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WAIV’s deep learning pipeline

7?
—/

Deep Learning for Time Series Anomaly Detection KPI Generation
e 2017:ideation, research * 2018: ideation, research e 2019: ideation, research
* 2018: prototype, GTC talk * 2019: prototype, GTC talk

* 2019: going into production
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The use case
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Network anomalies come in different flavors

O O

Poor performance Exhausting capacities Relative performance
* Sudden performance shifts * Reaching operational limits *  Clusters performing unusually well
* Exceeding thresholds * Exceeding thresholds * Neighboring clusters performing worse
* Generating alarms * Performing normally * No obvious causes
“Broken Sites” “Areas Requiring Analysis”
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Network anomaly detection today

10’s of thousands of sites. 100’s of thousands of carriers. Millions of metrics. Multiple tools to navigate.
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Your Site ENodeB 1continues to
exceed Average Connected Users.
Access Tool 1to viewmore

information and consider building a
solutioninTool 2. Tool 3 is
available for further analysis.
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Areas where today’s approach can improve

@ Reduce time to detect anomalies

D D Reduce the number of tools needed to detect anomalies
D Enable detection based on more than just hard thresholds

Take advantage of all possible data correlations

rQ{\ Automate steps, especially when detecting complex anomalies
v
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The generative modeling
approach
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Hierarchy of unsupervised learning

[ Unsupervised Learning }

/\

[ Non-Probabilistic Models ] [ Probabilistic (Generative) }

Models
£! /\
4 Tractable Models N Non-Tractable Models N )
*  Fully-observed belief * Boltzman Machines * Generative Adversarial
nets * Variational Networks
« NADE Autoencoders *  Moment Matching
\ PixelRNN/CNN R Y, \_ Networks Y,
Explicit Density Implicit Density
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Using an autoencoder for anomaly detection

The embedded/latent space will

that is useful for anomaly
detection
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https://i-systems.github.io/HSE545/machine%20learning%20all/Workshop/Hanwha/Lecture/image_files/AE_arch2.png
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Generative modeling architecture for anomaly detection

Initial goal is to generate clusters of sites that could be anomalies

Then develop a supervised learning model to automatically identify clusters that contain verified anomalies

Estimated number of clusters: 3

Train Produce Find and w0
Generative Reconstructed Cluster
Model Output Anomalies

performance Labeled |
apeled anoma
data Y
clusters
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
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Training the model
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Hyperparameter tuning — very important
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Model outputs when embedded space is 2-dimensional
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Correlation heatmap for 2-dimensional embedded space

Original Space Reconstructed Space
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Heatmap of delta between original and reconstructed
correlations

Black entries mean the original and reconstructed

spaces have similar correlations

We use correlations as a proxy for model quality

There is lots of red and blue in the diagram, so the
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Learning Curve for 10-dimensional embedded space

Model Validation & Training Loss
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0.12 4
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Training and validation loss are almost identical 010 |

This means the model is learning the dataset
very well
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Model outputs when embedded space is 10-dimensional

ENODEB |Dim1 |Dim10|Dim2 [Dim3 |Dim4 |Dim5 [Dim6 |Dim7 [Dim8 | Dim9

1] -0.26] -0.08| 0.00{ 0.23] 0.21]-0.11] -0.03] -0.22] 0.14| 0.12
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Correlation heatmap for 10-dimensional embedded space

Original Space Reconstructed Space
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Heatmap of delta between original and reconstructed
correlations

Black entries mean the original and reconstructed
spaces have similar correlations
We use correlations as a proxy for model quality
There’s lots of black in the diagram, so the model is
good
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Final autoencoder model architecture

Layer (type) Output Shape Param #

Key Features input_1 (InputLayer) (None, 163) 2]

e 163 input features dense (Dense) (None, 20@) 32800

e 9 hidden lavers dense_1 (Dense) (None, 10@) 20100

Y Encoder

« 10-dimensional embedded space dense_2 (Dense) (None, 46) 4040

* Mean Squared Error (MSE) loss dense_3 (Dense) (None, 20) 820

e Adam (RMSprop + Momentum) dense_4 (Dense) (None, 1@) 210

optimizer dense_5 (Dense) (None, 20) 220
dense_6 (Dense) (None, 40) 340
dense 7 (Dense None, 100 4100
Decoder =7 (Den=e) ‘ :
dense_8 (Dense) (None, 20@) 20200
dense_9 (Dense) (None, 163) 32763
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verizon’ Siton oF i atanil 6 et parmilio 1 sy uRGhoRzAA parsons o I er{28 ewcept by it SEYOSMERL. 20



Autoencoder implementation

NGC TensorFlow container optimized for
Nvidia Volta GPU

* RAPIDS

" Keras ¥ TensorFlow
* TensorFlow Keras M

AWS P3 Instance
* Verizon RHEL AMI

NGC TensorFlow Container
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Using the model outputs
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Looking for anomalies in the embedded space
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Looking for anomalies based on reconstructed outputs

Can we perform anomaly detection by identifying outliers based on reconstruction error?
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Clustering the reconstruction error outliers

Estimated number of clusters: 3

2.0 4
Too many outliers to analyze individually

1.5 4

Cluster the outliers into groups to ease analysis 107

0.5 4

Use DBSCAN to find clusters and estimate the
number of clusters

0.0

—-1.0 1

-1.541

—-2.04

https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
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Analyzing the clustering results

2.0 4

1.5 A

1.0 A

0.5

0.0

—0.5

-1.0

—-1.54

—-2.0

Estimated number of clusters: 3

https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py

verizon’

Network engineers manually inspected
performance data from cell sites in each
cluster

They found that a cluster that included all
high-usage sites from the input data

This means the model automatically
learned to detect an anomaly that we train
our new engineers to find
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What’s next
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Mature the anomaly detection capability

Simple Anomalies

e Simple outliers
(e.g., High-usage
sites)

Known Complex

Anomalies

e Complex
multivariate
anomalies (e.g.,
Passive
Intermodulation)

Unknown Complex

Anomalies

* New issues not
seen before (e.g.,
SW Bug on new
counter)

\

\
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Try more generative models
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https://i-systems.github.io/HSE545/machine%20learning%20all/Workshop/Hanwha/Lecture/image_files/AE_arch2.png

https://i-systems.github.io/HSE545/machine%20learning%20all/12%20Deep%20learning/image_files/my_GAN.png
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Variational autoencoder model architecture

Layer (type) Output Shape Param #

encoder_input (InputlLayer) (None, 163) 0

vae_latent_sample (Model) (None, 1@) 5819@

vae_output_sample (Model) (None, 163) 90996
Layer (type) Output Shape Param # Layer (type) Output Shape Param #
encoder_input (Inputlayer)  (Neme, 163) o input_latent_volues (Inputlayer (None, 10) °o
encoder_1 (Dense) (None, 200) 32800 decoder_1 (Dense) (None, 1) 11e
encoder_2 (Dense) (None, 1ee) 202100 decoder_2 (Dense) (None, 20) 220
encoder_3 (Dense) (None, 40) 4940 decoder_3 (Dense) (None, 40) 840
encoder_4 (Dense) (None, 20) 820 decoder_4 (Dense) (None, 1ee) 41e0
encoder_5 (Dense) (None, 10) 210 decoder_5 (Dense) (None, 2ee) 20200
latent_mean (Dense) (None, 1@) 110 output_mean (Dense) (None, 163) 32763
latent_variance (Dense) (None, 1) 110 output_variance (Dense) (None, 163) 32763
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Generated embedded space from variational autoencoder

How can this be used?

Come back next year to learn more!
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Kernel Density Estimation of the latent space generated by the variational autoencoder
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Future work

Model improvements to increase anomaly
detection rate

Optimize code for the Rapids platform
Modular anomaly detection framework

Combined KPI forecast and anomaly detection
frameworks

Use variational autoencoders and GANs to
improve network understanding
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Thank you.



Model evaluation guideline

underfitting overfitting
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