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AGENDA

• GPUDirect & Topology

• How system topology may affect GPUDirect technologies and 

communication API

• A case study

• GPUDirect RDMA:

• Memory consistency problems when dealing with you NIC

• Problem statement and possible solutions

• L4T (Tegra)

• Xavier topology insights

• Application guideline
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GPUDIRECT & SYSTEM TOPOLOGY:
A CASE STUDY



4

THE ISING BETHE LATTICE

• A system of binary variables (i.e., variables that can assume only one out of two possible values) that 
interact each other.

• The variables are the vertices of a random graph. The graph is bipartite meaning that the red variables 
interact only with the blue ones

• Same-type variables can run in parallel

• Each red vertex has only 4 blue neighbors and vice versa

• The simulation performs a sort of relaxation dynamics that emulates the training of artificial neural 
networks (corresponding to the minimization of the loss function in a high-dimensional space).

Overview

Paper "Benchmarking multi-GPU applications on modern multi-GPU integrated systems", M. Bernaschi, E. Agostini, D.Rossetti
Submitted to "Special Issue of Concurrency and Computation, Practice and Experience 2018"
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THE ISING BETHE LATTICE

• Variables are distributed among all the 
GPUs in the system

• Interaction pattern, each variable may 
interact with any number of other GPUs

• Exchanging during each step of the 
simulation the single chunks of memory 
needed by each variable would result in a 
huge amount of small size messages among 
GPUs

• Most convenient to exchange all the red
results (i.e. the entire device memory 
buffer) at the end of their interaction with 
the blue and vice versa

Multi-GPU system GPU X

GPU Y

ExchangeExchange
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THE ISING BETHE LATTICE

• MVAPICH2 + GPUDirect RDMA support: directly exchange device memory

• NCCL 2.2: single and multi-process modes

• AllGather

Device buffers communication

Technology Communication API Single Process Multi-Process

GPUDirect P2P (CE) cudaMemcpyPeer X

GPUDirect P2P (SM) NcclAllGather X X

GPUDirect RDMA MVAPICH2 GDR X
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THE ISING BETHE LATTICE

Not all the GPU pairs have the same type of 
connection:

• GPUs 0 and 1, directly connected, 1 NVLink, 
BW 50 GB/sec

• P2P with CE or NCCL (SM)

• GPUs 0 and 3, directly connected, 2 NVLinks, 
BW 100 GB/sec

• P2P with CE or NCCL (SM)

• GPUs 0 and 5, not directly connected. Best 
connection path could be through NVLink to 
GPU 1 or alternatively, CPU or HCA

• P2P with NCCL (SM)

• IB cards with MVAPICH2-GDR or NCCL

DGX-1V
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THE ISING BETHE LATTICE
DGX-1V – speed up
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Speed-up single process configurations with respect to 
mono-GPU configuration, grid size 225

Speed-up multi-process configurations with respect to 
mono-GPU configuration, grid size 225
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THE ISING BETHE LATTICE

• Only 4 GPUs in the system

• GPU and CPU P9 connected through 3 
NVLinks -> 150 GB/s

• GPU 0 is connected to:

• GPU 1 with NVLink

• GPU 2 and 3 through SMP bus -> effective 
P2P BW is 20 GB/s (experimentally)

• NVLink transactions can be tunneled over 
SMP bus -> GPUDirect P2P (CE) is supported 
across sockets

• NCCL and P2P are always applicable

• No need to use IB cards

IBM AC922 – Power9 CPU



10

THE ISING BETHE LATTICE

• Due to the limited bandwidth when 
crossing the two POWER9 NUMA nodes, 
the performance does not improve when 
using 4 GPUs. 

• Similarly to DGX-1V, performance of NCCL 
single or multi-process are basically the 
same up to 4 GPUs, confirming that a 
single CPU thread is enough to manage 4 
GPUs efficiently 

• P2P CE is actually slightly slower that 
NCCL

IBM AC922 – Speed up

Speed-up all configurations with respect to mono-GPU 
configuration, grid size 225
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GPUDIRECT RDMA & 
MEMORY CONSTISTENCY
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GPUDIRECT RDMA
Loose memory consistency, x86

CPU

PCIe switch

NIC

GPU

1. CUDA kernel is polling on some dev_flag

• while(dev_flag == 0);

2. NIC receives and writes data into the GPU memory

3. NIC/CPU set dev_flag = 1

4. CUDA kernel observes dev_flag

5. CUDA kernel consumes received data

SM may observe inconsistent data!

dev_flag
data

data

write
dev_flag == 1

nic_flag
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GPUDIRECT RDMA

• PCIe ordering guarantees are not preserved all the way inside the GPU

• Explicit fencing is required

• Fencing mechanisms:

• GPU work launch (kernels, memory copies)

• Read of GPU memory mapping exposed on GPU BAR1

• Active CPU read

• NIC proxied read

Memory consistency issue
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GPUDIRECT RDMA
Active CPU read

CPU

PCIe switch

NIC

GPU

➢ CPU reads any GPU memory location

➢ CPU set dev_flag = 1

➢ The GPU memory location must be visible from the 
CPU

• one way to create a CPU mapping of GPU memory is 
by using GDRCopy

• https://github.com/NVIDIA/gdrcopy dev_flag
data

data

Read 
dev_flag 

&
Write 

dev_flag == 1

nic_flag

https://github.com/NVIDIA/gdrcopy
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GPUDIRECT RDMA
NIC proxied read

CPU

PCIe switch

NIC

GPU

Hack: loopback RDMA WRITE

➢ CPU observes nic_flag

➢ CPU issue NIC RDMA WRITE

➢ Source is GPU BAR1, dev_src=1

➢ Destination is GPU BAR1 of dev_flag

➢ NIC execute RDMA WRITE

➢ Implicitly flushing

➢ GPU observe dev_flag=1

dev_flag
data

data

dev_src

CPU triggers a 
loopback RDMA 

PUT

nic_flag
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GPUDIRECT RDMA ON L4T
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JETSON AGX XAVIER

Tegra Jetson AGX Xavier is a 64-bit ARM high-performance SoC 

for autonomous machines introduced in 2018:

• iGPU 512-core Volta GPU with Tensor Cores

• CPU 8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3

• Memory 16GB 256-Bit LPDDR4x | 137GB/s

• Storage 32GB eMMC 5.1

• PCIe x8 Gen2/3/4 slot

• Any PCIe card can be connected. The PCIe slot is of x16 size 
to connect x16 card but operates in x8 mode.

• OS: Linux for Tegra (L4T)

• L4T v32.1 will have GPUDirect RDMA kernel API!

HW & SW overview
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SYSTEM TOPOLOGY

• BAR1 page size = 64KB

• PCIe access GPU memory via L2 cache

• PCI read/write see the latest value from GPU

• GPU memory is separated from Sysmem

• Allocator is cudaMalloc

• https://docs.nvidia.com/cuda/gpudirect-
rdma/index.html

Desktop vs Tegra

• Page size = 4 KB

• Sysmem only

• PCIe and iGPU L2 are not coherent

• cudaMalloc returns GPU cached memory

• Need to use uncached memory portion 
(cudaMallocHost)

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
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GPUDIRECT RDMA
Desktop

ioctl
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GPUDIRECT RDMA
L4T
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GPUDIRECT RDMA ON L4T

Currently L4T public release is v31

GPUDirect RDMA support starting from L4T v32.1 (JetPack 4.2)

Note, /usr/src/linux-headers-#KERNEL_VERSION-tegra/nvgpu/include/linux/nv-p2p.h

https://developer.nvidia.com/embedded/jetpack

next release

https://developer.nvidia.com/embedded/jetpack



