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Free Energy Governs Biochemistry, too!

involving only a few compounds in a neat solvent.
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e Fundamental principles of chemistry drive biochemical reactions and recognition.

e Protein-ligand and protein-protein interactions occur amidst a plethora of small
molecules and other chemicals.

e The systems are more intricate and harder to quantify than bench chemistry

AAGping (L") = -79.7 (4.2)
AAGhygr (L) = +124.9 (1.8)

AAGping(L") = -1.5 (2.0)
AAGhyg (L") = +7.3 (0.3)

Source: Lawrenz M., Baron R., and McCammon
J.A. (2009) J. Chem. Theory Comput. 5:1106-1116.



Most Drugs Take More than a Decade to Develop
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Accuracy Increases the Impact of Computation
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The Promise, and Reality, of Molecular Simulations

e Molecular simulations offer a powerful alternative to chemical assays when
investigating biomolecular interactions.

e CPU hardware is expensive

e Human expertise is scarce

e Power consumption increases as the square of the statistical precision factor
e Power consumption increases as the square of the chip cycle speed

GPU: 1.2-1.6 GHz, scarce cache to free up
CPU: 2.5-4GHz, huge cache to feed arithmetic silicon for thousands of ALUs operated by
logic units through a handful of threads tens of thousands of threads



The Amber pmemd.cuda Engine

e Scott Legrand’s enduring contributions to the Amber community have grown with
NVIDIA’s device capability.

e Vectorization of algorithms on a GPU is simple to understand and easier to
implement than massively parallel MPI

e Much faster calculations
e Lower power consumption

e Most simulations make efficient use of modern GPUs, and NVIDIA’s OS-level
enhancements maximize throughput for a broad range of system sizes

e The recent Amber18 release includes enhancement of the underlying engine and
tremendous expansion of its applicability to computing free energies

,  Thermodynamic integration
) . e Replica Exchange and Nudged Elastic Band (enhanced sampling methods)

e Versatile programming model for a dynamic and growing developer base



Baseline Improvements in Kernel Design

e Mathematical identities and numerical approximations have been rigorously tested

to reduce the arithmetic cost and data transfer requirements of the basic engine.
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Spline Approximation to Short-Ranged Functions

e The non-bonded calculations in PME calculations were aided by a spline correction:

kq;q; _ [(1 — erf(arij)> \ (erf(arij)>]
rij Tij Tij

e To differentiate the (1-erf) term on a GPU, we don’t have 200kB of cache to devote.

[]
\ Exponent — j Mantissa
Sign Y & These bits show the parts out of 32 towards
Bit The 14 bits | take advancing the next bit in the exponent
float r2, float invr2 = 1.0/r2, float invr4d = invr2*invr2;

index =  float as int(r2) >> 18;
floatd4d coef = func table[index];
float result = r2*coef.x + invr2*coef.y + invrd*coef.z +
coef.w;



Improved Coherence in Particle-Mesh Interpolation

e Early on, the FFT was a bottleneck, but cufft has really come along.
e The problem is getting particles onto the mesh.

Accumulate on a
zig-zag grid, then

Accumulate on the
standard grid

Tweak the zig-zag

reorder
Particle Stencil, 4t
Order Interpolation
Naive method: each atom Revised method: atoms Current method: atoms

writes to 16 sectors write to 2-12 sectors write to 4-8 sectors



Changes to the SPFP Precision Model

e The biggest limitation on SPFP precision is the conversion of fractional coordinates
calculated in fp64 to fp32. Atom positions must be represented to within 1 partin
16,777,216 of the box size for various non-bonded computations.

Lose 3 bits’
8 precision in
pixelation




Changes to the SPFP Precision Model

* |n Amberl6, the charge mesh is calculated in fp32, accumulated as int64, then
converted back to fp32 prior to performing the FFT.

e Accumulating as int32 is a negligible loss of precision here, for half the bandwidth.

Lose 6 bits’
8 precision in
coloration




For the Wee Ones: CUDA Multi-Process Service

e The MPS feature has been available since Kepler (2012)

e Designed to aid MPI programs running parallel host (CPU) threads that each launch
their own kernels on the GPU

e Also enables multiple programs to launch kernels on the same device with better
utilization

e Very modest (1-2%) degradation of single program performance on a V100:

System Serial MPS, Multiple Jobs

(NVE, 4fs time step, 9A Performance | Single Job Rate (ns/day) / Total Throughput (% of Serial)

cutoff) (ns / day) 1 2 4 8
TrpCage (304 atom GB) 2719 2634 /97% 2420/178% 1899/279% 1281/377%
Myoglobin (2492 atom GB) 1812 1804 /100% 1188 /131% 683 /151% 344 /152%
DHFR (24k atom PME) 1061 1045 /99%  711/135% 408 /154% 222 /168%

STMV (1067k atom PME) 34.4 342/99% 17.4/101% 8.8/102% Memory



For the Wee Ones: CUDA Multi-Process Service

e MPS also benefits the Turing architecture, specifically RTX-2080 Ti:

System Serial MPS, Multiple Jobs

(NVE, 4fs time step, 9A Performance | Single Job Rate (ns/day) / Total Throughput (% of Serial)
cutoff) (ns / day)

1 2 4 8
TrpCage (304 atom GB) 2317 2272 /98% 1979/171% 1689/291% 1209/418%
Myoglobin (2492 atom GB) 1100 1104 /100% 692 /124% 392 /143% 202 /147%
DHFR (24k atom PME) 882 880/100% 574/130% 325/147% 167 / 151%
STMV (1067k atom PME) 25.0 24.0 / 96% 12.0 / 96% Memory Memory

e Changing the block size for the GB non-bonded kernels to improve granularity also
helps with MPS throughput on small GB systems.

TrpCage (304 atom GB) 2317 2323 /100% 2124 /183% 1808 /312% 1401 /484%

Myoglobin (2492 atom GB) 1100 1118 /101% 730/133% 394/143% 204 /148%



Free Energy Calculations with pmemd.cuda GTI

e Design space between moving parts. GTl accesses and benefits from separate
development efforts within the pmemd engine but does not interfere with them.

(a)

e C++ class inheritance in (a)

e Separate CUDA streams in (b)
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e Keep the Tl module entensible, simplify maintenance and optimization of the engine



How the Problem Looks to a Pharmaceutical Chemist

e A ladder of putative ligands, perhaps bearing a common pharmacophore or target
site, needs analysis to predict effective characteristics of the drug
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Advantages of GPU Computing

e GPUs offer hundreds of times the performance of a single CPU core, tens of times the
performance of a typical multicore compute node, at a fraction of the cost.

P100 I 58.5

Factor Xa with L51 ligands
P40 . 43.0

Calculation Details: GTX 980 T 38.2
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Advantages of CUDA Streams

e A drawback of the independent modules is the need to keep separate lists of
standard particle pairs and Tl particle pairs.

e Separate streams mitigate the utilization problems posed by small Tl thread counts

compute [ [koTiPMEFilIChar. | 1 | [ S AT [ N Y
| -
[=] Streams
- oetaut [ Tecpweriicrar-11 111 N | A A
- stream 14 | -

e Challenges: GTI may be independent from the pmemd engine, but results must still
be synchronized, which costs time of its own. Determine the optimal sync points.

Performance Tl Case: Factor X-a Ligand Mutation, L51a 2 L51b (Quadro GP100)

Amber 16 Amber 18
4 Standard MD 101.62 113.42
GTI 67.16 70.31

GTI / Multi-Stream: 76.17



The Other Side of the Coin: the Chemical Model

e The GPU Tl calculations mentioned in prior slides deliver results to within 0.1
kcal/mol precision. That is well below the accuracy of the chemical model.

e GPUs enable rapid discrimination between different chemical models for a given
problem.

e Tuning the chemical model is a separate field of study.

e CUDA can implement chemical models with different features for little more
effort than modifying the underlying CPU code.
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Alternative Technology: Schrodinger’s FEP+

e Correlation between FEP-predicted ,
binding free energies and 4 X
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Software Availability Increases Success Chance

e Amber’s pmemd.cuda GTl is an affordable, academic licensed alternative to FEP+. It
lacks the FEP Mapper capabilities that are a boon to the performance of Schrodinger’s
code, and the underlying force field may not be as optimized for drug problemes.

AMBER18 FEP+

2 kcal/mol error needed for ~2x
enrichment. Neither code is yet
able to achieve 4x enrichment

with 0.5 kcal/mol error.




Conclusions: A Governing Equation for Our Problem

e CUDA is a powerful and accessible code base for computational chemists

e Optimized FFT libraries, CUDA streams, and L1 cache design by NVIDIA engineers
have enabled great leaps in our productivity

e [Taisung : please add your own conclusions here. ]

Accuracy (chemical model) Affordability and Enrichment in the set of
and precision (a function of throughput (reduced lead compounds for
code performance) technical staff labor) synthetic chemists to test
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