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DFT – A BIRD’S EYE VIEW

• At-Speed Tests – verify 
performance

• Stuck-at Tests – detect logical 
faults

• Parametric Tests – verify AC/DC 
parameters

• Leakage Tests – catch defects that 
cause high leakage

Images – National Applied Research Laboratories
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SCAN TEST - CAPTURE
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TEST WASTE FROM POWER NOISE

• Power balls overheated; Scan Freq target was 
lowered

• Slower frequency → Test Cost

• Higher Vmin issue

• Vmin thresholds had to be raised; impacts DPPM.

• During MBIST, overheating was observed

• Serialized tests; increase in Test Time & Test Cost

• Vmin issues observed and being debugged 
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CAPTURE NOISE
Low Power Capture Controller

JT
A
G

SC
A

N
 I
N CG-0

CP

E Q

FF FF FF

CG-1
CP

E Q

FF FF FF

CG-15

CP

E Q

FF FF FF

LPC 

CONTROLLER

TD_0

TD_1

TD_15

TD_2

CG-2
CP

E Q

FF FF FF



9

TEST NOISE ESTIMATION
The traditional way 

Power noise during test <= functional 

budget directly impacts test quality ! 

Pre-Silicon Estimation

IR Drop 

Analysis

• Can simulate only a handful of vectors

• Not easy to pick top IR-Drop inducing 
test patterns always

• Machine Time to simulate 3000 patterns 
is 6-7 years!

• Measurement is feasible for 3-5K 
patterns

Post-Silicon Validation

ATE Input files

Hardware & Test Program 

Dev

Post-Processing

Noise per pattern

Issues
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IMPORTANCE
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• Labeled data is available

• Precision is not the focus 

• Need a prediction scheme that encompasses the entire 
production set

Why is Deep Learning a good fit?
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• Design Flow

• Feature Engineering

• Deep Learning Models

• Classification and Regression

PROPOSED APPROACH
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DESIGN FLOW

Goal:
• Supervised learning model to reduce the time

and effort spent

• Most effective set of input features

Dataset:
• Input features → parameters that impact the Vdroop

• Lebels → Vdroop values from silicon measurements

• Train phase → train:80% & dev:10%

• Inference phase → test:10%

Addresses the following:
• Takes into account all the corner cases for PVTf

variations

• Helps predict achievable Vmin

• Cuts down post-silicon measurements – typically 

6-8 weeks of engineering effort
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HARDWARE  SET-UP AND SCOPESHOT

Yellow – PSN

Green – Scan Enable

Purple – CLK

Pink – Trigger
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MATLAB POST PROCESSING

• To be able to accurately tabulate the VDD_Sense droop vs. respective 
clock domain frequency, a Matlab script is used. 

• Inputs to this script are the stored “.bin” files from the scope

• Outputs from Matlab script are:



17

SNAPSHOT OF DATASET

Pattern

Global 

Switch 

Factor % Process Voltage Temp

Freq 

(MHz) IP Name Product LPC

Droop 

(mV)

Granular 

Features
1 2.00% 3 1 10 1000 1 2 3 30

2 3.00% 3 1 10 1000 1 2 3 35

3 3.00% 3 1 10 1000 1 2 3 35

4 4.00% 3 1 10 1000 1 2 3 35

5 3.00% 3 1 10 1000 1 2 3 33

6 2.00% 3 1 10 1000 1 2 3 33

7 60.00% 3 1 10 1000 1 2 3 100

8 45.00% 3 1 10 1000 1 2 3 85

9 65.00% 3 1 10 1000 1 2 3 105

10 36.10% 3 1 10 1000 1 2 3 60

11 36.00% 3 1 10 1000 1 2 3 61

12 33.00% 3 1 10 1000 1 2 3 60

13 50.00% 3 1 10 1000 1 2 3 90

. . .

. . .

. . .

2998 29.87% 3 1 10 1000 1 2 3 55

2999 47.84% 3 1 10 1000 1 2 3 85

3000 58.92% 3 1 10 1000 1 2 3 91
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DEPLOYMENT

Goal
• Optimize low power DFT architecture

• Generate reliable test patterns

PSN analysis is repeated
• at various milestones of the chip design cycle 

and finalized close to tape-out.

• until there are no violations for any of the test 

patterns.
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• Design Flow

• Feature Engineering

• Deep Learning Models

• Classification and Regression

PROPOSED APPROACH
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FEATURE ENGINEERING

IP-level (Global)
• GSF

• PVT

• PLL frequency f

• LP_Value

• Type

SoC sub-block-level (Local)
• LSF

• Instance_Count

• Sense_Distance

• Area
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EXAMPLE: FEATURE EXTRACTION

➢ on-chip measurement point location
➢ sense point neighborhood-level graph
➢ global and local feature vectors

Sub-Block-Level layout of an SoC
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• Design Flow

• Feature Engineering

• Deep Learning Models

• Classification and Regression

PROPOSED APPROACH
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DEEP LEARNING MODELS

Fully Connected (FC) model
• basic type of neural network and is used in most of the models.

• Flattened FC model

• Hybrid FC model

Natural Language Processing-based (NLP) model
• NLP is traditionally used to analyze human language data.

• we apply the concept of the averaging layer to our IR drop prediction problem.

• Model is independent of the number of sub-blocks in a chip.
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FLATTENED FC MODEL

All the input features are applied simultaneously to the first layer.



25

HYBRID FC MODEL

Input features are divided into different groups, each applied to a different layer.
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NLP MODEL

➢ Local features of each sub-block form an individual bag of numbers.

➢ Filtered Average (FA): 1) filters out non-toggled sub-blocks, 2) calculates the average.
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• Design Flow

• Feature Engineering

• Deep Learning Models

• Classification and Regression

PROPOSED APPROACH
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CLASSIFICATION AND REGRESSION

➢ Classification models predict a discrete value (or a bin).

➢ Regression models predict the absolute value.

➢ Optimization:

➢ Cost Function:

➢ Loss Function: 𝐿 𝑦𝑖 , ො𝑦𝑖

Input Normalization, Adam optimizer, learning rate decay, L2 regularization

𝐽 =
1

𝑚


𝑖=1

𝑚

𝐿 𝑦𝑖 , ො𝑦𝑖 + ∅(𝑤)

−(𝑦𝑖 log ො𝑦𝑖 + (1 − 𝑦𝑖) log(1 − ො𝑦𝑖)) 𝑠𝑞𝑟𝑡(
1

𝑘


𝑖=1

𝑘

𝑦𝑖 − ො𝑦𝑖
2)

classification regression
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RESULTS

Benchmark Information - 16nm GPU chips: Volta-IP1 and Xavier-IP2

➢ Local features are wrapped with zero-padding (only for FC)

➢ Approximately 90% of the samples for training and validation

➢ Approximately 10% of the samples for inference.

Models were developed in Python using TensorFlow and NumPy libraries.

Models were run on a cloud-based system with 2 CPUs, 2 GPUs and 32GB memory.

GPU No. of Features No. of Train Samples No. Inference Samples

Volta-IP1 323 16500 1500

Xavier-IP2 239 2500 500
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RESULTS

Dataset Model-Architecture
Train

Accuracy (%)

Inference

Accuracy (%)

Train Time 

(minutes)

MAE

(mV)

Volta-IP1

+

Xavier-IP2

Classification-Flattened FC 94.5 94.5 10 7.30

Classification-Hybrid FC 96.0 96.0 3 6.90

Classification-NLP 92.6 92.6 80 7.46

Regression-Flattened FC 98.0 93.0 9 7.79

Regression-Hybrid FC 98.0 96.0 3 7.25

Regression-NLP 95.0 95.0 90 7.28

Method Run-Time

Pre-Silicon Simulation 416 days

Post-Silicon Validation 84 mins

Proposed 0.33 secs

Average run-time or prediction time

➢ For a 500-pattern set
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RESULTS

Correlation between the predicted and the silicon-measured Vdroop

Classification

Regression
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FUTURE WORK

• Train and apply DL for in-field 
test vectors noise estimation

• Shift Noise prediction

• Additional physical parameters

• Other architectures
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C++ 
SystemC

RTL
Gate-level 

Netlist

Behavioral Level

Very fast: > 10k cycles/s
(Source: [Ahuja ISQED’09] [Shao ISCA’14])

Only average power

Not that accurate

RTL Level

Slower: 1k-10k cycles/s 
(Source: [Yang ASP-DAC’15][PowerArtist])

Not-so-great accuracy

Some still only model 

average power

Gate Level

Slowest: 10-100 cycles/s
(Source: [VCS,Primetime PTPX])

Cycle-level power trace

Very accurate

Long turn-around time!

[Ahuja ISQED’09] S. Ahuja, D. A. Mathaikutty, G. Singh, J. Stetzer, S. K. Shukla, and A. Dingankar. "Power estimation methodology for a high-level synthesis framework." In Quality of Electronic Design, 2009. ISQED 2009. Quality Electronic Design, pp. 541-546. IEEE, 2009.
[Shao ISCA’14] Y. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. "Aladdin: A pre-RTL, power-performance accelerator simulator enabling large design space exploration of customized architectures." In 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA).
[Yang ASP-DAC’15] J. Yang, L. Ma, K. Zhao, Y. Cai, and T.-F. Ngai. "Early stage real-time SoC power estimation using RTL instrumentation." In Design Automation Conference (ASP-DAC), 2015 20th Asia and South Pacific, pp. 779-784. IEEE, 2015.
[PowerArtist] https://www.ansys.com/products/semiconductors/ansys-powerartist
[VCS] https://www.synopsys.com/verification/simulation/vcs.html
[Primetime PTPX] https://news.synopsys.com/index.php?item=123041

MOTIVATION
Power modeling is either slow or inaccurate.

Get power with accurate power estimation using simulation traces at early design stages?

https://www.synopsys.com/verification/simulation/vcs.html
https://news.synopsys.com/index.php?item=123041


Emerging field using Machine Learning for Electronic Design Automation (EDA) tasks

Utilize GPU proficiency in ML tasks + find a way to map EDA applications to fit ML

→ Use machine learning / deep learning techniques to accurately estimate power at higher design 
abstraction level (RTL)

Shorter turn-around time, faster power validation, covers a diverse range of different workloads
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OPPORTUNITY: ML FOR EDA

Source: https://towardsdatascience.com/

Source: https://roboticsandautomationnews.com/
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Simulation

Simulation 
Results

Power Analysis

Power Results

Gather Training Data

Feature 
Construction

ML Model Training

Trained 
Power Model

Feature Engineering
Model Training

New Test Cases

Simulation

New Simulation 
Results

ML Model 
Inference

New Power Results

Model Application

Simulation 
Results

Power Results

Feature 
Construction

Trained
Power Model

Once Once “Free”

PROPOSED SOLUTION: ML-BASED POWER 
ESTIMATION WORKFLOW
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Learns the amount of 
capacitance charging 

associated with 2 1→0 
transitions is possibly P

POWER ESTIMATION: CIRCUIT PERSPECTIVE
Our models are essentially learning the switching capacitance associated with certain register 
switching activities
Figuring out which caps switch and by how much is inhumanely complex and non linear

→ Perfect for machine learning!

Example:



Traditional ML: linear model, XGBoost

With principal component analysis (PCA) applied for overfitting avoidance

Pros: smaller model, faster training

Cons: Hard to capture non-linearities

DL: convolutional neural net (CNN), multi-layer perceptron (MLP)

Pros: good for all sorts of non-linear models, good scalability

Cons: large model, longer training times, scalable but at a large startup cost (lots of parameters/nodes)
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MODEL SELECTION

𝑃 = 𝑎0 + 𝑎1𝑥1+ 𝑎2𝑥2+ 𝑎3𝑥3+ ⋯𝑎𝑛𝑥𝑛

P1
P2
…
Pm

a1
a2
…

an

= .

x1
x2
…

xm

Linear regression model CNN

Source:https://brilliant.org/wiki/convolutional-neural-network/



What information to use?
Register 0/1 state as inputs into model

How to encode? CNNs work best when features have spatial relationship for their inputs
Default (naïve) encoding: random placement of register traces in CNN input
Graph-partition based: treat register relations as a graph, then partition to determine input 
placement
Node-embedding based: Use node2vec to convert graph nodes into embeddings (Source: [Grover 

SIGKDD’16])
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FEATURE CONSTRUCTION

[Grover SIGKDD’16] Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining , pp. 855-864. ACM, 2016.
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Test Designs 
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EXPERIMENT SETUP

Normalized Root Mean Square Error (NRMSE)

𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸/ത𝑦

Cycle-by-cycle basis

Directly look at the power traces to see how good it fits

Good for catching outliers

Cycle-by-cycle basis

Source: Y. Zhou, et. al “PRIMAL: Power Inference using Machine Learning”, to appear in DAC 2019, June
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EXPERIMENT SETUP

ML training and inference infrastructure:

NVIDIA 1080Ti GPU

Software packages: network, metis, node2vec, Python 3.5, Keras 2.1.6, scikit-
learn, xgboost 0.72.1

Ground truth and comparison baseline gate level power analysis infrastructure

Intel Xeon CPU server, 64GB RAM
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RESULTS

Good accuracy

<5% average power estimation for all test cases

CNNs outperform linear models for bigger designs

Accuracy outperforms commercial tool

Source: Y. Zhou, et. al “PRIMAL: Power Inference using Machine Learning”, to appear in DAC 2019, June



~50X speedup against gate simulation + power analysis

Cycle-by-cycle traces show better accuracy for CNNs compared to linear models 43

300 cycles of RISCV core 
dhrystone benchmark

RESULTS

Source: Y. Zhou, et. al “PRIMAL: Power Inference using Machine Learning”, to appear in DAC 2019, June

Source: Y. Zhou, et. al “PRIMAL: Power Inference using Machine Learning”, to appear in DAC 2019, June



44

CONCLUSIONS

We can get both good accuracy and high speedup with ML-based power estimation

Achieves ~50X speedup over baseline with <5% error

A good example of using ML for EDA purposes

GPUs greatly benefit training/inference time in ML for EDA



Thank You!


