# Imaging the City: GPU simulation in space & time

Nikita Pestrov, Habidatum International, Inc.

# Habidatum

Analytics and Visualization for Urban Planning



# **Prediction of a City Map**



Activity

Spend

### What-If Analysis: Let's build a Community Center



Understanding the Economic Impact

# **City Map: Discrete vs Continuous**

What is the best representation of the city data to learn the spatial patterns?





Discrete

# **Our Choice: Grid Cell**

A universal data point

Different spatial scale: 10m to 10km

Uniform throughout the city

**Comparable across territories** 

**Fast computations** 

**Relationship between adjacent cells** 



# **City Map: Discrete vs Continuous**

What is the best representation of the city data to learn the spatial patterns?



Continuous



Raster

#### **Discrete Grid Map: City as an Image**



#### **Discrete Grid Map: City as an Image**



#### **Discrete Grid Map: City as an Image**



### **Simulation Example: From Activity to Sales**

Activity: aggregate anonymous levels of activity based on cellular data

Spend: aggregate spend level based on a financial data provider







Consumer activity data

# Single Value is not Enough

#### Same value inside, different patterns around it

VS

#### Need to understand spatial patterns





## Single Value is Not Enough



Activity vs spend

# **Convolutional Neural Network: Spatial Patterns Champion**



Jia, Y. et.al, Caffe: convolutional architecture for fast feature embedding

# **UNet: Pixel-wise predictions**

**Encoder-Decoder architecture** 

Learns features in the encoder

Generates full size image in decoder





#### **Classic UNet Application: Image Segmentation**

#### Training data: 30 images, 512 by 512





Part of an input image

Segmentation result

#### **Simulation Example: Saint Petersburg**







Spend: Actual





**Spend: Simulation** 

# **Viewing Map through Time**



# **Working with Multiple Cities**

#### How to treat data from different cities as a homogeneous dataset?



# **Chronotope Grid**

**Chronotope Grid** is a data standard and database for space-time data.

Chronotope Grid allows aggregation, processing and storing data with location and time attributes.



# **Model Training**

- 10 cities, 2 weeks, 24 hour images per day
- ~ 2.5B aggregated activity records, ~ 100M aggregated spend records
- Images: 128 x 128 pixel, each pixel is a 350 meter cell
- Zero padding for smaller cities
- Error estimation: relative error in spend prediction, in %
- Average error across space and time: 23%

#### **Model Accuracy**

Relative Error Per City Relative Error Per Hour 30 50 \_\_\_\_\_ 25 40 20 <sup>!</sup> % 30 Error, Relative B Relati 15 Avergae F Avergae 20 10 10 5 n warning Hostopoa Canapa -10 Poctos Ha Rohy Kannhuhrpan Mockea CapaHCK BONTOTPAR Exampler Kazane 0 1 2 3 5 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 4 6 7 8

### **Prediction in Space and Time**





### **Time Series**



Is there a way to show map + time together?

# Chronotope: Map + Time







#### **Chronotope Architecture**



Backend, Meta

# **Ray Tracing the City with NVIDIA**



#### **Real Spend vs Predicted Spend in Space-Time**



#### HABIDATUM

# **Simulation Limitations**

- Only a certain level of spatial granularity: not a small shop simulation
- Requires some minimal area to work: at least a 10 by 10 km city
- Works best as a rapid scenarios exploration tool

### **Next Steps**

- Prediction for multiple categories of spend: Grocery vs Entertainment
- Adding data layers as input image channels: POI density, zoning
- Generation of maps for desert areas: starting without and input

# **Chronotope: Imaging the City**

City Scale Simulation

**Rapid Exploration** of scenarios before detailed field work and modelling

**Nvidia GPU** based visualization in **Space and Time** 

Try it at cube.chronotope.io



