
Davide Rossetti, Elena Agostini

Tue 3/19, 2PM, Room 211A

S9653 – HOW TO MAKE YOUR LIFE EASIER IN 
THE AGE OF EXASCALE COMPUTING USING 
NVIDIA GPUDIRECT TECHNOLOGIES



2

AGENDA

• GPUDirect & Topology

• How system topology may affect GPUDirect technologies and 

communication API

• A case study

• GPUDirect RDMA:

• Memory consistency problems when dealing with you NIC

• Problem statement and possible solutions

• L4T (Tegra)

• Xavier topology insights

• Application guideline



3

GPUDIRECT & SYSTEM TOPOLOGY:
A CASE STUDY



4

THE ISING BETHE LATTICE

• A system of binary variables (i.e., variables that can assume only one out of two possible values) that 
interact each other.

• The variables are the vertices of a random graph. The graph is bipartite meaning that the red variables 
interact only with the blue ones

• Same-type variables can run in parallel

• Each red vertex has only 4 blue neighbors and vice versa

• The simulation performs a sort of relaxation dynamics that emulates the training of artificial neural 
networks (corresponding to the minimization of the loss function in a high-dimensional space).

Overview

Paper "Benchmarking multi-GPU applications on modern multi-GPU integrated systems", M. Bernaschi, E. Agostini, D.Rossetti
Submitted to "Special Issue of Concurrency and Computation, Practice and Experience 2018"



5

THE ISING BETHE LATTICE

• Variables are distributed among all the 
GPUs in the system

• Interaction pattern, each variable may 
interact with any number of other GPUs

• Exchanging during each step of the 
simulation the single chunks of memory 
needed by each variable would result in a 
huge amount of small size messages among 
GPUs

• Most convenient to exchange all the red
results (i.e. the entire device memory 
buffer) at the end of their interaction with 
the blue and vice versa

Multi-GPU system GPU X

GPU Y

ExchangeExchange



6

THE ISING BETHE LATTICE

• MVAPICH2 + GPUDirect RDMA support: directly exchange device memory

• NCCL 2.2: single and multi-process modes

• AllGather

Device buffers communication

Technology Communication API Single Process Multi-Process

GPUDirect P2P (CE) cudaMemcpyPeer X

GPUDirect P2P (SM) NcclAllGather X X

GPUDirect RDMA MVAPICH2 GDR X



7

THE ISING BETHE LATTICE

Not all the GPU pairs have the same type of 
connection:

• GPUs 0 and 1, directly connected, 1 NVLink, 
BW 50 GB/sec

• P2P with CE or NCCL (SM)

• GPUs 0 and 3, directly connected, 2 NVLinks, 
BW 100 GB/sec

• P2P with CE or NCCL (SM)

• GPUs 0 and 5, not directly connected. Best 
connection path could be through NVLink to 
GPU 1 or alternatively, CPU or HCA

• P2P with NCCL (SM)

• IB cards with MVAPICH2-GDR or NCCL

DGX-1V



8

THE ISING BETHE LATTICE
DGX-1V – speed up

0.00

1.00

2.00

3.00

4.00

5.00

6.00

2	GPU 4	GPU 8	GPU

MVAPICH NCCL	- NVLink NCCL	- IB

0.00

1.00

2.00

3.00

4.00

5.00

6.00

2	GPU 4	GPU 8	GPU

NCCL P2P

Speed-up single process configurations with respect to 
mono-GPU configuration, grid size 225

Speed-up multi-process configurations with respect to 
mono-GPU configuration, grid size 225



9

THE ISING BETHE LATTICE

• Only 4 GPUs in the system

• GPU and CPU P9 connected through 3 
NVLinks -> 150 GB/s

• GPU 0 is connected to:

• GPU 1 with NVLink

• GPU 2 and 3 through SMP bus -> effective 
P2P BW is 20 GB/s (experimentally)

• NVLink transactions can be tunneled over 
SMP bus -> GPUDirect P2P (CE) is supported 
across sockets

• NCCL and P2P are always applicable

• No need to use IB cards

IBM AC922 – Power9 CPU



10

THE ISING BETHE LATTICE

• Due to the limited bandwidth when 
crossing the two POWER9 NUMA nodes, 
the performance does not improve when 
using 4 GPUs. 

• Similarly to DGX-1V, performance of NCCL 
single or multi-process are basically the 
same up to 4 GPUs, confirming that a 
single CPU thread is enough to manage 4 
GPUs efficiently 

• P2P CE is actually slightly slower that 
NCCL

IBM AC922 – Speed up

Speed-up all configurations with respect to mono-GPU 
configuration, grid size 225

0.00

0.50

1.00

1.50

2.00

2	GPU 4	GPU

P2P NCCL	- SP NCCL	- MP



11

GPUDIRECT RDMA & 
MEMORY CONSTISTENCY



12

GPUDIRECT RDMA
Loose memory consistency, x86

CPU

PCIe switch

NIC

GPU

1. CUDA kernel is polling on some dev_flag

• while(dev_flag == 0);

2. NIC receives and writes data into the GPU memory

3. NIC/CPU set dev_flag = 1

4. CUDA kernel observes dev_flag

5. CUDA kernel consumes received data

SM may observe inconsistent data!

dev_flag
data

data

write
dev_flag == 1

nic_flag



13

GPUDIRECT RDMA

• PCIe ordering guarantees are not preserved all the way inside the GPU

• Explicit fencing is required

• Fencing mechanisms:

• GPU work launch (kernels, memory copies)

• Read of GPU memory mapping exposed on GPU BAR1

• Active CPU read

• NIC proxied read

Memory consistency issue



14

GPUDIRECT RDMA
Active CPU read

CPU

PCIe switch

NIC

GPU

➢ CPU reads any GPU memory location

➢ CPU set dev_flag = 1

➢ The GPU memory location must be visible from the 
CPU

• one way to create a CPU mapping of GPU memory is 
by using GDRCopy

• https://github.com/NVIDIA/gdrcopy dev_flag
data

data

Read 
dev_flag 

&
Write 

dev_flag == 1

nic_flag

https://github.com/NVIDIA/gdrcopy


15

GPUDIRECT RDMA
NIC proxied read

CPU

PCIe switch

NIC

GPU

Hack: loopback RDMA WRITE

➢ CPU observes nic_flag

➢ CPU issue NIC RDMA WRITE

➢ Source is GPU BAR1, dev_src=1

➢ Destination is GPU BAR1 of dev_flag

➢ NIC execute RDMA WRITE

➢ Implicitly flushing

➢ GPU observe dev_flag=1

dev_flag
data

data

dev_src

CPU triggers a 
loopback RDMA 

PUT

nic_flag



16

GPUDIRECT RDMA ON L4T



17

JETSON AGX XAVIER

Tegra Jetson AGX Xavier is a 64-bit ARM high-performance SoC 

for autonomous machines introduced in 2018:

• iGPU 512-core Volta GPU with Tensor Cores

• CPU 8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3

• Memory 16GB 256-Bit LPDDR4x | 137GB/s

• Storage 32GB eMMC 5.1

• PCIe x8 Gen2/3/4 slot

• Any PCIe card can be connected. The PCIe slot is of x16 size 
to connect x16 card but operates in x8 mode.

• OS: Linux for Tegra (L4T)

• L4T v32.1 will have GPUDirect RDMA kernel API!

HW & SW overview



18

SYSTEM TOPOLOGY

• BAR1 page size = 64KB

• PCIe access GPU memory via L2 cache

• PCI read/write see the latest value from GPU

• GPU memory is separated from Sysmem

• Allocator is cudaMalloc

• https://docs.nvidia.com/cuda/gpudirect-
rdma/index.html

Desktop vs Tegra

• Page size = 4 KB

• Sysmem only

• PCIe and iGPU L2 are not coherent

• cudaMalloc returns GPU cached memory

• Need to use uncached memory portion 
(cudaMallocHost)

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html


19

GPUDIRECT RDMA
Desktop

ioctl



20

GPUDIRECT RDMA
L4T



21

GPUDIRECT RDMA ON L4T

Currently L4T public release is v31

GPUDirect RDMA support starting from L4T v32.1 (JetPack 4.2)

Note, /usr/src/linux-headers-#KERNEL_VERSION-tegra/nvgpu/include/linux/nv-p2p.h

https://developer.nvidia.com/embedded/jetpack

next release

https://developer.nvidia.com/embedded/jetpack



