

SCIENTIFIC VIS VS. EDUTAINMENT

Extract information, gain insight

Visual cues, interactivity enhance focus

Helps to understand data

ParaView, VisIt, Matlab, Python,...

Edutainment

Tell a story

Support story with visual FX

Catch viewer's attention

Houdini, Blender, Maya, ...

VISUALIZATION ≠ RENDERING *

* but it's a part of it

Isosurfaces, Isovolumes

Field Operators (Gradient, Curl,...)

Streamlines

Coordinate transformations

Feature extraction

Thresholding

Clip, Slice

Binning, Resample Compositing

Line

Rendering

Surface Rendering

Volume Rendering

CHALLENGES AT LARGE SCALE

Locality

Complexity

Tools

CHALLENGES AT LARGE SCALE

Locality

Complexity

Tools

Leave it where it is

Use optimal resource

Minimal intrusion

VISUALIZATION IN THE DATACENTER

Benefits of Rendering on Supercomputer

Scale with Simulation
No Need to Scale Separate Vis Cluster

Cheaper Infrastructure
All Heavy Lifting Performed on the Server

Interactive High-Fidelity Rendering Improves Perception and Scientific Insight

CHALLENGES IN THE DATACENTER

Headless rendering

Remoting

Vis Software Stack

HEADLESS RENDERING

How to rasterize without an attached display

OpenGL context management

Two approaches for context handling:

- X server: mgmt. by separate process
- EGL: mgmt. by driver

X SERVER ON HEADLESS

How to rasterize without an attached display

Recommended if code modification is not an option

nvidia-xconfig -o xorg.conf --allow-empty-initial-configuration -a

- -o output file
- -a enables all GPUs (--enable-all-gpus)
- --allow-empty-initial-configuration start even if no attached display detected

CONTEXT MANAGEMENT WITH EGL

How to rasterize without an attached display

Requires minor application modification of GLX context initialization

```
// 1. Initialize EGL
EGLDisplay eglDpy = eglGetDisplay(EGL_DEFAULT_DISPLAY);
EGLint major, minor;
eglInitialize(eglDpy, &major, &minor);

// 2. Select an appropriate configuration
EGLint numConfigs; EGLConfig eglCfg;
eglChooseConfig(eglDpy, configAttribs, &eglCfg, 1, &numConfigs);

// 3. Create a surface
EGLSurface eglSurf = eglCreatePbufferSurface(eglDpy, eglCfg, pbufferAttribs);

// 4. Bind the API
eglBindAPI(EGL_OPENGL_API);
```

https://devblogs.nvidia.com/egl-eye-opengl-visualization-without-x-server/

FLEXIBLE GPU ACCELERATION ARCHITECTURE

Independent CUDA Cores & Video Engines

^{*} Diagram represents support for the NVIDIA Turing GPU family

^{** 4:2:2} is not natively supported on HW

VIDEO CODEC SDK

APIs For Hardware Accelerated Video Encode/Decode

What's New with Turing GPUs and Video Codec SDK 9.0

- Up to 3x decode throughput with multiple decoders on professional cards (Quadro & Tesla)
- Higher quality encoding H.264 & H.265
- Higher encoding efficiency (15% lower bitrate than Pascal)
- HEVC B-frames support
- HEVC 4:4:4 decoding support

NVIDIA GeForce Now is made possible by leveraging **NVENC** in the datacenter and streaming the result to end clients

https://developer.nvidia.com/nvidia-video-codec-sdk

NVPIPE

A Lightweight Video Codec SDK Wrapper

Simple C API

H.264, HEVC

RGBA32, uint4, uint8, uint16

Lossy, Lossless

Host/Device memory, OpenGL textures/PBOs

https://github.com/NVIDIA/NvPipe

Issues? Suggestions? Feedback welcome!

S9490 - GPU-Enhanced Collaborative Scientific Visualization, Wed 3/20, 11:00-11:50

```
#include <NvPipe.h>
// Encode
NvPipe* encoder = NvPipe_CreateEncoder(NVPIPE_RGBA32,
    NVPIPE HEVC, NVPIPE LOSSY, 32 * 1000 * 1000, 90);
while (...)
    uint64 t compressedSize = NvPipe Encode(encoder,
        rgba, buffer, bufferSize, width, height);
NvPipe Destroy(encoder);
// Decode
NvPipe* decoder = NvPipe_CreateDecoder(NVPIPE_RGBA32,
    NVPIPE HEVC);
while (...)
    NvPipe_Decode(decoder, buffer, compressedSize,
        rgba, width, height);
NvPipe Destroy(decoder);
```

EGL RENDERING + BROWSER STREAMING

Powerful combo for rendering in the cloud

KITWARE PARAVIEW

Open-Source (Distributed) Visualization Package

OpenGL

NVIDIA IndeX Plugin

VTK: VISUALIZATION TOOLKIT

Open Source Scientific Visualization Toolbox

Process data using pipelines made up of filters

Forms the foundation of ParaView, VisIt and many other vis tools

OpenGL, Software raytracing

S9458 - VTK-m: Lessons from Building a Visualization Toolkit for Massively Threaded Architectures, Wed 3/20, 3:00-3:50

CONTAINERS: SIMPLIFYING WORKFLOWS

WHY CONTAINERS

Simplifies Deployments

Eliminates complex, time-consuming builds and installs

Get started in minutes

- Simply Pull & Run the app

Portable

Deploy across various environments, from test to production with minimal changes

S9525 - Containers Democratize HPC, Tue 3/19

NGC CONTAINERS: ACCELERATING WORKFLOWS

WHY CONTAINERS

Simplifies Deployments

Eliminates complex, time-consuming builds and installs

Get started in minutes

- Simply Pull & Run the app

Portable

Deploy across various environments, from test to production with minimal changes

WHY NGC CONTAINERS

Optimized for Performance

 Monthly DL container releases offer latest features and superior performance on NVIDIA GPUs

Scalable Performance

- Supports multi-GPU & multi-node systems for scale-up & scale-out environments

Designed for Enterprise & HPC environments

- Supports Docker & Singularity runtimes

Run Anywhere

 Pascal/Volta/Turing-powered NVIDIA DGX, PCs, workstations, servers and top cloud platforms

GPU-OPTIMIZED SOFTWARE CONTAINERS

Over 50 Containers on NGC

TensorFlow | PyTorch | more

NAMD | GROMACS | more

RAPIDS | H2O | more

Parabricks

TensorRT | DeepStream | more

ParaView | IndeX | more

GPU ACCELERATED VECTOR GRAPHICS

Acceleration of 2D Graphics

GPUs primary rendering focus on 3D

2D rendering is so much more common

Often served out via web pages

Examples

graphs, diagrams, networks, flow charts, maps, vector artwork, Flash-like animation, etc. etc.

SCALABLE VECTOR GRAPHICS (SVG)

Pros:

- Wide support, efficient implementations
- Very powerful feature set

Cons:

- Slow due to client-side rendering in browser
- SVG contains data, not just pixels

- ⇒ GPU cloud rendering addresses <u>both</u> downsides
- ⇒ Support via NV_path_rendering OpenGL extension

SVG RENDERING PERFORMANCE

Bigger benefit for more complex scenes

ANATOMY OF A RAY-TRACING APP

Interplay of Rays and Geometry

- Intersection of rays with geometry
- Arbitrary new rays started at arbitrary locations
- Arbitrary operations at intersection points
- Typically in 3D space
- Hierarchical spatial decomposition as acceleration structure

TURING RT CORES

Hardware Accelerated Ray Tracing

RT Cores perform Ray-BVH Traversal Instancing: 1 Level Ray-Triangle Intersection Return to SM for Multi-level Instancing Custom Intersection Shading

Programming via OptiX RT framework Low overhead interop with CUDA

S9768 - New Features in OptiX 6.0 Wed 3/20, 1:00-1:50pm

BETTER INSIGHT VIA RAYTRACING

It's not just pretty pictures

S9589 - Interactive High-Fidelity Biomolecular and Cellular Visualization with RTX Ray Tracing APIs Wed 3/20, 3:00-3:50pm

OPTIX AI DENOISER IN PARAVIEW

VISRTX

Visualization Framework Powered by NVIDIA RTX Technology

Progressive forward pathtracer with NEE/MIS

Hardware-acceleration through OptiX

MDL for physically-based materials

Al denoiser

Area lights, Depth of Field, Tone mapping, etc.

Open-source C++ library

Feedback welcome (issues, PRs, e-mail)!

http://github.com/NVIDIA/VisRTX

VISRTX + PARAVIEW

VisRTX open-source on GitHub

Shipped with upcoming ParaView 5.7

No additional steps necessary!

RAYTRACING PAYS OFF AT SCALE

NVIDIA IndeX SDK

Large scale and distributed data rendering
Scene management with volume data
Transparent support for NVLink
Higher-order filtering, advanced lighting & transfer functions

https://developer.nvidia.com/index

S9692 - NVIDIA IndeX - Implementing Cloud Services for Complex Scientific Data Visualization, Tue 3/21, 4:00-4:50

NVIDIA INDEX FOR PARAVIEW PLUGIN

- NVIDIA IndeX rendering in ParaView
- Retain ParaView workflows
- Structured and unstructured meshes

Learn more:

http://www.nvidia.com/object/index-paraview-plugin.html

SUMMARY

Wide Palette for Visualization and Rendering in Datacenter/Cloud

Headless rendering

Accelerated video streaming

2D graphs can benefit from GPUs as well

Raytracing great to enhance vis perception

VisRTX raytracing vis tookit (in ParaView, VTK)

GPU accelerated scalable volume rendering part of open source tools

