Deep Learning Generative Models in Wireless Networks

Wireless Al Innovation @ Verizon (WAIV) March 2019

WAIV's deep learning pipeline

Æð

Deep Learning for Time Series

- 2017: ideation, research
- 2018: prototype, GTC talk
- 2019: going into production

Anomaly Detection

- 2018: ideation, research
- 2019: prototype, GTC talk

KPI Generation

• 2019: ideation, research

The use case

Network anomalies come in different flavors

Poor performance

- Sudden performance shifts
- Exceeding thresholds
- Generating alarms

verizon

"Broken Sites"

Exhausting capacities

- Reaching operational limits
- Exceeding thresholds
- Performing normally

60

Relative performance

- Clusters performing unusually well
- Neighboring clusters performing worse
- No obvious causes

"Sites Needing Attention"

"Areas Requiring Analysis"

Network anomaly detection today

10's of thousands of sites. 100's of thousands of carriers. Millions of metrics. Multiple tools to navigate.

Areas where today's approach can improve

Reduce time to detect anomalies

Reduce the number of tools needed to detect anomalies Enable detection based on more than just hard thresholds Take advantage of all possible data correlations

Automate steps, especially when detecting complex anomalies

The generative modeling approach

Hierarchy of unsupervised learning

Explicit Density

Implicit Density

Using an autoencoder for anomaly detection

The embedded/latent space will <hopefully> contain information that is useful for anomaly detection

https://i-systems.github.io/HSE545/machine%20learning%20all/Workshop/Hanwha/Lecture/image_files/AE_arch2.png

Generative modeling architecture for anomaly detection

Initial goal is to generate clusters of sites that could be anomalies

Then develop a supervised learning model to automatically identify clusters that contain verified anomalies

https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py

Training the model

Hyperparameter tuning – very important

Model outputs when embedded space is 2-dimensional

Correlation heatmap for 2-dimensional embedded space

Original Space

Reconstructed Space

Heatmap of delta between original and reconstructed correlations

Black entries mean the original and reconstructed spaces have similar correlations

We use correlations as a proxy for model quality

There is lots of red and blue in the diagram, so the model is NOT GOOD

Learning Curve for 10-dimensional embedded space

Training and validation loss are almost identical

This means the model is learning the dataset very well

Model outputs when embedded space is 10-dimensional

ENODEB	Dim1	Dim10	Dim2	Dim3	Dim4	Dim5	Dim6	Dim7	Dim8	Dim9
1	-0.26	-0.08	0.00	0.23	0.21	-0.11	-0.03	-0.22	0.14	0.12
2	-0.37	-0.10	0.36	-0.07	-0.10	-0.34	0.35	-0.34	0.34	-0.11
3	-0.34	-0.12	-0.07	0.20	0.21	0.07	0.12	-0.20	0.02	0.07
4	-0.28	-0.06	0.28	-0.13	-0.11	-0.35	0.28	-0.15	0.27	-0.05
5	-0.09	-0.32	-0.08	0.17	0.28	-0.43	0.17	-0.31	0.09	0.11
6	-0.33	-0.09	0.23	-0.03	-0.10	-0.31	0.28	-0.25	0.37	-0.12
7	-0.31	-0.08	0.12	-0.06	-0.13	-0.25	0.21	-0.18	0.29	-0.18
8	-0.21	-0.13	0.08	0.25	0.33	-0.15	0.10	-0.24	0.18	0.24
9	-0.03	-0.37	-0.09	0.32	0.29	-0.30	0.23	-0.34	0.23	0.06
10	-0.08	-0.35	-0.13	0.19	0.29	-0.37	0.14	-0.29	0.23	0.08
11	-0.14	-0.20	-0.35	-0.05	0.16	0.04	0.10	-0.28	-0.01	-0.02
12	-0.29	-0.17	-0.08	0.26	0.26	0.02	0.03	-0.27	0.12	0.07
13	-0.33	-0.04	0.09	-0.06	-0.16	-0.29	0.25	-0.14	0.21	-0.13
14	-0.32	-0.06	0.23	-0.04	-0.12	-0.32	0.34	-0.19	0.31	-0.05
15	-0.31	-0.10	-0.08	0.28	0.23	-0.07	0.07	-0.22	0.07	0.16
16	-0.25	-0.16	-0.08	0.24	0.28	0.08	0.16	-0.13	0.16	0.14

Correlation heatmap for 10-dimensional embedded space

Original Space

Structural Similarity Index 0.92

Heatmap of delta between original and reconstructed correlations

Black entries mean the original and reconstructed spaces have similar correlations

We use correlations as a proxy for model quality

There's lots of black in the diagram, so <u>the model is</u> good

Final autoencoder model architecture

F

Key Features

- 163 input features
- 9 hidden layers
- 10-dimensional embedded space
- Mean Squared Error (MSE) loss
- Adam (RMSprop + Momentum) optimizer

	Layer (type)	Output Shape	Param #
	input_1 (InputLayer)	(None, 163)	0
	dense (Dense)	(None, 200)	32800
ncoder	dense_1 (Dense)	(None, 100)	20100
	dense_2 (Dense)	(None, 40)	4040
	dense_3 (Dense)	(None, 20)	820
	dense_4 (Dense)	(None, 10)	210
	dense_5 (Dense)	(None, 20)	220
	dense_6 (Dense)	(None, 40)	840
ecoder	dense_7 (Dense)	(None, 100)	4100
	dense_8 (Dense)	(None, 200)	20200
	dense_9 (Dense)	(None, 163)	32763

Autoencoder implementation

NGC TensorFlow container optimized for Nvidia Volta GPU

- RAPIDS
- Keras
- TensorFlow

AWS P3 Instance

Verizon RHEL AMI

Using the model outputs

Looking for anomalies in the embedded space

verizon

Looking for anomalies based on reconstructed outputs

Can we perform anomaly detection by identifying outliers based on reconstruction error?

Clustering the reconstruction error outliers

Too many outliers to analyze individually

Cluster the outliers into groups to ease analysis

Use DBSCAN to find clusters and estimate the number of clusters

https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py

Analyzing the clustering results

https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py

verizon

Confidential and proprietary materials for authorized Verizon personnel and outside agencies only. Use, disclosure or distribution of this material is not permitted to any unauthorized persons or third parties except by written agreement.

Network engineers manually inspected performance data from cell sites in each cluster

They found that a cluster that included all high-usage sites from the input data

This means the model automatically learned to detect an anomaly that we train our new engineers to find

What's next

Mature the anomaly detection capability

verizon

Try more generative models

https://i-systems.github.io/HSE545/machine%20learning%20all/Workshop/Hanwha/Lecture/image_files/AE_arch2.png

https://i-systems.github.io/HSE545/machine%20learning%20all/12%20Deep%20learning/image_files/my_GAN.png

Variational autoencoder model architecture

		Layer <mark>(</mark> type)		Output Shape Param #						
		encode	r_input (InputLayer)	(None, 163)		0				
		vae_la	tent_sample (Model)	(None, 10)		58190				
		vae_ou	tput_sample (Model)	(None, 163))	90996	_			
Layer (type)	Output S	hape	Param #		Layer (typ	e)		Output	Shape	Param #
encoder_input (InputLayer)	(None, 1	.63)	0		input_late	nt_values	(InputLayer	(None,	10)	0
encoder_1 (Dense)	(None, 2	200)	32800		decoder_1	(Dense)		(None,	10)	110
encoder_2 (Dense)	(None, 1	.00)	20100		decoder_2	(Dense)		(None,	20)	220
encoder_3 (Dense)	(None, 4	10)	4040		decoder_3	(Dense)		(None,	40)	840
encoder_4 (Dense)	(None, 2	:0)	820		decoder_4	(Dense)		(None,	100)	4100
encoder_5 (Dense)	(None, 1	.0)	210		decoder_5	(Dense)		(None,	200)	20200
latent_mean (Dense)	(None, 1	.0)	110		output_mea	an (Dense)		(None,	163)	32763
latent_variance (Dense)	(None, 1	.0)	110		output_var	iance (De	nse)	(None,	163)	32763

Generated embedded space from variational autoencoder

How can this be used?

Come back next year to learn more!

Kernel Density Estimation of the latent space generated by the variational autoencoder

Future work

Model improvements to increase anomaly detection rate

Optimize code for the Rapids platform

Modular anomaly detection framework

Combined KPI forecast and anomaly detection frameworks

Use variational autoencoders and GANs to improve network understanding

Thank you.

Model evaluation guideline

