

MorphNet

Elad Eban

Faster Neural Nets with Hardware-Aware Architecture Learning

Where Do Deep-Nets Come From?

VGG: Chatfield et al. 2014

How Do We Improve Deep Nets?

Inception - Szegedy et al. 2015

How Do We Improve? Speed? Accuracy?

ResNet - K. He, et al. 2016.

Classical Process of Architecture Design

- Not scalable
- Not optimal

Google

- Not customized to YOUR data or task
- Not designed to YOUR resource constraints

Rise of the Machines: Network Architecture Search

Huge search space

- identity
- 1x7 then 7x1 convolution
- 3x3 average pooling
- 5x5 max pooling
- 1x1 convolution
- 3x3 depthwise-separable conv
- 7x7 depthwise-separable conv

- 1x3 then 3x1 convolution
 3x3 dilated convolution
- 3x3 max pooling
- 7x7 max pooling
- 3x3 convolution
- 5x5 depthwise-seperable conv

Neural Architecture Search with Reinforcement Learning **22,400 GPU days!** Learning Transferable Architectures for Scalable Image Recognition - **RNN 2000 GPU days** Efficient Neural Architecture Search via Parameter Sharing ~ **2000 training runs**

MorphNet: Architecture Learning

Efficient & scalable architecture learning for everyone

- Resource
 constraints guide
 customization
- Requires handful of training runs
- Trains on your data
- Start with your architecture
- Works with your code

Idea: Continuous relaxation of combinatorial problem

Simple & effective tool: weighted sparsifying regularization.

Learning the Size of Each Layer

Topology

Architecture search

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj
convolution	7×7/2	$112 \times 112 \times 64$	1						
max pool	3×3/2	$56 \times 56 \times 64$	0						
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192			
max pool	3×3/2	$28 \times 28 \times 192$	0						
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64
max pool	3×3/2	$14 \times 14 \times 480$	0						
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128
max pool	3×3/2	7×7×832	0						
inception (5a)		7×7×832	2	256	160	320	32	128	128
inception (5b)		7×7×1024	2	384	192	384	48	Y	100

Sizes

Main Tool: Weighted **sparsifying** regularization.

Sparsity Background

Sparsity is just - few non zeros

$$B_{L_0}(k) = \left\{ x \in \{0,1\}^n, \sum_i x_i \le k \right\} \quad [(0,0), (0,1), (1,0)]$$

Hard to work with in neural nets

Continuous relaxation

(Group) LASSO: Sparsity in Optimization

MorphNet Algorithm

Google

Can This Work in Conv-nets?

What do Inception, resnet, dense-net, NAS-net, Amoeba-Net have in common?

```
def batch_norm(x):
    return (x - mean(x)) / std(x)
```

Problem: The weight matrix is scale invariant.

batch_norm(W*x) == batch_norm((W/2.0)*x)

L1-Gamma regularization

Actually batch norm has a learned scale parameter:

```
def batch_norm(x, gamma):
    return (x - mean(x)) / std(x) * gamma
```

Problem: Still scale invariant.

Solution: The scale parameter **gamma** is the perfect substitute. Zeroing **gamma** is effectively removing the filter!

```
\min_{w} \ell(X, Y, w) + \lambda |\gamma|_1
```


Main Tool: Weighted sparsifying regularization.

What Do We Actually Care About?

We can now control on the number of filters.

But, what we actually care about is: model size, FLOPs and inference time.

Notice: FLOPs and model size are a simple function of the number of filters.

Solution: Per-layer coefficient that captures the cost.

$$\min_{w} \ell(X, Y, w) + \lambda \sum_{l} C^{cost}(l) |\gamma_{l}|_{1}$$

What is the Cost of a Filter?

Google

Inception V2 Based Networks on ImageNet

Baseline: Uniform shrinkage of all layers (width multiplier).

FLOP Regularizer: Structure learned with FLOP penalty.

Expanded structure: Uniform expansion of learned structure.

Google

JFT: Google Scale Image Classification

Image classification with 300M+ Images, >20K classes.

Started with a ResNet-101 architecture.

The first model with algorithmically learned architecture serving in production.

ResNet101-Based Learned Structures

Figure adapted from: MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks

A Custom Architecture Just For You!

Partnered with Google OCR team which maintains models for dozens of scripts which differ in:

- Number of characters,
- Character complexity,
- Word-length,
- Size of data.

A single fixed architecture was used for all scripts!

A Custom Architecture Just For You!

Arabic Compression Ratio

Zooming in On Latency

Latency is device specific!

Latency Roofline Model

Each op needs to read inputs, perform calculations, and write outputs.

Evaluation time of an op depends on the **compute** and **memory** costs.

Compute time = FLOPs / **compute_rate**.

Device Specific

Memory time = tensor_size / **memory_bandwidth**.

Latency = max(Compute time, Memory time)

Example Latency Costs

Different platforms have different cost profile

Platform	Peak Compute	Memory Bandwidth
P100	9300 GFLOPs/s	732 GB/s
V100	125000 GFLOPs/s	900 GB/s

Leads to different relative cost

Inception V2 Layer Name	P100 Latency	V100 Latency	Ratio
Conv2d_2c_3x3	74584	5549	7%
Mixed_3c/Branch_2/Conv2d_0a_1x1	2762	1187	43%
Mixed_5c/Branch_3/Conv2d_0b_1x1	1381	833	60%

Tesla V100 Latency

Tesla P100 Latency

When Do FLOPs and Latency Differ?

- Create 5000 *sub-Inception V2* models with a random number of filters.
- Compare FLOPs, V100 and P100 Latency.

P100 - is compute bound, tracks FLOPs "too" closely

V100 - gap between FLOPs and Latency is looser

Latency

FLOPs

Google

What Next

If you want to

- Algorithmically speedup or shrink your model,
- Easily improve your model

You are invited to use our open source library

https://github.com/google-research/morph-net

Quick User Guide

from morph_net.network_regularizers import flop_regularizer
from morph_net.tools import structure_exporter

logits = build_model()

```
network_regularizer = flop_regularizer.GammaFlopsRegularizer(
       [logits.op], gamma_threshold=1e-3)
regularization_strength = 1e-10
regularizer_loss = (network_regularizer.get_regularization_term() * regularization_strength)
```

```
model_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels, logits)
```

```
optimizer = tf.train.MomentumOptimizer(learning_rate=0.01, momentum=0.9)
```

train_op = optimizer.minimize(model_loss + regularizer_loss)

Exact same API works for different costs and settings: GroupLassoFlops, GammaFlops, GammaModelSize, GammaLatency

Structure Learning: Regularization Strength

Pick a few regularization strengths.

Google

Structure Learning: Accuracy Tradeoff

Of course there is a tradeoff

Structure Learning: Threshold

Value of gamma, or group LASSO norms usually don't reach 0.0 so a threshold is needed.

Plot regularized value: L2 or abs(gamma).

Usually easy to determine, often the distribution is bimodal.

L2 Norm of CIFARNet Filters

After Structure Learning

Google

Structure Learning: Exporting

```
network_regularizer = ...
net = conv2d(images, 64, [5, 5])
net = max_pool2d(net, [2, 2], 2)
net = conv2d(net, 64, [5, 5])
net = max_pool2d(net, [2, 2], 2)
net = fully_connected(net, 384)
net = fully_connected(net, 192)
logits = fully_connected(net, num_classes)
```

```
with file.Open(filename, 'r') as f:
    parameterization = json.loads(f.read())
```

```
net = conv2d(images, parameterization['conv1'], [5, 5])
net = max_pool2d(net, [2, 2], 2)
net = conv2d(net, parameterization['conv2'], [5, 5])
net = max_pool2d(net, [2, 2], 2)
net = fully_connected(net, parameterization['fc3'])
net = fully_connected(net, parameterization['fc4'])
logits = fully_connected(net, num_classes)
```

Retraining/Fine Tuning

Problem

- Extra regularization hurts performance.
- Some filters are not completely dead.

Options

- Zero dead filters and finetune.
- Train learned structure from scratch.

Why

- Ensures learned structure is stand-alone and not tied to learning procedure.
- Stabilizes downstream pipeline.

Under the Hood: Shape Compatibility Constraints

NetworkRegularizers figures out structural dependence in the graph.

Under the Hood: Concatenation (as in Inception)

Things can get complicated, but it is all handled by the MorphNet framework.

Team Effort

Google

Elad Eban, Max Moroz

Yair Movshovitz-Attias, Andrew Poon

Contributors & collaborators:

Ariel Gordon, Bo Chen, Ofir Nachum, Hao Wu, Tien-Ju Yang, Edward Choi, Hernan Moraldo, Jesse Dodge, Yonatan Geifman, Shraman Ray Chaudhuri.

Thank You

Elad Eban

Contact: morphnet@google.com

https://github.com/google-research/morph-net