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• Dimension problem with medical image AI

• Ways to overcome dimension problems

• Using unified memory for CNN training

• Challenges

• Improved methods

• Results of medical image AI using high resolution images

Outline



• How much can a Tesla V100 (32Gb) take in ? 

• For ResNet-101, batch size=32, it can take in images of 512*512*3

• For ResNet-101, batch size=1, it can take in image of 3880*3880*3

• For 3D ResNet-101, batch size=32, it can take in images of 

92*92*42*1

• For 3D ResNet-101, batch size=1, it can take in image of 

577*577*42*1

Dimension problem with Medical Image AI



• Chest radiograph : 4000*5000 uint16

• Computed tomography : 512*512*50 uint16

• Low-dose lung CT: 512*512*500 uint16

• Digital Whole Slide Image : 100,000*50,000*3 uint8

Typical Resolution of Medical Image



• Resizing

Current approaches to deal with size problems with 
medical image AI

• Patch-based methods



Does input size really matter ? 



Automatic Analysis of Standing Lateral Radiograph 

• Goal : To teach neural network to 

recognize the center of C7 spine and 

superior posterior corner of the 

Sacrum (for calculating SVA)

• Dataset : ~1500 annotated 

radiographs

• 80% data for training, 10% for 

validation, 10% for testing 



Prediction on Test Images



• Model: ResUNet35

• Performance metric : mean absolute error (in mm)

• Training batch size : 8 (2 per GPU, 4 GPUs total)

Results of Using Different Image Resolution

Memory 
consumption 8Gb 14Gb >32 Gb



• Explicit device placement

• vDNN: Virtualized Deep Neural Networks for Scalable, Memory-

Efficient Neural Network Design

• TFLMS: Large Model Support in TensorFlow by Graph Rewriting

• CUDA Unified Memory

Ways to increase maximum input size



● How : Manual allocation of memory and compute

● Pros : Easy to implement in codes

● Cons : Data placed on system memory can only be processed by 

CPU

● To maximize performance, a rule of thumb is to place most 

frequently-used allocations on GPU memory to leverage data reuse.

● However, in DNN training, almost all allocations are accessed 

equally twice (forward and backward passes) in a batch. 

Explicit Device Placement



● How : Dynamically swapping data between system and GPU memory in 

runtime.

● To maximize the performance, data should be swapped to GPU memory 

on every compute.

● Swapping mechanism is suitable for DNN training. 

○ Access pattern is predetermined. Easy to schedule swapping.

● Implementations:

○ vDNN: Virtualized Deep Neural Networks for Scalable, Memory-

Efficient Neural Network Design [MICRO’16]

○ TFLMS: Large Model Support in TensorFlow by Graph Rewriting

Dynamic Swapping



● Proposed swapping strategies for DNN to reduce memory 

requirement.

● Swapping the entire layer as its basic unit.

● The implementation is not released.

vDNN



● How : Analysis and rewriting of computation graph.

● More general than vDNN since the network is no longer composed 

of layers

● The implementation is provided in IBM PowerAI package.

● Since GPU cores cannot directly access system memory, all data 

required by an operation should be in GPU memory. Once its size is 

too large to fit in, out-of-memory error occurs. 

IBM Large Model Support in Tensorflow (LMS)



• Unified Memory (UM) makes system memory accessible for GPU.

• Out-of-memory error due to limited GPU memory is eliminated since 

data can be placed anywhere.

• Because of low bandwidth of system memory access, data should 

better be placed in GPU memory.

• CUDA UM provides driver-defined swapping strategy like LRU, and 

APIs to hint data prefetch and placement.

• In our experiments, training DNN on unified memory is slow.  

Default swapping mechanism may not be optimal.

CUDA Unified Memory



Comparisons

Explicit Device 
Placement

Large Model 
Support

Unified Memory

Maximal model 
size

Limited by 
system memory

Limited by GPU 
memory

Limited by 
system memory

Performance Extremely slow 
when CPU 
processes most 
ops

Great Slow, Needs
tuning

Programmability Needs efforts Great Great



● Resnet-50 v1, batch size: 1, image size: 6000*6000(RGB)

● Visualized by NVIDIA Visual Profiler

Observing the swapping strategies (LMS)

Forward pass Backward pass

MemCpy(HtoD)
MemCpy(HtoD)

MemCpy(DtoD)



Observing the swapping strategies (LMS)

Forward pass

In forward pass, layer outputs should be kept for back 
propagation but not immediately used. LMS swaps these 
data to system memory to spare more space.



Observing the swapping strategies (LMS)

Backward pass

In backward pass, layer outputs in system memory are 
swapped in to GPU memory for computation.



● Swapping in and out everywhere during training.

● Data recently accessed are moved to GPU memory, and in 

the meanwhile other least-recently-used pages are kicked 

out to free space.

Observing the swapping strategies (Unified 
Memory)

Forward pass Backward pass



● Group execution

● Eager outward (device to host) swapping

● Prefetch

Way to improve throughput of Unified Memory



● Motivation: 

Typical backpropagation processes the network in parallel. Although the 

mechanism increases throughput ordinarily, it requires more memory 

space (working set). The large working set aggravates thrashing when 

there is insufficient GPU memory.

● Design Philosophy: Reduce parallelism

Group Execution on Backprop



● Perform backward pass group by group to reduce parallelism.

Layer Grouping



● Group granularity needs tuning to balance parallelism and 

working set size.

● Auto layer grouping algorithm:

1. Working set size of each layer is derived by examining the 

tensor graph.

2. Set a maximal working set size per group, say 8GB.

3. Union several layers into a group if working set size not 

exceeds.

Auto Layer Grouping



Results of Group Execution on Backprop

LMS Vanilla UM Grouping(B) Grouping(E)

256 161 ± 7 243 ± 1 215 ± 2 214 ± 2 .

512 46.0 ± 1.1 65.6 ± 0.2 64.2 ± 0.2 63.1 ± 0.4

768 21.1 ± 0.4 14.2 ± 6.9 15.3 ± 4.3 16.7 ± 5.1

1024 about 8 2.01 ± .28 2.02 ± .09 2.39 ± .12

Grouping(B): Slicing groups by blocks.

Grouping(E): Slicing groups by equalizing working set to 2048 MB.



● On-demand data migration caused by page fault is not as 

efficient as explicit memory copy and prefetch.

Why Data Prefetch?

Source : https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/



● Prefetch leverages data transfer overlap.

Why Data Prefetch? (cont.)

Source : https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/



● Use cuMemPrefetchAsync 

API.

Data Prefetch 

Group #0 Group #1

Start prefetching data requiared by Group #1.



Before:

After:

Visualization 

Almost all page faults are eliminated!



Resnet-50 v1 with batch size 1. Our method achieves 1.4~2.5x 

speedup.

Results on TAIWANIA 2
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• Digital pathology

• Cancer screening model

• Radiology

• Bone radiograph keypoint detection

Results of Using Unified Memory for 
High-Res Medical Image AI



Digital Whole Slide Image (WSI)
• Generated by slide scanner

• Resolution can be up to 200,000 * 100,000 pixels ( 20 Billion )



Two-Level AI Model for Cancer Detection 
on 
Whole Slide Image

Patch-level model (>10M Patches)
Background, Benign, Cancer
Classification accuracy : 98%

Slide-level model 
260 Training, 100 Testing
Classification Accuracy : 97%

Benign or NPC ? 

Ground Truth : Cancer, Normal Tissue
Shadowed area : Cancer predicted by AI

Divide WSI 
into patches



Annotation for Digital Pathology AI 



• Input size: 10000 x 10000 x 3 (RGB)

• Model : ResNet-50

• Training set : 780 images (357 NPC, 423 Benign)

• Validation set size: 68 images (32 NPC, 36 Benign)

• Hardware : HGX-1 nodes on Taiwania 2 Supercomputer, 8 Tesla 

V100(32gb) and 768 Gb system memory per node

• With batch size = 1,   360 Gb system memory is used for training 

through Unified Memory

• Each update takes 2.5 minutes.

Using images of entire specimen to train CNN
a.k.a. the no-fuss approach
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Slide-Level Prediction Testset Performance
True vs False PositivePrecision-Recall

No-fuss 
model 

Two-stage 
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Comparison of the two approaches

Patch-level modelNo-fuss model

Classification 
probability

Grad-CAM 
output



Comparison of the two approaches

Patch-level modelNo-fuss model

Grad-CAM 
output

Classification 
probability



Comparison of the two approaches

Patch-level model

Grad-CAM output Classification probability

No-fuss model



• Improved throughput for digital pathology AI pipeline

• Traditional : 6 months of annotation, 2 months of model training 

• Improved : 6 months of annotation, 2 months of model training 

What’s the Impact ? 



Embracing the Future of AI-Powered Pathology

info@aetherai.com


