)

mailto:nvshmem@nvidia.com
mailto:nvshmem@nvidia.com

 54

DSLASH NVSHMEM IMPLEMENTATION

Keep general structure of packing, interior and exterior Dslash 

Use nvshmem_ptr for intra-node remote writes (fine-grained)
 Packing buffer is located on remote device
Use nvshmem_putmem_nbi to write to remote GPU over IB (1 RDMA transfer)

Need to make sure writes are visible: nvshmem_barrier_all_on_stream
or barrier kernel that only waits for writes from neighbors

Disclaimer: 
Results from an first implementation in QUDA with a pre-release version of NVSHMEM

First exploration

!55

NVSHMEM DSLASH

Staging MPI transfers through host memory

DGX-1,164 local volume, half precision, 1x2x2x2 partioning

Packing kernel Fused Halo

Interior kernel

Barrier kernel

61 µs

!56

FUSING KERNELS

Staging MPI transfers through host memory

less Kernel launches

DGX-1,164 local volume, half precision, 1x2x2x2 partioning

Packing + barrier kernel Fused Halo

Interior kernel

56 µs

!57

LATENCY OPTIMIZATIONS

a) baseline
b) use P2P copies
c) fuse halo kernels
d) use remote write to neighbor GPU
e) fuse packing and interior
f) Shmem
g) Shmem fused packing+barrier

Different strategies implemented

0

180

360

540

720

900

a b c d e f g

half

G
Fl

op
/s

!58

NVSHMEM OUTLOOK

Staging MPI transfers through host memory

intra-kernel synchronization and communication

One kernel to rule them all !  
Communication is handled in the kernel and latencies are hidden.

 59

SUMMARY

!60

STRONG SCALING LATTICE QCD

Optimize for latency and bandwidth

Autotuning ensures optimal kernel performance and policy selection

Overlap communication and compute for optimal bandwidth

API overheads and CPU/GPU synchronization are costly
prevent overlapping communication and compute

reduce kernel launches and API synchronization calls (fused kernels)

GPU centric communication with NVSHMEM takes CPU limitations out

GPU Direct RDMA techniques for writing data directly to the network

0

20,000

40,000

60,000

80,000

100,000

120,000

8 16 32 64 128 256

half single double

G
Fl

op
/s

