Imaging the City:
GPU simulation in space & time

Nikita Pestrov, Habidatum International, Inc.
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Prediction of a City Map
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What-If Analysis: Let’s build a Community Center
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Understanding the Economic Impact



City Map: Discrete vs Continuous

What is the best representation of the city data to learn the spatial patterns?

Continuous Discrete



Our Choice: Grid Cell

A universal data point

Different spatial scale: 10m to 10km
Uniform throughout the city
Comparable across territories

Fast computations

Relationship between adjacent cells




City Map: Discrete vs Continuous

What is the best representation of the city data to learn the spatial patterns?

Continuous Discrete



Discrete Grid Map: City as an Image
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Discrete Grid Map: City as an Image

]

20

100

120




Discrete Grid Map: City as an Image
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Simulation Example: From Activity to Sales

Activity: aggregate anonymous levels of activity based on cellular data

Spend: aggregate spend level based on a financial data provider
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Single Value is not Enough

Same value inside, different patterns around it

Need to understand spatial patterns
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Single Value is Not Enough

Activity vs spend
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Convolutional Neural Network:
Spatial Patterns Champion

Jia, Y. et.al, Caffe: convolutional architecture for fast feature embedding



UNet: Pixel-wise predictions

Encoder-Decoder architecture

Learns features in the encoder

Generates full size image in decoder
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Olaf Ronneberger, Philipp Fischer, and Thomas Brox, 2015



Classic UNet Application: Image Segmentation

Training data: 30 images, 512 by 512

Part of an input image Segmentation result

Olaf Ronneberger, Philipp Fischer, and Thomas Brox, 2015



Simulation Example: Saint Petersburg
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Viewing Map through Time

Time




Working with Multiple Cities

How to treat data from different cities as a homogeneous dataset?




Chronotope Grid

Chronotope Grid is a data standard and
database for space-time data.

Chronotope Grid allows aggregation,
processing and storing data with
location and time attributes.
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Model Training

e 10 cities, 2 weeks, 24 hour images per day

e ~ 2.5B aggregated activity records, ~ 100M aggregated spend records
e Images: 128 x 128 pixel, each pixel is a 350 meter cell

e Zero padding for smaller cities

e Error estimation: relative error in spend prediction, in %

e Average error across space and time: 23%



Avergae Relative Error, %

Model Accuracy

Relative Error Per City

Relative Error Per Hour
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Prediction in Space and Time
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Spatial Time Series
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Chronotope: Map + Time
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Chronotope Architecture
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Chronotope Grid

Web Application with
Interactive Viewport

General Purpose
Backend, Meta



Ray Tracing the City with NVIDIA
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Ray-traced cube
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Real Spend vs Predicted Spend in Space-Time
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Simulation Limitations

e Only a certain level of spatial granularity: not a small shop simulation
e Requires some minimal area to work: at least a 10 by 10 km city

e Works best as a rapid scenarios exploration tool



Next Steps

e Prediction for multiple categories of spend: Grocery vs Entertainment
e Adding data layers as input image channels: POl density, zoning

e Generation of maps for desert areas: starting without and input



Chronotope: Imaging the City

City Scale Simulation

Rapid Exploration of scenarios before
detailed field work and modelling

Nvidia GPU based visualization in
Space and Time

Try it at cube.chronotope.io
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