REVOLUTIONIZING RETAIL WITH ARTIFICIAL INTELLIGENCE

Scott Brubaker, Paul Hendricks & Alex Sabatier

💽 NVIDIA.

INCEPTION PARTNERS & RETAIL ECOSYSTEM

AI FOR RETAIL

SHOPPING EXPERIENCE: STORE (IVA)

TOP RETAIL IVA USE CASES

SHOPPING EXPERIENCE: ONLINE

RECOMMENDATION ENGINES ON GPU CLOUD

SONG RECOMMENDATIONS

Spotify's Top Ten Most Popular Curated Playlists

VIDEO RECOMMENDATIONS

TARGETED RECOMMENDATIONS

AI IN SUPPLY CHAIN

WAREHOUSE OPTIMIZATION

FORECASTING AND REPLENISHMENT

AI AT CORPORATE HQ

GPU POWERED MACHINE LEARNING

DATA SCIENCE IN RETAIL

- Supply Chain Replenishment
- Inventory Management
- Price Simulation & Management
- Prioritize Promotion Ad Targeting
- Marketing Optimization
- Personalized Recommendations
- Truck Routing
- **Online Delivery**

THE STORE OF THE FUTURE

Future-Proofed IVA Infrastructure

DL-BASED IVA EDGE USE CASES

Loss Prevention Stock Out Reduction Store Analytics Security

NVIDIA VALUE

Comprehensive Platform for Retail IVA

NVIDIA DELIVERS	IVA Inference w/NVIDIA T4 GPU	Video Inference
peed Up	27*X CPU	27X
mages/second (1080P)	4400	25
Netropolis Platform optimized for IVA	DS Inference SDK TensorRT	20
GPU accelerated IVA Software Partners	70+	15
Deep Learning Education	Developer Blogs + IVA DLI	10 <u>10X</u>

GPU hardware accelerator engines for video decoding and encoding support faster than real-time video processing.

ResNet-50

CPU Server P4 T4

ART OF THE POSSIBLE The State of AI in Retail

Paul Hendricks Solutions Architect phendricks@nvidia.com

INTRODUCTION

- Paul Hendricks is a Solutions Architect at NVIDIA, helping enterprise customers with their deep learning and AI initiatives
- Paul's background is primarily in retail, and has spent the past 5 years working with many Fortune 500 retail companies to implement data science and AI solutions.
- Prior to joining NVIDIA, Paul worked at Victoria's Secret as a Data Scientist building models to understand customer propensity to purchase and how to optimize assortment in stores.
- Currently, Paul's research at NVIDIA focuses on intelligent video analytics, machine leaning, recommendation systems, GANs, and reinforcement learning.

INTRODUCTION

- Paul Hendricks is a Solutions Architect at NVIDIA, helping enterprise customers with their deep learning and AI initiatives
- Paul's background is primarily in retail, and has spent the past 5 years working with many Fortune 500 retail companies to implement data science and AI solutions.
- Prior to joining NVIDIA, Paul worked at Victoria's Secret as a Data Scientist building models to understand customer propensity to purchase and how to optimize assortment in stores.
- Currently, Paul's research at NVIDIA focuses on intelligent video analytics, machine leaning, recommendation systems, GANs, and reinforcement learning.

INTELLIGENT VIDEO ANALYTICS

Image Classification

Problem Background

- Input Data: Images, Videos
- Goal: Given an input, identify the class that input belongs to

Object Detection

Problem Background

- Input Data: Images, Videos
- Goal: Given an input, identify objects and output bounding boxes around the objects and their classes

Object Segmentation (Semantic Segmentation) Problem Background

- Input Data: Images, Videos
- Goal: Given an input, identify objects and output a mapping of pixels to their respective classes

Figure 1. The Mask R-CNN framework for instance segmentation.

LOSS PREVENTION, STORE ANALYTICS, AND FRICTIONLESS CHECKOUT

https://www.standardcognition.com/

Single Stage Detectors

 These algorithms regress the bounding boxes as well as classify the object within that bounding box in a single pass

Single Stage Detectors

- These algorithms regress the bounding boxes as well as classify the object within that bounding box in a single pass
- Computationally efficient and can be very fast during inference

Single Stage Detectors

- These algorithms regress the bounding boxes as well as classify the object within that bounding box in a single pass
- Computationally efficient and can be very fast during inference
- Examples: YOLOv3, SSD, RetinaNet, RetinaMask

Single Stage Detectors

- These algorithms regress the bounding boxes as well as classify the object within that bounding box in a single pass
- Computationally efficient and can be very fast during inference
- Examples: YOLOv3, SSD, RetinaNet, RetinaMask

Two Stage Detectors

 These algorithms generate a number of region proposals which are then passed to a CNN and classified

R-CNN: Regions with CNN features

Single Stage Detectors

- These algorithms regress the bounding boxes as well as classify the object within that bounding box in a single pass
- Computationally efficient and can be very fast during inference
- Examples: YOLOv3, SSD, RetinaNet, RetinaMask

Two Stage Detectors

- These algorithms generate a number of region proposals which are then passed to a CNN and classified
- Slower during inference since regions must be proposed and then evaluated (often redundant if overlaps)

R-CNN: Regions with CNN features

Single Stage Detectors

- These algorithms regress the bounding boxes as well as classify the object within that bounding box in a single pass
- Computationally efficient and can be very fast during inference
- Examples: YOLOv3, SSD, RetinaNet, RetinaMask

Two Stage Detectors

- These algorithms generate a number of region proposals which are then passed to a CNN and classified
- Slower during inference since regions must be proposed and then evaluated (often redundant if overlaps)
- Often are more accurate than single stage detectors, especially when trained on semantic segmentations

R-CNN: Regions with CNN features

Single Stage Detectors

- These algorithms regress the bounding boxes as well as classify the object within that bounding box in a single pass
- Computationally efficient and can be very fast during inference
- Examples: YOLOv3, SSD, RetinaNet, RetinaMask

Two Stage Detectors

- These algorithms generate a number of region proposals which are then passed to a CNN and classified
- Slower during inference since regions must be proposed and then evaluated (often redundant if overlaps)
- Often are more accurate than single stage detectors, especially when trained on semantic segmentations
- Examples: Faster RCNN, Mask RCNN

R-CNN: Regions with CNN features

GETTING STARTED

DLI Courses

Introduction to Object Detection with TensorFlow – <u>https://courses.nvidia.com/courses/course-v1:DLI+L-AV-04+V1</u>

Papers

- YOLOV3 <u>https://pjreddie.com/publications/</u>
- Faster RCNN <u>https://arxiv.org/pdf/1506.01497</u>
- Mask RCNN <u>https://arxiv.org/abs/1703.06870</u>
- RetinaNet <u>https://arxiv.org/abs/1708.02002</u>
- RetinaMask <u>https://arxiv.org/abs/1901.03353</u>

Libraries

- DarkNet <u>https://github.com/pjreddie/darknet</u>
- TensorFlow's Object Detection API <u>https://github.com/tensorflow/models/tree/master/research/object_detection</u>
- Facebook's Mask RCNN Benchmark <u>https://github.com/facebookresearch/maskrcnn-benchmark</u>

Datasets

- ImageNet <u>https://www.kaggle.com/c/imagenet-object-detection-challenge</u>
- Pascal VOC <u>http://host.robots.ox.ac.uk/pascal/VOC/</u>
- COCO <u>http://cocodataset.org/</u>
- Open Images <u>https://storage.googleapis.com/openimages/web/index.html</u>

MACHINE LEARNING

DATA SCIENCE IN RETAIL

Supply Chain Replenishment

Inventory Management

Price Management / Markdown Optimization

Prioritize Promotion And Ad Targeting

Marketing Optimization

Personalized Recommendations

Truck Routing

Online Delivery

ML WORKFLOW STIFLES INNOVATION

DATA SCIENCE WORKFLOW WITH RAPIDS

Open Source, End-to-end GPU-accelerated Workflow Built On CUDA

DATA PREPARATION

GPUs accelerated compute for in-memory data preparation Simplified implementation using familiar data science tools Python drop-in Pandas replacement built on CUDA C++. GPU-accelerated Spark (in development)

DATA SCIENCE WORKFLOW WITH RAPIDS

Open Source, End-to-end GPU-accelerated Workflow Built On CUDA

MODEL TRAINING

GPU-acceleration of today's most popular ML algorithms XGBoost, Random Forest, Linear Regression, PCA, K-means, k-NN, DBScan, tSVD ...

DATA SCIENCE WORKFLOW WITH RAPIDS

Open Source, End-to-end GPU-accelerated Workflow Built On CUDA

VISUALIZATION

Effortless exploration of datasets, billions of records in milliseconds Dynamic interaction with data = faster ML model development Data visualization ecosystem (Graphistry & OmniSci), integrated with RAPIDS

RAPIDS – OPEN GPU DATA SCIENCE Software Stack

Data Preparation Model Training Visualization ► **PYTHON** DEEP LEARNING FRAMEWORKS RAPIDS DASK CUDF CUML **CUGRAPH** CUDNN CUDA **APACHE ARROW**

GETTING STARTED

DLI Courses

• Accelerating Data Science Workflows with RAPIDS – <u>https://courses.nvidia.com/courses/course-v1:DLI+L-DS-01+V1</u>

Resources

RAPIDS GitHub – <u>https://github.com/rapidsai</u>

- cuDF <u>https://github.com/rapidsai/cudf</u>
- cuML <u>https://github.com/rapidsai/cuml</u>
- cuGraph <u>https://github.com/rapidsai/cugraph</u>
- XGBoost <u>https://github.com/rapidsai/xgboost</u>
- Dask cuDF <u>https://github.com/rapidsai/dask-cudf</u>
- Dask cuML <u>https://github.com/rapidsai/dask-cuml</u>
- Dask XGBoost <u>https://github.com/rapidsai/dask-xgboost</u>
- Notebooks <u>https://github.com/rapidsai/notebooks</u>
- Notebooks Extended- <u>https://github.com/rapidsai/notebooks-extended</u>

NVIDIA HARDWARE

TESLA V100 TENSOR CORE GPU

World's Most Advanced Data Center GPU

5,120 CUDA cores 640 Tensor cores 7.8 FP64 TFLOPS | 15.7 FP32 TFLOPS | 125 Tensor TFLOPS 20MB SM RF | 16MB Cache 32 GB HBM2 @ 900GB/s | 300GB/s NVLink

TENSOR CORE BUILT FOR AI

Delivering 125 TFLOPS of DL Performance

Frameworks

VOLTA-OPTIMIZED cuDNN

VOLTA TENSOR CORE 4x4 matrix processing array D[FP32] = A[FP16] * B[FP16] + C[FP32] Optimized For Deep Learning

ALL MAJOR FRAMEWORKS

NVIDIA DGX

Al Supercomputer-in-a-Box

1000 TFLOPS | 8x Tesla V100 32GB | NVLink Hybrid Cube Mesh 2x Xeon | 8 TB RAID 0 | Quad IB 100Gbps, Dual 10GbE | 3U - 3200W

NVIDIA DGX-2 THE WORLD'S MOST POWERFUL DEEP LEARNING SYSTEM FOR THE MOST COMPLEX DEEP LEARNING CHALLENGES

- First 2 PFLOPS System
- 16 V100 32GB GPUs Fully Interconnected
- NVSwitch: 2.4 TB/s bisection bandwidth
- 24X GPU-GPU Bandwidth
- 0.5 TB of Unified GPU Memory
- 10X Deep Learning Performance

TESLA T4 WORLD'S MOST ADVANCED SCALE-OUT GPU

2,560 CUDA Cores 320 Turing Tensor Cores 65 FP16 TFLOPS | 130 INT8 TOPS | 260 INT4 TOPS 16GB | 320GB/s 70 W

NEW TURING TENSOR CORE

MULTI-PRECISION FOR AI INFERENCE & ENTRY LEVEL TRAINING 65 TFLOPS FP16 | 130 TeraOPS INT8 | 260 TeraOPS INT4

THROUGHPUT

WORLD'S MOST PERFORMANT INFERENCE PLATFORM

Up To 36X Faster Than CPUs | Accelerates All AI Workloads

For all three graphs:

Dual-Socket Xeon Gold 6140 @ 3.6GHz with single GPU as shown 18.11-py3 | TensorRT 5.0 | CPU FP32, P4 & T4: INT8 | Batch Size = 128

WORLD'S FASTEST INFERENCE PERFORMANCE

NVIDIA GPUs Set New Performance Records

THE JETSON FAMILY

JETSON TX1 7 - 15W 1 TFOPS (FP16) 50mm x 87mm JETSON TX2 7 - 15W 1.3 TOPS (FP16) 50mm x 87mm JETSON AGX XAVIER 10 - 30W 10 TFLOPS (FP16) | 32 TOPS (INT8) 100mm x 87mm

UAVs • AI subsystems • AI Cameras

- Fully autonomous machines

Factory automation • Logistics • Delivery robots

Multiple devices • Unified software

NVIDIA SOFTWARE

CHALLENGES WITH DEEP LEARNING

Current DIY deep learning environments are complex and time consuming to build, test and maintain

Requires high level of expertise to manage driver, library, framework dependencies

Development of frameworks by the community is moving very fast

NVIDIA GPU CLOUD

Deep Learning Everywhere, For Everyone

Innovate in minutes, not weeks Removes all the DIY complexity of deep learning software integration

Always up to date Monthly updates by NVIDIA to ensure maximum performance

Deep learning across platforms Containers run locally on DGX Systems and TITAN PCs, or on cloud service provider GPU instances

NVIDIA GPU Cloud integrates GPU-optimized deep learning frameworks, runtimes, libraries, and OS into a ready-to-run container, available at no charge

COMMON SOFTWARE STACK ACROSS DGX FAMILY

TENSORRT DEPLOYMENT WORKFLOW

Step 1: Optimize trained model

Step 2: Deploy optimized plans with runtime

NVIDIA TENSORRT

From Every Framework, Optimized For Each Target Platform

Frameworks

Platforms

TensorRT 5 & TensorRT Inference Server

Turing Support • Optimizations & APIs • Inference Server

Up to 40x faster perf. on Turing Tensor Cores

New INT8 workflows, Win & CentOS support

Maximize GPU utilization, run multiple models on a node

Free download to members of NVIDIA Developer Program soon at developer.nvidia.com/tensorrt

TensorRT Inference Server

Containerized Microservice for Data Center Inference

Multiple models scalable across GPUs

Supports all popular AI frameworks

Seamless integration into DevOps deployments leveraging Docker and Kubernetes

Ready-to-run container, free from the NGC container registry

TRANSFER LEARNING TOOLKIT

End to End NVIDIA Deep Learning Workflow

Pre-Trained model access from NGC * Training & adaptation * Applications ready to integrate with DeepStream

Accelerate time to market and save on compute resources!

NVIDIA DEEPSTREAM

Zero Memory Copies

