

Robust Power Estimation and Simultaneous Switching Noise Prediction Methods Using Machine Learning

March 20th, 2019

Robust Simultaneous Switching Noise Prediction for Test using Deep Neural Network

<u>Seyed Nima Mozaffari, Bonita Bhaskaran</u>, Kaushik Narayanun Ayub Abdollahian, Vinod Pagalone, Shantanu Sarangi

RTL-Level Power Estimation Using Machine Learning

Mark Ren, <u>Yan Zhang</u>, Ben Keller, Brucek Khailany Yuan Zhou, Zhiru Zhang

Robust Simultaneous Switching Noise Prediction for Test using Deep Neural Network

<u>Seyed Nima Mozaffari, Bonita Bhaskaran</u>, Kaushik Narayanun Ayub Abdollahian, Vinod Pagalone, Shantanu Sarangi

DFT - A BIRD'S EYE VIEW

SCAN TEST - SHIFT

SCAN TEST - CAPTURE

TEST WASTE FROM POWER NOISE

- Power balls overheated; Scan Freq target was lowered
 - Slower frequency \rightarrow Test Cost
 - Higher Vmin issue
 - Vmin thresholds had to be raised; impacts DPPM.
 - During MBIST, overheating was observed
 - Serialized tests; increase in Test Time & Test Cost
- Vmin issues observed and being debugged

CAPTURE NOISE

TEST NOISE ESTIMATION

The traditional way

Pre-Silicon Estimation

Post-Silicon Validation

Issues

- Can simulate only a handful of vectors
- Not easy to pick top IR-Drop inducing test patterns always
- Machine Time to simulate 3000 patterns is 6-7 years!
- Measurement is feasible for 3-5K patterns

Power noise during test <= functional budget directly impacts test quality !

IMPORTANCE

Strategy – we pick conservative LPC settings!

- Higher Test Time → Higher Test Cost
- For example Test Time savings of 40% could have been achieved.

Test Coverage vs Test Time

Why is Deep Learning a good fit?

- Labeled data is available
- Precision is not the focus
- Need a prediction scheme that encompasses the entire production set

PROPOSED APPROACH

- Design Flow
- Feature Engineering
- Deep Learning Models
- Classification and Regression

PROPOSED APPROACH

- Design Flow
- Feature Engineering
- Deep Learning Models
- Classification and Regression

DESIGN FLOW

Goal:

- Supervised learning model to reduce the time and effort spent
- Most effective set of input features

Dataset:

- Input features → parameters that impact the V_{droop}
- Lebels \rightarrow V_{droop} values from silicon measurements
- Train phase \rightarrow train:80% & dev:10%
- Inference phase \rightarrow test:10%

Addresses the following:

- Takes into account all the corner cases for PVTf variations
- Helps predict achievable V_{min}
- Cuts down post-silicon measurements typically 6-8 weeks of engineering effort

HARDWARE SET-UP AND SCOPESHOT

- Yellow PSN
 Green Scan Enable
- Purple CLK
- Pink Trigger

MATLAB POST PROCESSING

- To be able to accurately tabulate the VDD_Sense droop vs. respective clock domain frequency, a Matlab script is used.
 - Inputs to this script are the stored ".bin" files from the scope
 - Outputs from Matlab script are:

SNAPSHOT OF DATASET

Pattern	Global Switch Factor %	Process	Voltage	Temp	Freq (MHz)	IP Name	Product		Droop (mV)	Granular Features
i accerni			voituge		1000	ii itaine	rioduce		20	r catares
I	2.00%				1000			-	<u> </u>	
2	3.00%				1000				33	
	4.00%				1000				35	
5	3.00%			10	1000				33	
6	2.00%		1	10	1000				33	
7	60.00%		3 1	10	1000				100	
8	45.00%	3	3 1	10	1000	1		3	85	
9	65.00%	3	3 1	10	1000	1		3	105	
10	36.10%	3	3 1	10	1000	1	1 2	3	60	
11	36.00%	3	3 1	10	1000) 1	1 2	2 3	61	
12	33.00%	3 3	3 1	10	1000) 1	1 2	3	60	
13	50.00%	3	31	10	1000	1	1 2	3	90	
2998	29.87%	3	3 1	10	1000	1		3	55	
2999	47.84%	3	3 1	10	1000	1	2	3	85	
3000	58,92%	3	3 1	10	1000	1		3	91	

DEPLOYMENT

Goal

- Optimize low power DFT architecture
- Generate reliable test patterns

PSN analysis is repeated

- at various milestones of the chip design cycle and finalized close to tape-out.
- until there are no violations for any of the test patterns.

PROPOSED APPROACH

- Design Flow
- Feature Engineering
- Deep Learning Models
- Classification and Regression

FEATURE ENGINEERING

EXAMPLE: FEATURE EXTRACTION

Sub-Block-Level layout of an SoC

Global Vector:

> on-chip measurement point location

- sense point neighborhood-level graph
- global and local feature vectors

PROPOSED APPROACH

- Design Flow
- Feature Engineering
- Deep Learning Models
- Classification and Regression

DEEP LEARNING MODELS

Fully Connected (FC) model

- basic type of neural network and is used in most of the models.
- Flattened FC model
- Hybrid FC model

Natural Language Processing-based (NLP) model

- NLP is traditionally used to analyze human language data.
- we apply the concept of the averaging layer to our IR drop prediction problem.
- Model is independent of the number of sub-blocks in a chip.

FLATTENED FC MODEL

All the input features are applied simultaneously to the first layer.

HYBRID FC MODEL

Input features are divided into different groups, each applied to a different layer.

NLP MODEL

- > Local features of each sub-block form an individual bag of numbers.
- > Filtered Average (FA): 1) filters out non-toggled sub-blocks, 2) calculates the average.

PROPOSED APPROACH

- Design Flow
- Feature Engineering
- Deep Learning Models
- Classification and Regression

CLASSIFICATION AND REGRESSION

- > Classification models predict a discrete value (or a bin).
- > Regression models predict the absolute value.
- > Optimization:

Input Normalization, Adam optimizer, learning rate decay, L2 regularization

Cost Function:

$$J = \frac{1}{m} \sum_{i=1}^{m} L(y_i, \hat{y}_i) + \emptyset(w)$$

> Loss Function: $L(y_i, \hat{y}_i)$

$$-(y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i))$$

$$sqrt(\frac{1}{k} \sum_{i=1}^k (y_i - \hat{y}_i)^2)$$
classification
regression

Benchmark Information - 16nm GPU chips: Volta-IP1 and Xavier-IP2

- > Local features are wrapped with zero-padding (only for FC)
- > Approximately 90% of the samples for training and validation
- > Approximately 10% of the samples for inference.

Models were developed in Python using TensorFlow and NumPy libraries.

Models were run on a cloud-based system with 2 CPUs, 2 GPUs and 32GB memory.

GPU	No. of Features	No. of Train Samples	No. Inference Samples
Volta-IP1	323	16500	1500
Xavier-IP2	239	2500	500

Dataset	Model-Architecture	Train Accuracy (%)	Inference Accuracy (%)	Train Time (minutes)	MAE (mV)
Volta-IP1 + Xavier-IP2	Classification-Flattened FC	94.5	94.5	10	7.30
	Classification-Hybrid FC	96.0	96.0	3	6.90
	Classification-NLP	92.6	92.6	80	7.46
	Regression-Flattened FC	98.0	93.0	9	7.79
	Regression-Hybrid FC	98.0	96.0	3	7.25
	Regression-NLP	95.0	95.0	90	7.28

Average run-time or prediction time

> For a 500-pattern set

Method	Run-Time
Pre-Silicon Simulation	416 days
Post-Silicon Validation	84 mins
Proposed	0.33 secs

Correlation between the predicted and the silicon-measured V_{droop}

31

FUTURE WORK

- Train and apply DL for in-field test vectors noise estimation
- Shift Noise prediction
- Additional physical parameters
- Other architectures

RTL-Level Power Estimation Using Machine Learning

Mark Ren, Yan Zhang, Ben Keller, Brucek Khailany

Yuan Zhou, Zhiru Zhang

MOTIVATION

- Power modeling is either slow or inaccurate.
- Get power with accurate power estimation using simulation traces at early design stages?

[Ahuja ISQED'09] S. Ahuja, D. A. Mathaikutty, G. Singh, J. Stetzer, S. K. Shukla, and A. Dingankar. "Power estimation methodology for a high-level synthesis framework." In Quality of Electronic Design, 2009. ISQED 2009. Quality Electronic Design, pp. 541-546. IEEE, 2009. [Shao ISCA'14] Y. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. "Aladdin: A pre-RTL, power-performance accelerator simulator enabling large design space exploration of customized architectures." In 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA). [Yang ASP-DAC'15] J. Yang, L. Ma, K. Zhao, Y. Cai, and T.-F. Ngai. "Early stage real-time SoC power estimation using RTL instrumentation." In Design Automation Conference (ASP-DAC), 2015 20th Asia and South Pacific, pp. 779-784. IEEE, 2015. [PowerArtist] https://www.ansys.com/products/semiconductors/ansys-powerartist

NVIDIA

[VCS] https://www.synopsys.com/verification/simulation/vcs.html [Primetime PTPX] https://news.synopsys.com/index.php?item=123041

OPPORTUNITY: ML FOR EDA

- Emerging field using Machine Learning for Electronic Design Automation (EDA) tasks
- Utilize GPU proficiency in ML tasks + find a way to map EDA applications to fit ML
- ► → Use machine learning / deep learning techniques to accurately estimate power at higher design abstraction level (RTL)
 - Shorter turn-around time, faster power validation, covers a diverse range of different workloads

Source: https://towardsdatascience.com/

PROPOSED SOLUTION: ML-BASED POWER ESTIMATION WORKFLOW

POWER ESTIMATION: CIRCUIT PERSPECTIVE

- Our models are essentially learning the switching capacitance associated with certain register switching activities
- Figuring out which caps switch and by how much is inhumanely complex and non linear
- ► \rightarrow Perfect for machine learning!

Example: Learns the amount of capacitance charging associated with $21 \rightarrow 0$ transitions is possibly P $P = CV^2 f$ 37

MODEL SELECTION

- Traditional ML: linear model, XGBoost
 - With principal component analysis (PCA) applied for overfitting avoidance
 - Pros: smaller model, faster training
 - Cons: Hard to capture non-linearities
- DL: convolutional neural net (CNN), multi-layer perceptron (MLP)
 - Pros: good for all sorts of non-linear models, good scalability
 - Cons: large model, longer training times, scalable but at a large startup cost (lots of parameters/nodes)

 $P = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + \cdots a_n x_n$

$$\begin{pmatrix} P_1 \\ P_2 \\ \dots \\ P_m \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \dots \\ \mathbf{x}_m \end{pmatrix}$$

CNN

Linear regression model

FEATURE CONSTRUCTION

- What information to use?
 - Register 0/1 state as inputs into model
- How to encode? CNNs work best when features have spatial relationship for their inputs
 - Default (naïve) encoding: random placement of register traces in CNN input
 - Graph-partition based: treat register relations as a graph, then partition to determine input placement
 - Node-embedding based: Use node2vec to convert graph nodes into embeddings (Source: [Grover SIGKDD'16])

EXPERIMENT SETUP

Test Designs

Design	Description	Register + I/O signal count	Gate count	PTPX throughput (cycles/s)	Training set (# cycles)	Test set (# cycles)
qadd_pipe	32-bit fixed point adder	160	838	1250	Random stimulus (480k)	Random stimulus (120k)
qmult_pipe{1, 2, 3}	32-bit fixed point multiplier with 1, 2, or 3 pipeline stages	{384, 405, 438}	{1721, 1718, 1749}	{144.9, 135.1, 156.3}	Random stimulus (480k)	Random stimulus (120k)
float_adder	32-bit floating point adder	381	1239	714.3	Random stimulus (480k)	Random stimulus (120k)
float_mult	32-bit floating point multiplier	372	2274	454.5	Random stimulus (480k)	Random stimulus (120k)
NoCRouter	Network-on-chip router for a CNN accelerator	5651	15076	44.7	Unit-level testbenches (910k)	Convolution tests (244k)
RISC-V Core	RISC-V Rocket Core (SmallCore)	24531	80206	45	RISC-V ISA tests (2.2M)	RISC-V benchmarks (1.7M)

Source: Y. Zhou, et. al "PRIMAL: Power Inference using Machine Learning", to appear in DAC 2019, June

- Normalized Root Mean Square Error (NRMSE)
 - $NRMSE = RMSE/\bar{y}$
 - Cycle-by-cycle basis
- Directly look at the power traces to see how good it fits
 - Good for catching outliers
 - Cycle-by-cycle basis

EXPERIMENT SETUP

- ML training and inference infrastructure:
 - NVIDIA 1080Ti GPU
 - Software packages: network, metis, node2vec, Python 3.5, Keras 2.1.6, scikitlearn, xgboost 0.72.1
- Ground truth and comparison baseline gate level power analysis infrastructure
 - Intel Xeon CPU server, 64GB RAM

Good accuracy

- <5% average power estimation for all test cases</p>
- CNNs outperform linear models for bigger designs
- Accuracy outperforms commercial tool

~50X speedup against gate simulation + power analysis

Source: Y. Zhou, et. al "PRIMAL: Power Inference using Machine Learning", to appear in DAC 2019, June

Cycle-by-cycle traces show better accuracy for CNNs compared to linear models

CONCLUSIONS

- We can get both good accuracy and high speedup with ML-based power estimation
- Achieves ~50X speedup over baseline with <5% error</p>
- A good example of using ML for EDA purposes
- GPUs greatly benefit training/inference time in ML for EDA

Thank You!

