INSIDE NVIDIA'S AI INFRASTRUCTURE FOR SELF-DRIVING CARS (HINT: IT'S ALL ABOUT THE DATA)

CLEMENT FARABET

📀 NVIDIA

GPU TECHNOLOGY CONFERENCE

San Jose 2019

Self-driving cars requires tremendously large datasets for training and testing

NVIDIA DRIVE: SOFTWARE-DEFINED CAR

Powerful and Efficient AI, CV, AR, HPC | Rich Software Development Platform Functional Safety | Open Platform | 370+ partners developing on DRIVE

BUILDING AI FOR SDC IS HARD

Night

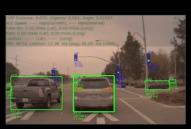
Every neural net in our DRIVE Software stack needs to handle 1000s of conditions and geolocations

Perception

Camera-based Mapping

Free Space Perception

Camera Localization to HD Map



Distance Perception

LIDAR Localization to HD Map

Path Perception

Fog

LIDAR Perception

Scene Perception

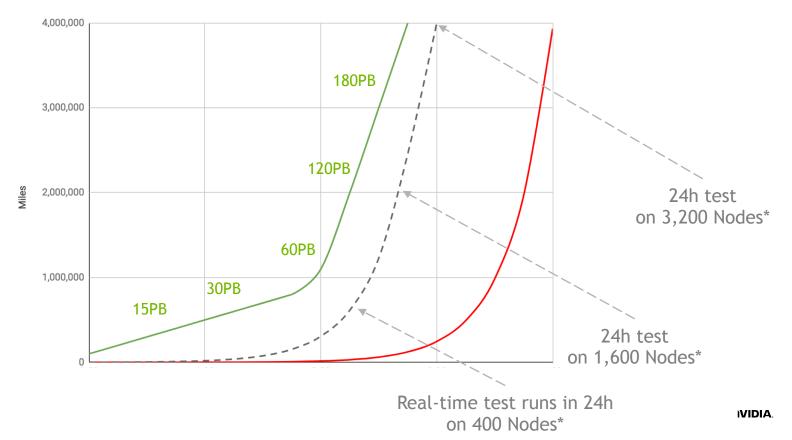
WHAT TESTING SCALE ARE WE TALKING ABOUT?

We're on our way to 100s PB of <u>real</u> test data = <u>millions of real miles</u> + 1,000s DRIVE Constellation nodes for offline testing alone

& billions of simulated miles

 Target robustness per model (miles)

- -- Test dataset size required (miles)
- NVIDIA's ongoing data collection (miles)

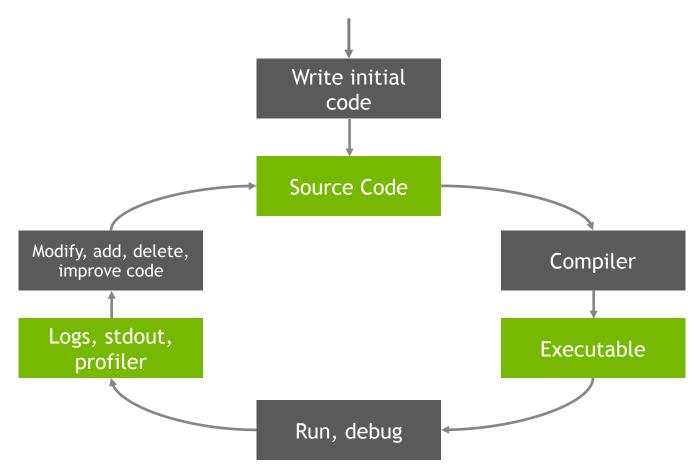


SDC SCALE TODAY AT NVIDIA

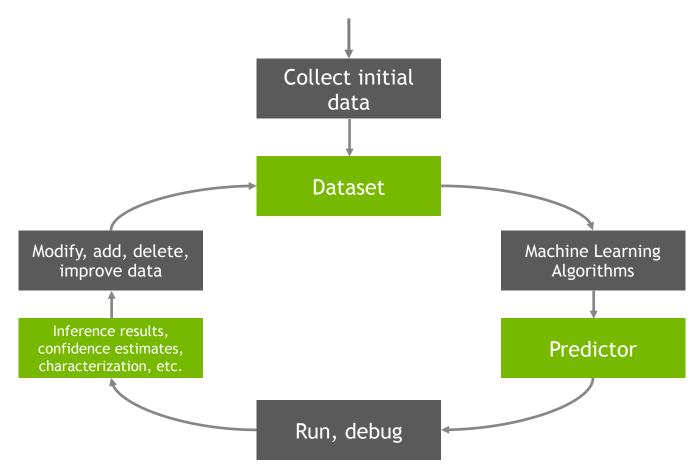
12-camera+Radar+Lidar RIG mounted on 30 cars	1,500 labelers	4,000 GPUs in cluster = 500 PFLOPs
1PB+ raw data collected/month	20M objects labeled/mo	100 DRIVE Pegasus in cluster (Constellations)
15PB raw active training+test dataset	20 unique models 50 labeling tasks	1PB of in-rack object cache per 72 GPUs, 30PB provisioned

<u>Creating the right datasets</u> is the cornerstone of machine learning.

TRADITIONAL SW DEVELOPMENT



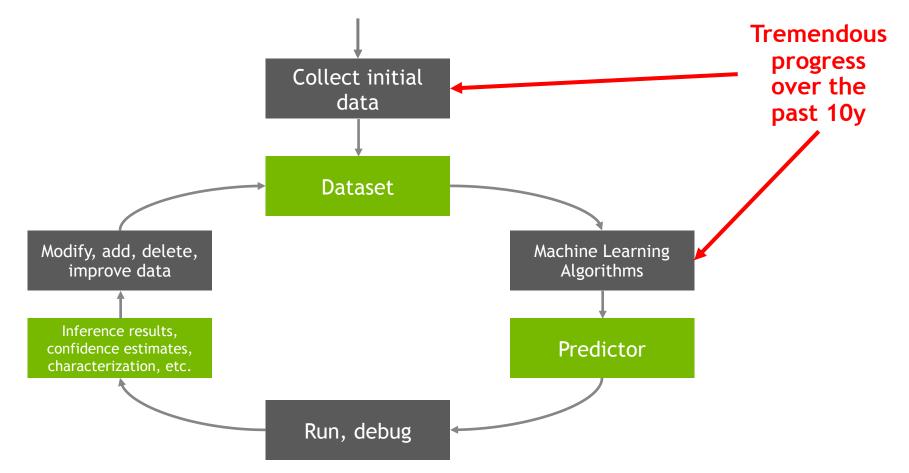
ML-BASED SW DEVELOPMENT



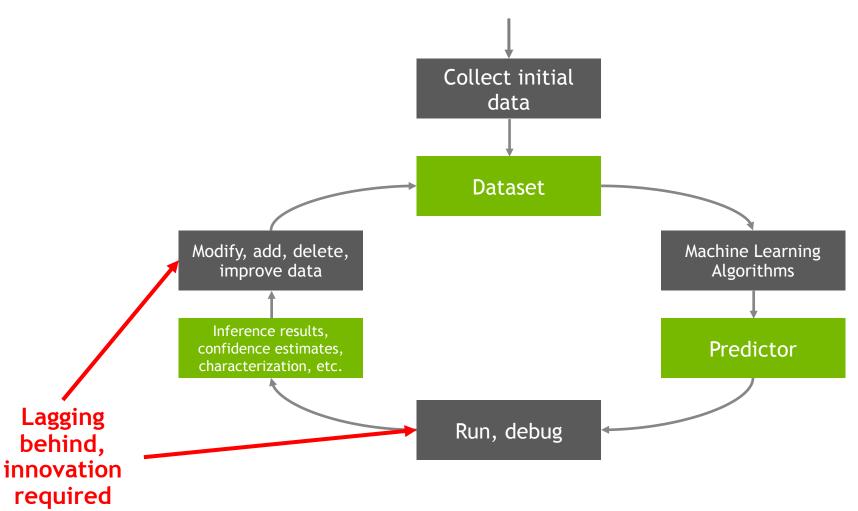
TRADITIONAL SOFTWARE

ML-BASED SOFTWARE

ML-BASED SW DEVELOPMENT

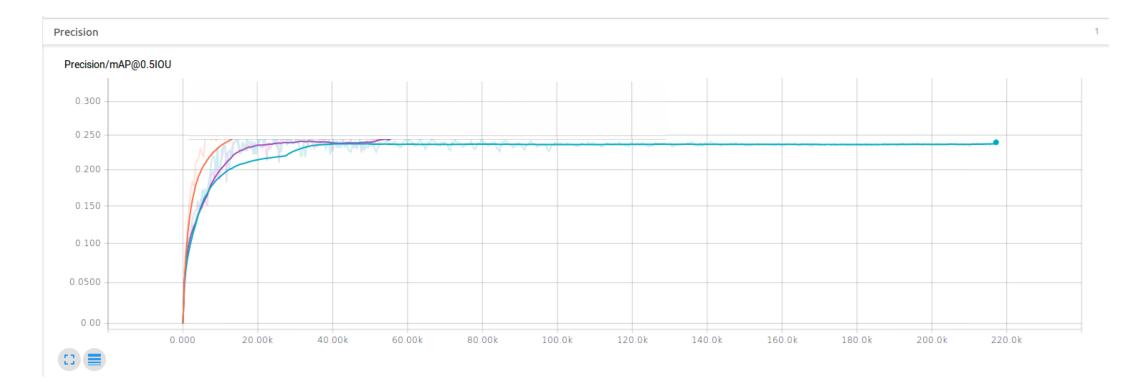


ML-BASED SW DEVELOPMENT



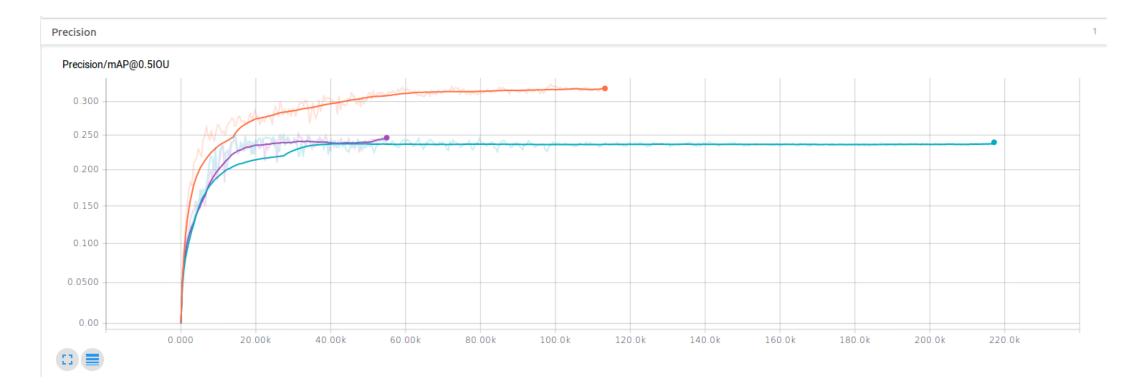
Active Learning is a powerful paradigm to iteratively develop datasets (== develop and debug traditional software)

ADD MORE RANDOM DATA... PLATEAU



Object detection performance. mAP as as function of epochs, for base model (blue), random strategy (purple) and active strategy (orange).

ACTIVE LEARNING => GET OUT OF PLATEAU!



Object detection performance. mAP as as function of epochs, for base model (blue), random strategy (purple) and active strategy (orange).

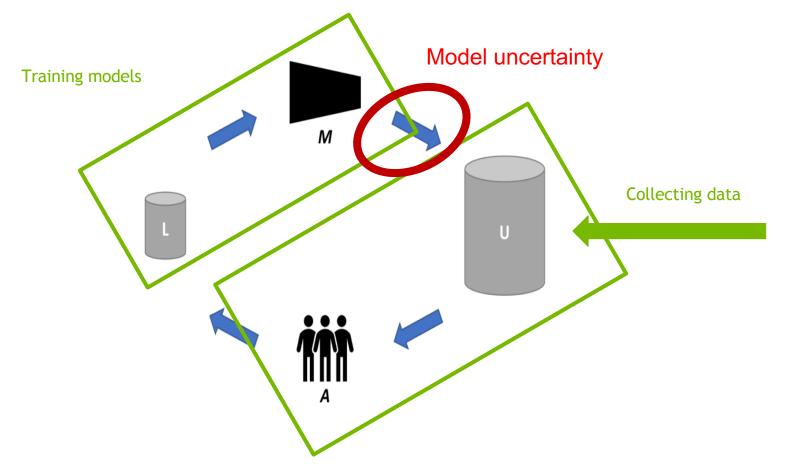
WHY? NOT ALL DATA CREATED EQUALLY

Some Samples Are Much More Informative Than Others

1. How do we find the most informative unlabeled data to build the right datasets the fastest?

2. How do we build training datasets that are 1/1000 the size for the same result?

HOW ACTIVE LEARNING WORKS

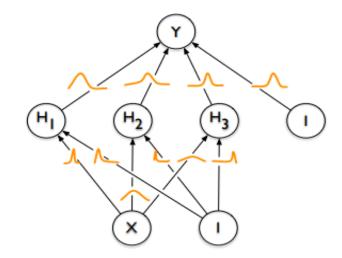


ACTIVE LEARNING NEEDS UNCERTAINTY

Bayesian Deep Networks (BNN)

Bayesian networks are the principled way to model uncertainty. However, they are computationally demanding:

- Training: Intractable without approximations.
- Testing: distributions need ~100 forward passes (varying the model)

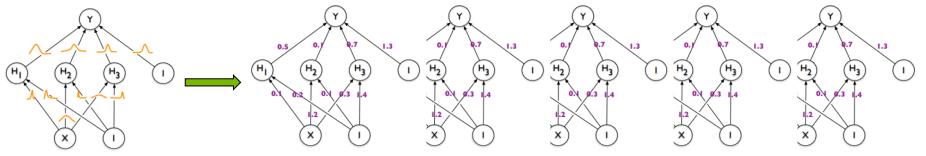


OUR ACTIVE LEARNING APPROACH

Our approximation to BNN

We proposed an **approximation** to BNN to train a network using ensembles:

- Samples from the same distribution as the training set will have consensus while other samples will not.
- We regularize the weights in the ensemble to approximate probability distributions.



OUR ACTIVE LEARNING RESULTS

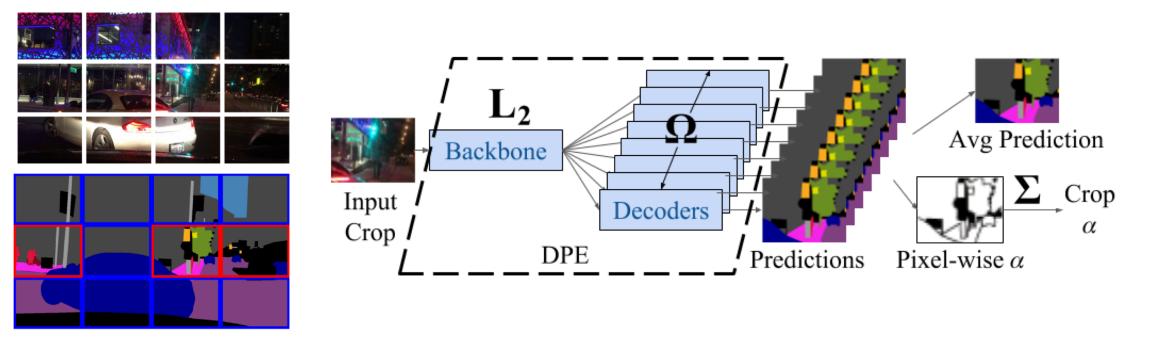
Quantitative Results on CIFAR10



[Chitta, Alvarez, Lesnikowski], Deep Probabilistic Ensembles: Approximate (published at NeurIPS 2018 Workshop on Bayesian Deep Learning)

OUR ACTIVE LEARNING RESULTS

Applied to more challenging problems like semantic segmentation



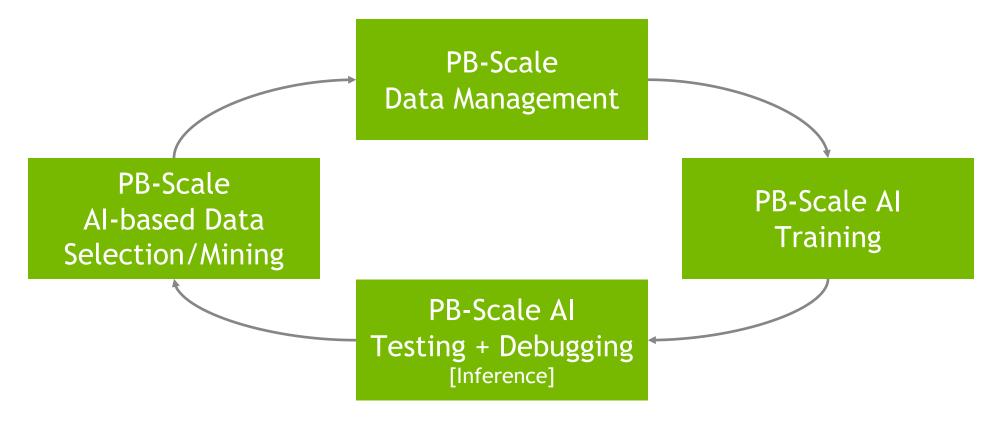
Getting active learning to scale to the SDC problem is a massive challenge!

But it is also necessary: labeling cost, data collection and storage cost, training cost.

Project MagLev NVIDIA's internal production grade ML infrastructure

MAGLEV

Goal: enable the full iterative ML development cycle (e.g. active learning), at the scale of self-driving car data.



MAGLEV COMPONENTS

UI/UX/CLI

Dashboard for MagLev experience, visualizing results, spinning up notebooks, sharing pipelines, data exploration / browsing

Datasets				
"Storing, tracking				
and versioning datasets"				

Artifacts and volumes management

Data traceability

ML Data representation

<u>ML Data querying - Presto</u> / Spark / Parquet Workflows "API and infra to describe and run workflows, manually or programmatically"

Workflow Infra/Services

Workflow Traceability

ML Pipelines

Persistence / Resuming

Experiments "Track and view all results from

DL/ML experiments, from models to metrics"

Results Saving

Metrics Traceability

Results Analysis

Hosted Notebooks

HyperOpt parameter tracking and sampling **Apps** "Python Building blocks to rapidly describe DL/ML apps,

access data, produce metrics"

Read/Stream/Write data for DL/ML apps

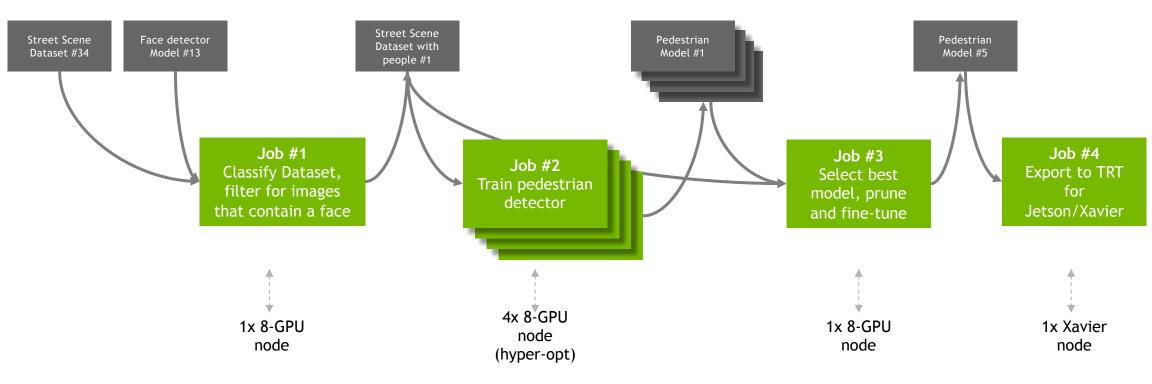
Off-the-shelf models

<u>Generic vertical</u> (AV/Medical/...) operators

Pruning, Exporting, Testing

WORKFLOWS IN MAGLEV

Workflow = directed graph of jobs. Each job is described by inputs and outputs: datasets and models. Datasets and models 1st-class citizens, tracked/versioned assets.



WORKFLOWS IN MAGLEV

Step 1: Define the workflow as a list of steps in a YAML file

```
localImage: dlav/common/image
steps:
- name: 0-train
completions: 1
gpus: 1
command: drivenet train -e default_spec.txt -r /out
- name: 1-evaluate
gpus: 1
inputs:
    /in/0-train: {step: 0-train}
command: drivenet evaluate -e default spec.txt -m /in/0-train/weights/model.hdf5
```

Step 2: Execute the workflow

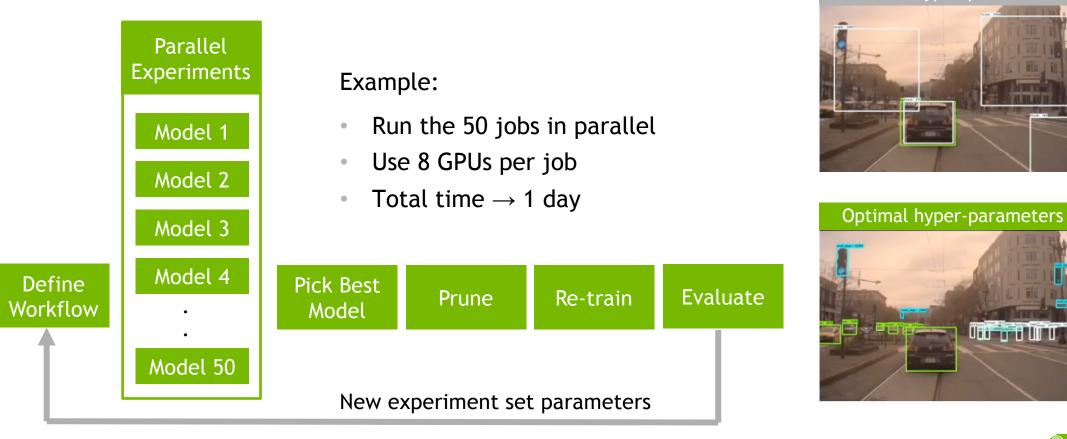
maglev run //dlav/common:workflow -- -f my.yaml -e saturnv -r <results dir>

Random hyper-parameters

EXAMPLE WORKFLOW: FIND BEST MODEL

Improving DNNs through massively parallel experimentation

Experiments are run is parallel as part of a predefined workflow



MAGLEV SERVICES

Runs on Kubernetes

Hybrid deployment: 1/ service cluster on AWS 2/ compute cluster at NVIDIA (SaturnV)

Multi-node training via MPI over k8s

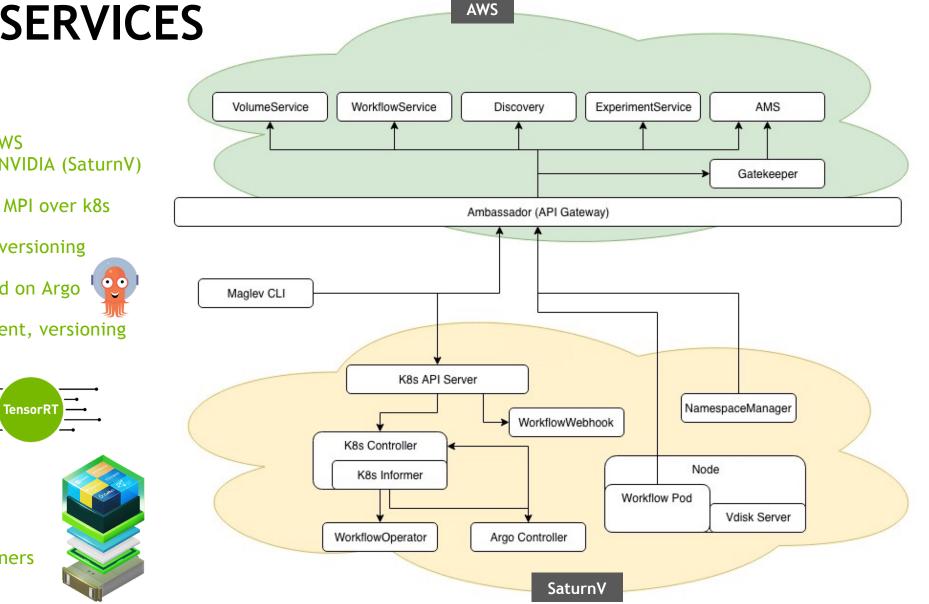
Dataset management, versioning

Workflow engine, based on Argo

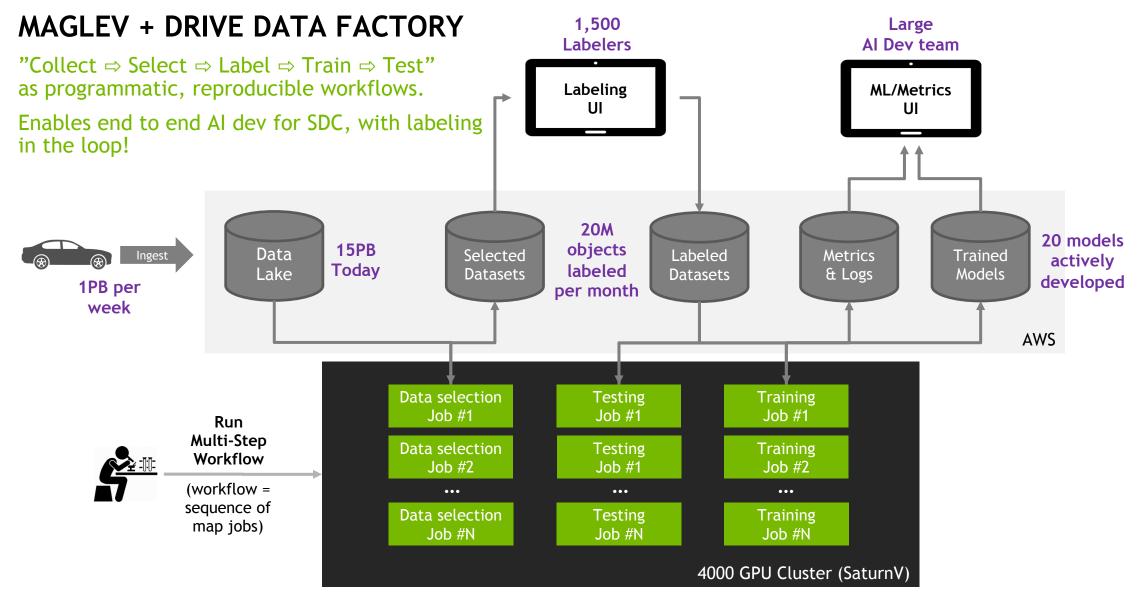
Experiments management, versioning

Leverages 나는 NVIDIA TensorRT for inference

Leverages NVIDIA GPU Cloud Containers for Pre-built DL/ML containers

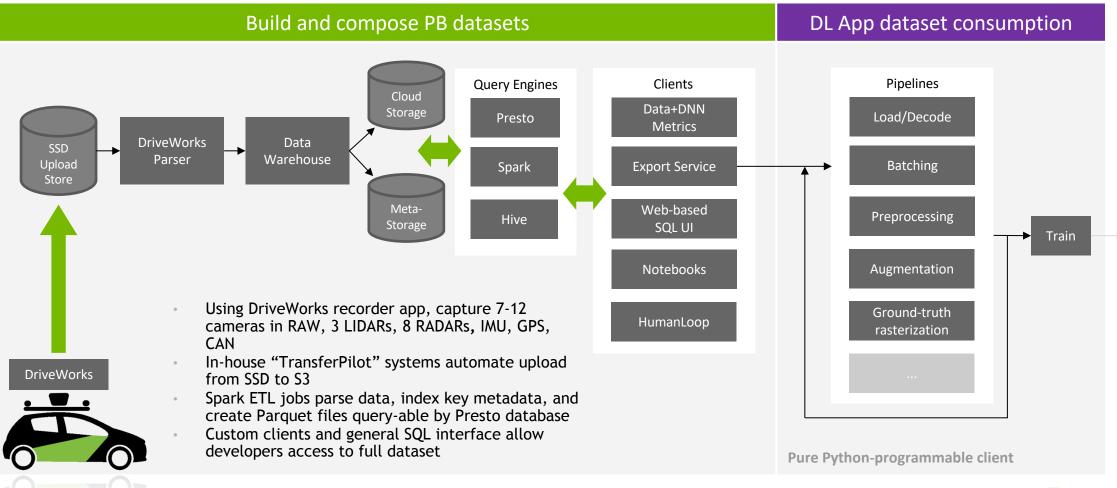


<u>MagLev + DRIVE Data Factory</u> End to end infrastructure to support AI development for DRIVE



PB-SCALE DATA MANAGEMENT FOR DRIVE

Or how to build and feed datasets into workflows



DRIVE DATA CURATION

Finding the most valuable data to label or test

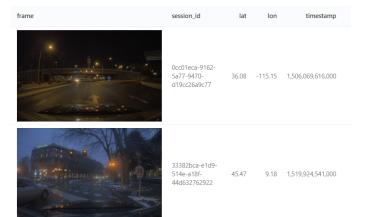
Manual Curation

Human labelers review targeted videos for sections of interest. "Fallback" option used for special scenarios.

New breakpoint 🕄

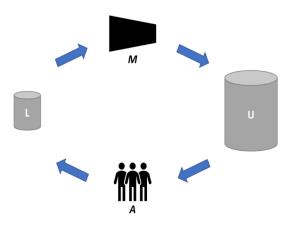
Query-based Curation

Query the lake for any metadata, including CAN signals ("speed > X"), segment tags ("visibility = raining"), or map data (example below: intersection = true)



Active Learning

Evaluate a pretrained model on unlabeled data and see where it is uncertain. Label those "confusing" images.



DRIVE DATA LABELING

Maximize throughput and quality

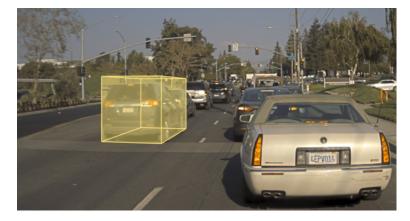
Every label is annotated and QA'ed by a separate professional labeler, with random expert audits to ensure consistency.

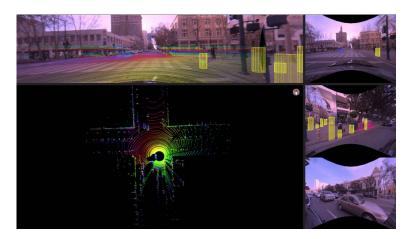
~1 million frames/crops labeled and QA'ed each month by a team of 1500+ labelers.

All done in HumanLoop, an web-based platform supporting:

- Bounding boxes (and cuboids)
- Instance segmentation
- Polyline annotations
- Object tracking in videos
- Hierarchical classification

50 unique active labeling projects today, covering project categories => 14+ DNNs





MAGLEV DEPLOYMENT | HW INFRA

MagLev Services

Services on AWS

...

EC2

S3

Multi-PB Datasets stored on AWS S3

High-bandwidth interconnect to replicate them locally, on SwiftStack (S3-compat object API)

In-rack bandwidth between storage and DGX optimized for all our workloads (inference/mining and training)

Each rack: 9 DGX-1 = 72 TESLA V100 GPUs = 9 PFLOPs 1PB of object storage

What if we could push data even closer to compute?

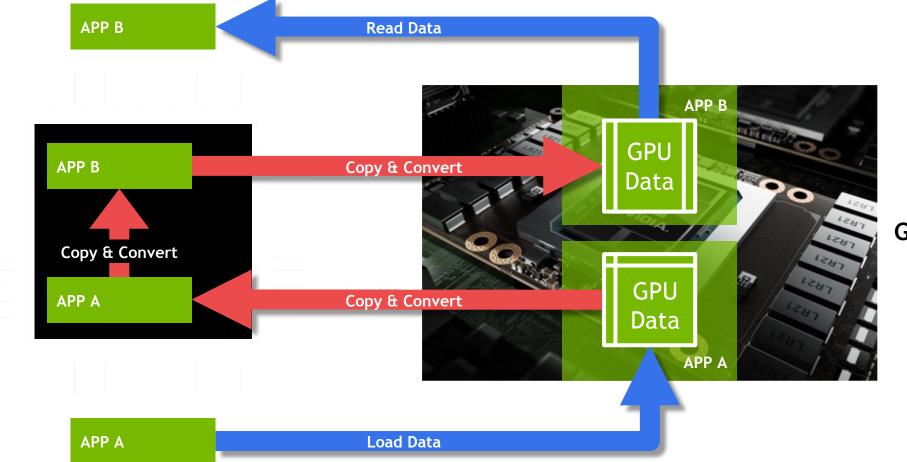
Kubernetes					
35kW Rack	35kW Rack	35kW Rack	35kW Rack		
CPU Node	CPU Node	CPU Node	CPU Node		
CPU Node	CPU Node	CPU Node	CPU Node		
CPU Node	CPU Node	CPU Node	CPU Node		
CPU Node	CPU Node	CPU Node	CPU Node		
CPU Node		nd Chu Node	CPU Node		
CPU Node	CPU Node	CPU Node	CPU Node		
CPU Node	CPU Node	CPU Node	CPU Node		
CPU Node	CPU Node	CPU Node	CPU Node		
CPU Node	CPU Node	CPU Node	CPU Node		
CPU Node	CPU Node	CPU Node	CPU Node		
CPU Node	CPU Node	CPU Node	CPU Node		
CPU Node	CPU Node	CPU Node	CPU Node		
DGX-1	DGX-1	DGX-1	DGX-1		
DGX-1	DGX-1	DGX-1	DGX-1		
DGX-1	DGX-1	DGX-1	DGX-1		
DGX-1	DGX-1	DGX-1	DGX-1		
DGX-1	DGX-1	DGX-1	DGX-1		
DGX-1	DGX-1	DGX-1	DGX-1		
DGX-1	DGX-1	DGX-1	DGX-1		
DGX-1	DGX-1	DGX-1	DGX-1		
DGX-1	DGX-1	DGX-1	DGX-1		

RAPIDS

Since building datasets is such an important part of the ML workflow... looks like we should move it to the GPU as well ③

DATA MOVEMENT AND TRANSFORMATION

The bane of productivity and performance

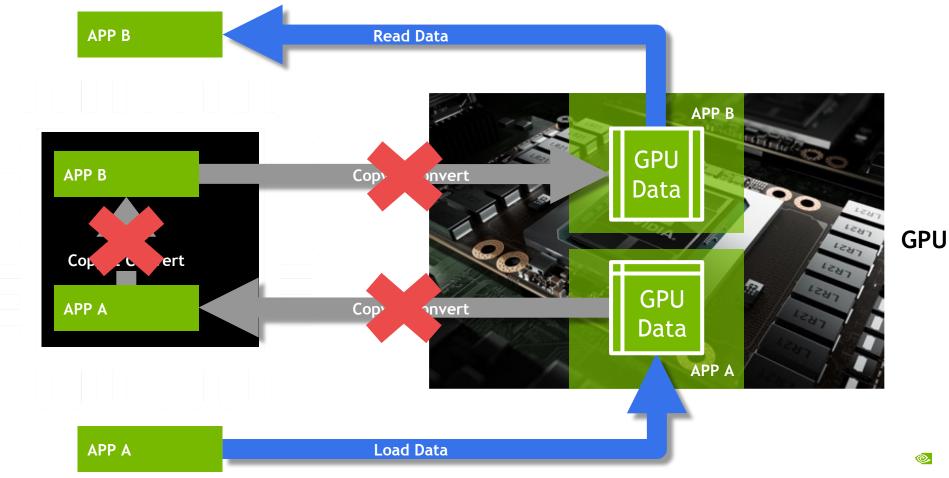


CPU

GPU

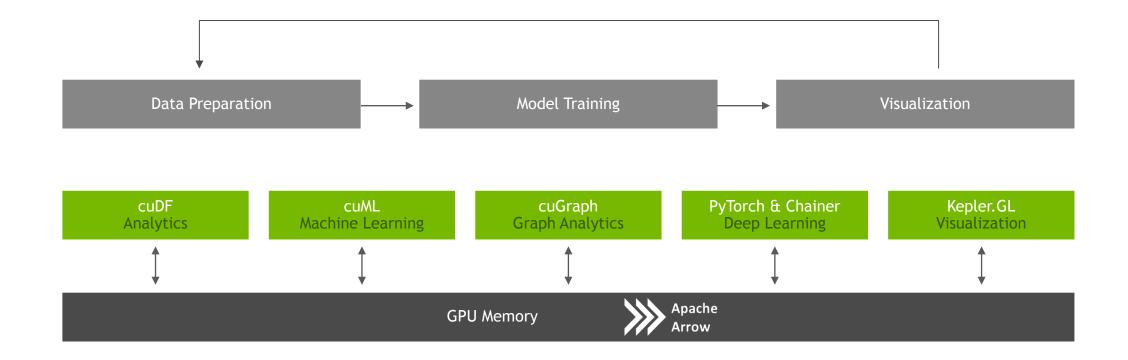
DATA MOVEMENT AND TRANSFORMATION

What if we could keep data on the GPU?



CPU

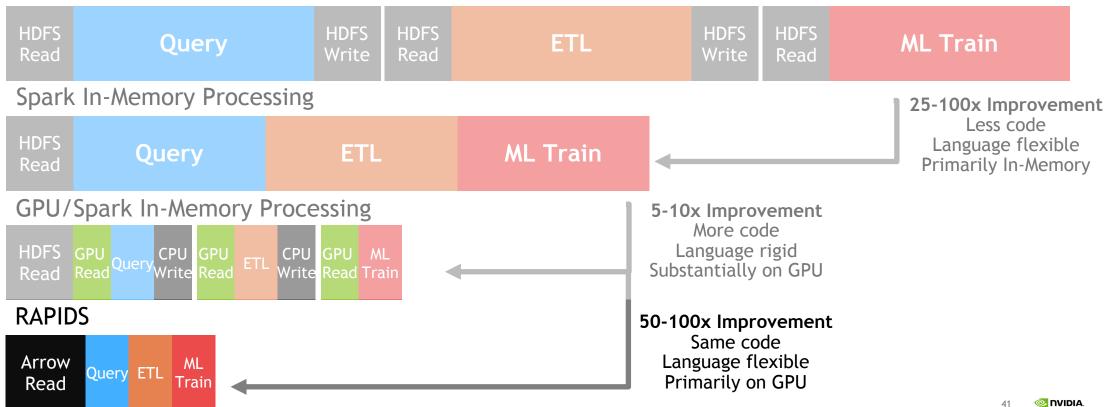
RAPIDS: END TO END DATA SCIENCE



DATA PROCESSING EVOLUTION

Faster Data Access = Less Data Movement

Hadoop Processing, Reading from disk



RAPIDS, NGC, TENSORRT

How do I get the software?

RAPIDS: rapids.aiNVIDIA GPU CLOGithub: github.com/rapidsaiTENSORRT: devConda: anaconda.org/rapidsaiPip (soon): pypi.org/project/[cudf,cuml]NVIDIA GPU Cloud: ngc.nvidia.com/registry/nvidia-rapidsai-rapidsaiDocker: hub.docker.com/r/rapidsai/rapidsai

NVIDIA GPU CLOUD: <u>ngc.nvidia.com</u> TENSORRT: <u>developer.nvidia.com/tensorrt</u>

LEARN MORE

Many other exciting sessions about our AI Infrastructure

S9613	Wed 10:00am	Deep Active Learning	Adam Lesnikowski
S9911	Wed 2:00pm	Determinism In Deep Learning	Duncan Riach
\$9630	Thu 2:00pm	Scaling Up DL for Autonomous Driving	Jose Alvarez
S9987	Thu 9:00am	MagLev: NVIDIA's Production-grade AI Platform	Divya Vavili, Yehia Khoja
S9577	Tue 9:00am	RAPIDS: The Platform Inside and Out	Josh Patterson

THANK YOU

THIT

rapids.ai ngc.nvidia.com github.com/rapidsAl twitter.com/nvidiaAl twitter.com/rapidsAl twitter.com/datametrician twitter.com/clmt