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LOW PRECISION INFERENCE ON GPU

Hao Wu, NVIDIA



OUTLINE

Performance motivation for quantization
Quantization details
Post-training quantization accuracy

Training for quantization
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INFERENCE

using a trained model to make predictions
Much of inference is fwd pass in training
Inference engines

Apply optimizations not common in training frameworks
Layer fusion, batch normalization folding
Memory management optimized for inference
Quantization

TensorRT: NVIDIA's platform for inference

Available as a stand-alone and in TensorFlow
S9431 - TensorRT Inference with Tensorflow (Wednesday, Mar 20, 10:00 AM)

3 NVIDIA.


https://developer.nvidia.com/tensorrt

QUANTIZED INFERENCE

Quantization:
Using lower precision to represent weights and activations
Using lower precision math

Benefits:

Speed up inference:
Math limited layers due to higher throughput math

Memory limited layers due to bandwdith savings

Reduce resource requirements: memory footprint, etc.
Challenge:

Maintaining model accuracy

NVIDIA.



TURING MATH THROUGHPUT

Relative to fp32 math

FP16 FP16 8x 2x
INT8 INT32 16x 4x
INT4 INT32 32x 8X

INT1 INT32 128x 32x



INFERENCE SPEEDUPS OVER FP32

TensorRT on Tesla T4 GPU

Input size 224x224 for all, except 299x299 for Inception networks
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INFERENCE THROUGHPUT IN IMAGES/S

Input size 224x224 for all, except 299x299 for Inception networks

7430 13493 2718
1082 1618 2060 2267 5307 9016 2761 6431 12652
298 617 1051 500 2045 3625 580 2475 4609
VGG-16 153 403 415 197 816 1269 236 915 1889
VGG-19 124 358 384 158 673 1101 187 749 1552

156 371 616 350 1318 2228 385 1507 2560
76 226 335 173 768 1219 186 853 1339
ResNext101 84 208 297 200 716 1253 233 899 1724

7 EANVIDIA.



INFERENCE IN FP16

Training in fp32 and inference in fp16 is expected to get same accuracy as in fp32 most of
the time

Add normalization if it overflows (>65504)
Add batch normalization to activation

If it is integer RGB input (0~255), normalize it to be float (0~1)

8 NVIDIA.



QUANTIZATION DETAILS

Terminology

Choices:
Scale vs scale+shift (symmetric vs asymmetric quantization)
Signed vs unsigned integer quantized representation
Scaling factor
Scaling granularity
Operations to quantize



TERMINOLOGY

convert from full precision (FP32) to quantized integer representation (e.g. int8)

convert from quantized representation to full precision

convert from one quantized representation to another
Effectively dequantize then quantize to a different quantized representation

Useful when output is being converted for quantized input of another operation

NVIDIA.



SCALE VS SCALE+SHIFT QUANTIZATION

Determined by the range of real values being quantized

Scale(Symmetric) quantization:

Quantize a range symmetrically centered at 0
Examples: [-3.2, 3.2], [-100.0, 100.0]

Scale+Shift(Asymmetric) quantization:

Quantize an arbitrary range
Examples: [-5.1, 8.3], [0.0, 20.0]

IIIIIII



SCALE QUANTIZATION

Quantized range represents a 0 centered real

Example:
range
Given tensor y, quantized tensor y, is defined as Quantize to 4 bit with a = 2
Yq = T‘TL(S . Clip(y, —Q, a)) (_1.54 0.22) ) .
where: —0.26 25
rn() is round to nearest -2 \ 1 0 1 2»/
s is scaling factor -5 1 ) REEER S -
a is clipping threshold (_ 1 7) h I FT T T T "
—a ,x € (—%o,—a) -7 0 7
clip(x) =1 x ,X E[—a,a)
@« xelae] —1.43 0.28 e b
—0.28 2 “yrrrrrrprrrrrr
2 0 2
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SCALE+SHIFT QUANTIZATION

Also known as asymmetric quantization

Quantized range represents a non 0-
centered real range

Given tensor y, quantized tensor y, is
defined as

Yq = (s - (clip(y, B, a) + 2))

where:
rn() is round to nearest
s is scaling factor
z is shift (zero point)
a and B are clipping threshold

{ﬂ ,x € (—,B)
clip(y,f,a) =<x ,x€[B,a)

a ,x € [a, o]
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Could use bits more efficiently when
distribution is not 0-centered
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Scale+shift
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wasted

Scale only

v
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SCALE+SHIFT OFFERS LITTLE ACCURACY BENEFIT

Image Classification, top-1 accuracy Object Detection, mAP

Mobilenet-v1_1_224 70.90 70.70 70.00 faster_rcnn_resnet101_coco* 0.38

Mobilenet-v2_1 224 WAK) 71.10 70.90 0.56 0.55 0.55
N —_ - 028 0.8 0.279

7490 7450 73.50
78.00  78.00 78.00
75.20  75.00 75.00
75.60  75.00 75.00
76.80  76.20 76.50

Classificatoin data from https://arxiv.org/abs/ 1806.08342
14 <ANVIDIA.
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SCALE+SHIFT OFFERS LITTLE ACCURACY BENEFIT

Tensors with positive and negative values:
Typically centered near 0
Outliers cause assymetry of range,

Resnet50 layer3.4.conv3 weights

0.1

J Scale+shift

0.3

Scale only

\4
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Tensors with only positive values:

Scale-only with unsigned int is just as efficient

Scale+shift

]
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SCALE+SHIFT IS MORE EXPENSIVE

With scale quantization, output is simply a scaled version of “true” output:
sq4A * sgB = s,s5AB

For scale+shift quantization, the output contains distinct terms (t = shift):
(s4A+ ty) * (sgB +tg) = spSgAB + s,(A+ tg) + sg(B +ty) + tytp

The operations involved to compute 3 additional terms may eliminate the performance
advantage of 8bit quantization over fp16

At least 1 more path to go through entire activation tensor

Detail can be found at https://github.com/google/gemmlowp

NVIDIA.



CONCLUSION: USE SCALE QUANTIZATION

Faster than scale+shift
Accuracy within epsilon of scale+shift
higher for some networks, lower for some others
Optionally use unsigned int for tensors with only positive values (doubles the sample points)
Quantize to a symmetric range of integer values to avoid bias

Do not use the minimum negative value

2k-1_4

Given k bits, use symmetric range [—(2%"1—1),2%¥1 - 1], s = .E.g. [-127, 127] for 8-bit

a

17 NVIDIA.



MINIMUM QUANTIZED VALUE

Integer range is not completely symmetric. E.g. in 8bit, [-128, 127]

127

If use [-127, 127], s = —

Range is symmetric

1/256 of int8 range is not used. 1/16 of int4 range is not used
128

If use full range [-128, 127], s = —

Values should be quantized to 128 will be clipped to 127

Asymmetric range may introduce bias

18 NVIDIA.



EXAMPLE OF QUANTIZATION BIAS

[0.5]
_ _10.3 _
A=[-22 -11 11 22],B= 0.3 , AB =0
0.5,
8bit scale quantization, use [-128, 127]. s,=128/2.2, sg=128/0.5
(127
77 | _
[- ~64 64 127]x| ;7 | =—127
1127

Dequantize -127 will get -0.00853. A small bias is introduced towards -

IIIIIII



EXAMPLE OF QUANTIZATION BIAS

0.5]
A=[-22 —-11 11 22],B= 8-3 CAB =0
0.5

8-bit scale quantization, use [-127, 127]. s,=127/2.2, sg=127/0.5

(127
76
76

1127

[-127 —64 64 127]+* =0

Dequantize 0 will get 0

IIIIIII



MATRIX MULTIPLY EXAMPLE

(—1.54 0.22) . (0.35 ) _ (—0.651)

—0.26 0.65 —0.51/ \—=0.423



MATRIX MULTIPLY EXAMPLE

(Coot 022y . (932)= (Toesh)

8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale =
127/1=127) for the second

(57 a1) *(Ces) = (Gins)

IIIIIII



MATRIX MULTIPLY EXAMPLE

(Coot 022y . (932)= (Toesh)

8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale =
127/1=127) for the second

(57 a1) *(Ces) = (Gins)

The result has an overall scale of 63.5* . We can dequantize back to float
(—5222) ) 1 _ (—0.648)
—3413 63.5 % —0.423

IIIIIII



REQUANTIZE

(Coot 022y . (932)= (Toesh)

8bit quantization

choose [-2, 2] fp range for first matrix and [-1, 1] fp range for the second
(—98 14) . 44 ) = (—5222)
—-17 41 —65 —3413
Requantize output to a different quantized representation with fp range [-3, 3]:

_ 127/3 _
(—gﬁg) " 635+%127 (—i;)

IIIIIII



CHOOSING SCALE GRANULARITY

Granularity for scaling choices:
Per tensor scale: all values in a tensor share a range

Fine-grain scale:
Values in a channel share scale
Different channels can have different scales
Can be extended to any axis of a tensor has its own scale

25 NVIDIA.
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FINE GRAINED SCALE QUANTIZATION

Why do we need fine scale?

Weight distribution varies per channel/neuron

Per channel maximum absolute value of weight of
layer3.4.conv3 in resnet50

50 100 150 200

250
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CHOOSING SCALE GRANULARITY (CONT.)

Scale must be decided offline. Computing scale inflight will eliminate the performance
advantage of int8 over fp16

Per tensor (matrix) scale for activations

Each input in a batch can have different scale, can’t be decided offline

Each input feature map of activation must have same scale to do dot product
Fine grained scale for weight

Can be decided offline

Per channel scale for convolution weight

Per neuron scale for fully connected weight

27
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CHOOSING THE SCALE/RANGE

Using full range may not be the best choice for quantization - large outliers reduce resolution
around 0.

104

10°

102

10!

10°

-0.3 0.3

I: ' >! a = 0.23, clip outliers, has more precision close to 0

b =| a = 0.31, covers the full range
28 “ANVIDIA.



CALIBRATION

Feed data samples to the network, decide scaling factor for each activation tensor

Data samples must be representative of inference workload. A subset of training set is
usually used

Calibration method

value
Use the global maximum absolute value of all tensors seen in calibration
If activation is clipped during training, use the clipping threshold. E.g. ReLU6

. Developed by TensorRT for CNNs

Minimize the information loss between the original tensor and quantized tensor by KL-divergence

See http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-
tensorrt. pdf

NVIDIA.



EXAMPLE OF FINE GRAINED SCALE

S (—1.54 0.22) ‘g (0.35 ) — o (—0.65)

4\-0.26 0.65 5\-0.51 475 \-0.42
As written, each row (“neuron” / “channel”) of A acts independently on output. We can use a
distinct scale for each:

Sa1\ (—1.54 0.22 0.35\ _ [Sa1SB\ [—0.65
(SAZ) (—0.26 0.65) " OB (—0.51) B (SAZSB) (—0.42)
Small increase in bookkeeping math, usually a few percent performance overhead

Extends naturally to convolution as well as matrix multiply

IIIIIII



CHOOSING OPERATIONS TO QUANTIZE

Quantize:
Math-intensive operations: Matrix Multiply (fully-connected layers), Convolution

Other operations can be done in quantized space
Avoids dequantization and quantization

Example operations: ReLU, Pooling
Do not quantize:
Computation of nonlinear operations, e.g. Softmax, tanh, sigmoid, GelLU etc.

Inexpensive layers

31 NVIDIA.



SUMMARY AND RECOMMENDATION

Use scale only quantization, no shift

Do not use the minimum negative value in quantized range

2k-1_4

Use symmetric range [—2%"1—1,2%"1 - 1], s =

— where k is number of bits used in
quantized representation. E.g. [-127, 127] for 8-bit

Run calibration to chose best scaling factor

Use maximum absolute value (full range) to compute scaling factor for 8-bit quantization

32 NVIDIA.



POST TRAINING QUANTIZATION RESULTS

Different task types:
Classification
Regression
Different tasks:
Images: classification, detection, segmentation

Language translation

IIIIIII



MobileNet v2
NASNet (large
NASNet (mobile
ResNet50 (v1.5
ResNet50 (v2
ResNet152 (v1.5
ResNet152 (v2
-16
G-19

Inception v3

Inception v4

All results percentage top-1 accuracy on Imagenet validation set. Measured by TFTRT

71.01
74.08
82.72
73.97
76.51
76.37
78.22
78.45
70.89
71.01
77.99
80.19

IMAGE CLASSIFICATION

73.96
82.09
12.95
76.11
75.73
5.29
78.05
70.75
70.91
77.7
1.68

0.16%
0.76%
82.49%
0.52%
0.84%
93.24%
0.51%
0.20%
0.14%
0.37%
97.90%

With max calibration, some

networks have outliers which ruin

quantization completely

Models are from https://github.com/tensorflow/models/tree/master/research/slim and https://github.com/tensorflow/models/ tree/ master/official/resnet

34
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https://github.com/tensorflow/models/tree/master/research/slim

MobileNet v2
NASNet (large
NASNet (mobile
ResNet50 (v1.5

ResNet50 (v2
ResNet152 (v1.5
ResNet152 (v2
-16
-19

Inception v3

Inception v4

71.01
74.08
82.72
73.97
76.51
76.37
78.22
78.45
70.89
71.01
77.99
80.19

73.96
82.09
12.95
76.11
75.73
5.29
78.05
70.75
70.91
77.7
1.68

CLASSIFICATION

73.85
82.66
73.4
76.28
76.22
77.95
78.15
70.82
70.85
77.85
80.16

0.31%
0.07%
0.77%
0.30%
0.20%
0.35%
0.38%
0.10%
0.23%
0.18%
0.04%

With max calibration, some
networks have outliers which ruin
quantization completely

With entropy calibration, accuracy
drops are below 1% relative,
except MobileNet V1.

35
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OBJECT DETECTION

COCO

SSD-300 MobileNet v1 25.8

SSD-300 MobileNet v2 27.4 26.8
Faster RCNN ResNet-101 33.7 33.4 0.89%

All results COCO mAP on COCO 2017 validation, higher is better

Pascal VOC

SSD-300 77.7

SSD-512 VGG-16 79.9 79.9 0.0%

All results VOC mAP on VOC 07 test, higher is better

36 <A NVIDIA.



IMAGE SEGMENTATION

NV-ADLR Mask RCNN* ResNet-101

34.8

39.0 9.88 34.6 65.4

* 4th place in https://www.cityscapes-dataset.com/benchmarks/ #instance-level-scene-labeling-task
All results Cityscapes mask mAP on val_fine dataset, higher is better

37
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LANGUAGE TRANSLATION

GNMT: LSTM, 8 layer encoder, 8 layer decoder ( )

BLEU De—En, newstest2015
FP32: 29.89
Int8: 29.97

IIIIIII


https://github.com/tensorflow/nmt

LANGUAGE MODEL

BERT (Deep Bidirectional Transformers) large uncased in Pytorch

Fine tuned for
Classification: MRPC of GLUE dataset

Question answering: SQUAD 1.1

Accuracy measured in Pytorch. Max calibration

39 NVIDIA.



LANGUAGE MODEL

" Bert large uncased | FP32  Int8  RelErr% Out of the box, BERT loss accuracy
significantly
0.855 0.823 3.74%
91.01 85.16 6.43%



LANGUAGE MODEL

0.855 0.823 3.74%
91.01 85.16 6.43%

0.855 0.843 0.70%
91.01 90.40 0.67%

Out of the box, BERT loss accuracy

significantly

With the right clipped GelLU, relative

error is within 1%.

41
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GelLU

GelU

2.5

BERT uses GeLU which produces
asymmetric range.

Negative values generated by GelLU are
between [-0.17, 0]. 15

0.5

-3 -2.5 -2 -1.5 1 o) 0 0.5 1 1.5 2

-0.5

o FP32

X1 i
fx) =5 +erf (\/_7)) .



GelU

2.5

BERT uses GeLU which produces
asymmetric range.

2

Negative values generated by GelLU are /
between [-0.17, 0]. t /

If @ >= (0.5/0.17) ~= 43.18, all the negative : /S
values will be quantized to 0. /

Maximum absolute values encountered are | /

>50 -3 -2.5 -2 -1 i ‘)0 0.5 1 1.5 2

-0.5

e FP32 8bit, a=50

_ X 1 X
fx) =5 +erf (\/_7)) o



BERT uses GeLU which produces
asymmetric range.

Negative values generated by GelLU are
between [-0.17, 0].

If alpha >= (0.5/0.17) ~= 43.18, all the
negative values will be quantized to 0.

Maximum absolute values encountered are
>50

Clip GeLU output to 10 will have 2 negative
quantized values

GelU

2.5

-2.5

-0.5

e FP32 8bit, @=50 8bit, =10

_X 1 X
fx) =5 +erf (\/_7)) )
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SUMMARY OF POST TRAINING QUANTIZATION

Manually add clip at the right place can help quantization

Mobilenetv1(with relué) and some other networks still losses >1% relative

IIIIIII



REASONS QUANTIZATION MAY LOSE ACCURACY

Outlier in the tensor
Example: BERT, Inception V4
Solution: Clip. Tighten the range, use bits more efficiently
Not enough precision in quantized representation
Example: Int8 for MobileNet V1
Example: Int4 for Resnet50

Solution: Train/fine tune for quantization



TRAIN FOR QUANTIZATION

Why do we need to train (fine tune) for quantization?
Some networks lose >1% accuracy with best post training quantization when quantizing to 8bit

It is much harder to post training quantize with fewer than 8 bits

47 NVIDIA.



TRAIN FOR QUANTIZATION TECHNIQUES

Making range more quantization friendly, get rid of outliers
Clip
PACT (Parameterized Clipping Activation).

Adding quantization to training
Challenge: Quantization is a nondifferentiable function
Approximate derivative: STE (Straight-Through Estimator)?

Other methods also exist

IIIIIII


https://arxiv.org/abs/1805.06085

CLIP

Differentiability of clip is similar as ReLU, can back propagate
Choosing clip threshold

Arbitrarily chosen fixed number, e.g. ReLU6

Arbitrarily chosen percentile
Example:

BERT, SQUAD 1.1 (F1), clip GeLU output to 10

91.01 90.40 0.67%
90.95 90.71 0.33%

49
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PACT

Learning clip threshold
Requires its own hyper-parameter choices:

learning rate and decay of clipping threshold instead of arbitrarily picking threshold
Originally designed for activation with quantization

Can be used independently to quantization

Can be applied to weight as well

Results will come later in the 4bit section

50 NVIDIA.



STE (STRAIGHT-THROUGH ESTIMATOR)

Quantization is a step function which is not differentiable

@y _ :
dy

Commonly used approximation is STE

Back propagate with C;—yyq =1 >

o 8bit, a=50 FP32

IIIIIII



STE (STRAIGHT-THROUGH ESTIMATOR)

Quantization is a step function which is not differentiable

@y _ :
dy

Commonly used approximation is STE

Back propagate with C;—yyq =1 >

Works better when step size is small 3 2 1 a0 1 2 3

IIIIIII



MOBILENET WITH STE

Fine tune MobileNet V1 with STE

Post training quantization
Fine tune with STE 70.60 0.42%

Pytorch version which gets slightly different fp32 accuracy compare to Tensorflow version

53 <ANVIDIA.



4-BIT QUANTIZATION

Post-training 4-bit quantization loses a lot of accuracy

Solution:
Use mixed precision quantization. e.g. 8bit + 4bit

Fine tune for quantization
Clip activation
Clip weight
STE with small learning rate works OK for CNN

54 NVIDIA.



4BIT RESNET50 V1.5

76.3% top-1 with mixed precision quantization

8bits activation and weights for the first and downsample convolution and the last fully
connected layer

Unsigned 4bit for activation generated by RelLU, 8bit for the rest.

0.761 0.576 24.31%
0.762 0.693 9.06%
0.764 0.763 0.13%
0.763 0.762 0.13%

55 <A NVIDIA.



ACTIVATION CLIP IN 4BIT RESNET50

Maximum value of input to each layer

90
80
70
60
50
40
30
20
10
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Maximum value of weight

WEIGHT CLIP IN 4BIT RESNET50

1.2
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WEIGHT CLIP IN 4BIT RESNET50

example

weight of layer3.4.conv3 in resnet50(torchvision),

weight of layer3.4.conv3 in resnet50(torchvision) fine tuned for 4bit

Much tight range, no outliers

104
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102 103
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-0.3 -0.3 -0.2 0.2 0.3

58 <ANVIDIA.



SUMMARY

Int8 quantized inference can be 4~8x faster than FP32

Use scale only quantization, don’t use shift

Per tensor scale for activation, fine grained scale for weight

Most networks can be quantized to 8 bit by post training quantization

Must train for 4bit quantization

59 NVIDIA.
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