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What makes planets habitable ?

(Habitable = could harbor liquid water / carbon-based life as we know it)

The planet must be in the habitable zone of its star: not be
too close or too far

Venus: too close, too hot

Mars: too far, too cold



What makes planets habitable ?

Size also matters:
not too big, not too small

Jupiter: too massive

Gravity holds thick atmosphere

Earth of Hydrogen and Helium
Moon: too small
Weak gravity can’t hold atmosphere Mostly gas
No atmosphere - no life — no habitable surface for life to
take hold

- wrong atmosphere composition



Current Status of Exoplanet Research

Key statistical findings

Hot Jupiters are frequent
(no analogyn@ligsolar system),

Planetary systems are common
23 systems with > 5 planets

credits: NASA/CXC/M. Weiss 7-planet Trappist-1 system, credit: NASA-JPL

Earth-size rocky planets are ~10% of Sun-likestars and ~50%
abundant of dwarf stars have potentially
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Current Status of Exoplanet Research

Spectacular recent discoveries
around nearby stars

Trappist-1 system

TRAPPIST-1 System

7 planets

~3 in hab zone €€ ¢ ¢
likely rocky S - S Ty
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Why should we image planets ?

Imaging allows spectroscopy to
measure atmosphere composition

Spectrum of Earth (taken by looking
at Earthshine) shows evidence for
life and plants

Flle: cut2e.13 1 Aug 25 13608 2001
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Woolf et al.
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Taking images of habitable exoplanets: Why is
it so hard ?

This image was taken by the Cassini spacecraft when it was in Saturn’s shadow... looking back
at the inner solar system. Can you spot Earth ?



.‘.
Earth

Earth is 1,000,000,000 x fainter than sun!




Atmospheric Turbulence

Atmosphere Turbulence: Earth’s atmosphere introduces strong and fast optical
aberrations that blur images

Light rays are bent by atmosphere

- distortions
— blurring

The sun observed with a compact camera



Adaptive Optics (AO)

Atmosphere Turbulence: Earth’s atmosphere introduces strong and fast optical
aberrations that blur images

Aberrations must be continuously measured and corrected to provide sharp images and
image exoplanets

Imaging exoplanets is particularly demanding, as the planet is much fainter that the star it
orbits: very little room for error !

- AO for exoplanet imaging is referred to as Extreme-AO, which is widely
recognized as the most challenging application for adaptive optics

Light From
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Mirror Wavefront
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es to be combined:

Imaging exoplanets requires 3 techniqu
»£ Extreme-AO corrects atmospheric turbulence

A coronagraph masks the light of the

bright star

—>pk _Smart image processing to recodnize planets

Our team is deploying GPU-powered Al
frameworks to address these challenges

.

\
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1: ExAO control radius

2: Telescope spider diffraction
3: Diffraction rings

4: Ghost spider diffraction

5:

“butterfly” wind effect

6: Coronagraphic leak (low order aberrations)

Simulated images below show how Extreme-AO and
Coronagraphy deliver high contrast image of a star

No AO correction Extreme-AO correction

Monochromatic PSFs, 1.65um
No photon noise

10m/s wind speed, single layer
4ms wavefront control lag

Extreme-AO + coronagraph

Control radius
= 0.83 arcsec
- ———————

3.5 3.2
Contrast (10-base log)



AO Real-time controller (RTC)

: High framerate i High bandwidth
i i i Low latency :

Sensors




Enabling technologies for AO

From a standard data acquisition model ...

GPU

Launch

kernel

End

kernel

Notify

- -




Enabling technologies for AO

.. to low latency low jitter data acquisition

Notify
GRU

No:tify

res§ult




Real-time data acquisition

FPGA writes/reads directly to/from GPU memory

Using only writes would be better though

Latency
measurement

Camera protocol
handler

DMC protocol
handler

m---m--m-m--—-’
Anou



Real-time HPC

Persistent kernels : avoid any communication between GPU kernel and
CPU process during execution
Maximize overall performance => towards low latency

Minimize jitter => towards high level of determinism (real-time

computing)
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Real-time HPC

Persistent kernels for low jitter

522 ms 922 25 ms 922,5ms 922I?5 ms Wﬁ 923 25 ms 923,5ms 923,75 ms 924 ms 924 25 ms
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Real-time HPC

Standard execution model (multiple kernel launches)
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Real-time HPC

Standard execution model + RT patch + process shielding + RT
scheduling

Maode 1, Kernel RT + Shield + RT Scheduling, Avg: 43.0 s
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Standard execution model versus persistent kernels

Real-time HPC

Mode 1, Kernel RT + Shield + RT Scheduling, Avg cuBLAS: 21.0 us, Avg. Persistent: 35.0 us
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Real-time HPC

Monitoring the pipeline execution with internal profiling tools to avoid
profiling through a CPU process (introducing jitter)

All pixel polling : SCAO (6k nvalid, 5.3k cmd), 200k iterations, RT, V100@1.53 GHz

—— slope [GPU clock]

——— command [GPU clock]

—— slope + command [GPU clock]
—— total [GPU clock]

—— total [CPU clock]
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000000000000000000000000000000000000000



Standard execution model versus persistent kernels
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Real-time HPC

SCAQO case : 1 wfs, 10048 slopes, 5316 commands on 1 GPU
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Real-time HPC

Persistent kernels concept
works as well with 16 bits floats ...
(a.k.a. half precision)

Input vector needs reformating
(2xFP16 per individual kernel
Instance)

104 4

Increased performance
(x1.8 faster)

10! 4
i

Same level of determinism

Accuracy compatible with AO

Comman d float 16/32 computation comparaison

float 32 computation
mm float 16 computation

application (verified with e
end-to-end AO simulator)

600
Time in ps

T
700




Real-time HPC

Multi-GPU scalability on
NVIDIA DGX-1

We are counting MAC/s
(memory bound application)

Determinism checked with timing
from FPGA interface

4 GPU : 348
)

per GPU : 87
°

1GPU: 74
]

1GPU:50
o

8 GPU : 731
°

FPGA timer vs GPU timer based on clock measurement Difference time
100 S GPU time
[ FPGA time
10 5|
- e
10+
10 ¢
10! 10+
100
1680 1700 1720 1740 1760 1780 0 5

Time {us)

Time: {us)




The case for tomography

Multiple guide stars (Laser), multiple deformable mirrors

Single Conjugated AO Star Oriented MCAO

Reference

Reference Star % st * *
ars

High High
Altitude Altitude

Layer Layer
Ground Ground

Layer Layer

Telescope

Ground Conj. DM Ground Conj. DM ;_.?_
Altitude Conj. DM =8
" WFG ;

On axis WFS |




Loop supervision module

Mix of cost function optimization for parameters identification (“Learn”
process) and linear algebra for reconstructor matrix computation

(“apply” process)
paramete
—>» m.transpose(m) learn

command
matrix apply
Cmat
Y

Cmat.R Ctm.(:mmf'1
supervisor module for MOAQ

measurements
m

tomographic
reconstructor




Loop supervision module

Parameters identification (“Learn” process)

Fitting measurements covariance matrix,, &

on a model including system and
turbulence parameters

Using a score function

Z | Cmm, —f, (X)]Z
k=1
Levenberg-Marquardt algorithm for

function optimization

Exemple of turbulence profile
reconstruction

Dual stage process (5 layers + 40 layer
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Loop supervision module

Performance for parameters identification (“Learn” process)
Multi-GPU process, including matrix generation and LM fit
Time to solution for a matrix size of 86k : 240s (4 minutes)
—  first pass (5 layers) : 25s
—  Second pass (40 layers) : 213s

Weak scaling for the first LM Weak scaling for the second LM
10 parameters, single iteration on 43 parameters, single iteration on
Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz + 8 P100 (DGX-1) Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz + 8 P100 (DGX-1)
9
8 W
———LM1 Hg 7 e | M2 Hg
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LM1 chi2 5 N LM?2 chi?
""" perfect scaling LM1 chi E" ; T = = = = = perfect scaling LM2 chi2
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1
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Loop supervision module

Performance for parameters identification (“Learn” process)
Multi-GPU process, including matrix generation and LM fit
Time to solution for a matrix size of 86k : 240s (4 minutes)
—  first pass (5 layers) : 25s
—  Second pass (40 layers) : 213s

strong scaling for the first LM strong scaling for the second LM
43 parameters, N=86688, single iteration on

10 parameters, N=86688, single iteration on
Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz + 8 P100 (DGX-1)

Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz + 8 P100 (DGX-1)

1.2
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Loop supervision module

Reconstructor matrix computation (“apply” process)

Compute the tomographic reconstructor matrix using covarince
matrix between “truth” sensor and other WFS and invert of
measurements covariance matrix

R ':Ctm-Crmrn;-l
Can use various methods. “Brute” force : direct solver

Standard Lapack routine : “posv” : mostly compute-bound, high
level of scalability

Highly portable code : explore various architectures by using
standard vendor provided maths libraries



Loop supervision module

Performance evolution over time on different platforms

Comparing generations of GPU and CPUs (+Xeon Phi)

T T T T T I I ! ] !
16 cores Intel SDB 2012 ——
1 8 x NVIDIA K20s 2012 :@ L
10000 + 40 cores Intel IVB 2013 S T R S S P S -
[ 8 x NVIDIA K40s 2013 i i
I 36 cores Intel HSW 2014 —é— i

_ 8 x NVIDIA K80s 2014 ——
28 cores Intel BOW 2016
1000 64 cores Intel KNL 2016
NVIDIA DGX-1 2016

100 ¢

Time (s)

10 |

Matrix Size



Loop supervision module

State of the art performance on NVIDIA DGX-1 with V100
* Versus P100 using BLAS library from KAUST: x1.6

0 DGX1-P100 w/o KBLAS o DGX1-P100 w/ KBLAS
0 DGX1-V100 w/o KBLAS © DGX1-V100 wf/ KBLAS

50

20480 30720 40960 51200 61440 71680



Covariance matrix I1s data
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Experimenting with low rank
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Fixed ranks
Preconditioners
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Cholesky: O(n3)
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Leveraging half-precision

Mixed precision reconstructor performance (per WFS block decomposition)
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Leveraging half-precision

Work in progress on NVIDIA V100 GPUs:

* dgemm achieves about 6.4 Tflop/s on single V100

* sgemm achieves about 14 Tflop/s on single V100

* hgemm achieves about 27 Tflop/s on single V100

* hgemm (w/ tensor cores) reaches about 85 Tflop/s on single V100
* Single precision ToR performance: 42 Tflop/s on 8 V100s

* Thatis a ToR at ELT scale computed every 25 seconds
* Speedup factor of 6 between sgemm and hgemm tensor cores

* 6 x 42 TeraOps/s = 252 PetaOps/s on 8 V100s

* Thatis a ToR at ELT scale computed every 5 seconds

Probably one of the first real applications amenable for tensor cores usage outside of
the traditional Al workloads



Subaru Telescope (8.2m diameter) has an exoplanet-imaging instrument (SCEXAQO)

The instrument team is developing advanced Extreme-AQO techniques

Subaru Telescope, Mauna Kea, Hawalii
4200m altitude
Very clear sky

Best snhow in Hawaii

Regular size door




| S N <
Subaru Telescope (V|ew from inside dome) Photograph by Enrlco Sachettl



Subaru Coronagraphic
Extreme Adaoptive Optics




Subaru Coronagraphic
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HR8799 system imaged by our instrument

Four planets, orbital periods on the order of 100yr
Each planet 5 to 7 Jupiter Mass

Subaru Telescope/ SCEXAO (Currie et. al 2017)

O ©
The central bright star is missing O
from the image: it has been - —
successfully blocked by our ;
optics, and removed by image 0

processing

... but notice that the image still
has some residual noise due to
non-perfect adaptive optics
correction.

To image habitable planets, we
have to remove this noise



A new approach to Adaptive Optics

control
Conventional AO: Control Matrix
mxX n

We calibrate the system in the lab, N
and then apply a linear input-output ( Last WES DM state
ContrOI |aW measurement @

L D —

Predictive Control Matrix

Advanced AO control: o (R )

( Last N WES ) DM state
We continuously, optimally derive measurements @ F{ - I
the input-output controller from the k Nxn )

real-time data streams.

Last N WES Sensor Fusion and
- - . : measurements
-(I;-Elasnlesngeff)rmldable computing sensor 1 Predictive control Matrix
. ' N K x N
input has ~10,000 degrees of S -0 J mx (Rxlxn)
freedom, output has ~2,000 WS ~y
degrees of freedom, and controller Last M WES @ »{ e I
must compute solutions at 3 kHz sensor K m

framerate k N x n j




The Machine Learning challenge

Need to derive 100s of millions of control matrix (CM) values within
minutes, using billions of samples...

Example:

SCEXAO, 3 kHz, 10-step predictive control, 100 sec training
Input: 14,400 x 3,000 x 100 = 4.32e9 measurements
Output: 14,400 x 2000 x 10 = 288e6 CM coefficients

Solution:

We deploy linear Machine Learning technique on a modal control
space (smaller # of dimensions).

We use GPU cores (35,000 cores @ 1.6 GHz in SCEXAO main RTC).



The Machine Learning challenge

One of two GPU chassis

SCEXAO uses 35,000 cores
running @~1.6GHz




First on-sky results (2 kHz loop)
- 2.5Xx contrast improvement

These images are dominated by|starlight = noise

Area where we look for planets hecomes 2.5x darker when

OFF (integrator, gain=0.2) ON

Average of 54 consecutives 0.5s images (26 sec exposure), 3 mn apart
Same star, same exposure time, same intensity scale




Our Team Activities

We develop new advanced approaches
and algorithms for the exoplanet imaging challenge

We deploy them on the largest telescopes
in the world (Subaru, Keck, VLT, ...)

On-sky deployment on large telescope
Exoplanets imaging

Subaru Telescope (Japan/US)
Group leader: Olivier Guyon

High Performance Computing

Fast linear algebra optimized for GPUs Software engineering, system-

J Algorithm Development
level implementation

King Abdullah University of Science | "
and Technology (Saudi Arabia) *
Group leader: Hatem Ltaief

Observatoire de Paris (France) &
Australian National University
Group leader: Damien Gratadour




Keck Observatory (US)




Very Large Telescope
(European facility on Chile)
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Thirty
Meter
Telescope




Glant Magellan Telescope
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Machine Learning for image processing

RAW PROCESSED image

1: Coronagraph Focal plane mask Detection noise dominated by :
2: Calibration Speckles (astrometry and photometry) - residual speckle noise )

3: Residual diffraction - photon noise
4: Speckle Noise i f eadout noise
5: Photon and Readout noise




On-sky Demonstration (Sept 2018)

We acquired, on the Subaru Telescope, data from
two simultaneous cameras:

Science Camera looks at final image for
planet, but is dominated by fast-changing unwanted
starlight

Sensor Camera looks at starlight that has been
rejected by the optical system
Both cameras running at 6.5 kHz frame rate.

QUESTION: Can we train an algorithm to use the
Sensor Camera image to identify where is the
unwanted starlight in the Science Camera ?

FIRST TEST (pair-wise comparison): If two sensor
camera images are similar, are the two science
camera images also similar ? — we can use this
information to subtract the starlight

Difference between corresponding pair of Sensor camera images

RESULT - On-sky data demonstrates ~10x gain

Difference between pair of Science camera images

obtained by selecting times when sensor camera

images are similar to perform the science camera
starlight subtraction.

Computation is extremely challenging due to
large number of images (6,500 images per
second)

NEXT STEPS (ongoing) : Deployment on GPUs for Science Camera Sensor Camera
real-time use.



Neural Net reconstructs on-sky images

Input image Predicted image Truth image

60
BO

100

0 20 40 60 80 100 0 20 40 60 0 20 40 60

Figure 4: On-sky demonstration of PSF estimation from SCExAO WFS telemetry using a neural network. The training set for
this supervised learning problem is constructed by aligning pyramid WFS and visible light PSF frames on the same time reference
(hardware lag compensation). While training is slow, inference can be performed in real-time on modern GPUs equipped with
tensor cores. We note that visible PSF reconstruction is highly non-linear and particularly sensitive to small wavefront errors.
For this simple problem (single input, single output supervised learning), a well-interpolated look-up table built from a clustering
algorithm may achieve similar PSF reconstruction quality, but would be considerably more demanding in computing power and
memory usage: the main advantage of a neural network approach may here be fast inference speed. Courtesy of Barnaby Norris,
Univ. of Sydney.

Courtesy of Barnaby Norris, Univ. Sydney



AO loop learns to optimize image quality

Figure 5: On-sky demonstration of re-inforcement learning for PSF sharpening, using reference updating sensor fusion. The
SCExAO pyramid WEFS reference on the internal source does not match the on-sky reference due to differences in pupil illumination
and variations of chromatic non-common path errors, so it must be learned on-sky from monitoring of the real-time PSF quality.
Once the XAO loop is closed, an algorithm identifies the 1% best PSFs and selects the corresponding WFS frames from the real-
time WES telemetry stream. These selected WFS frames are averaged together every 30sec for noise reduction, and the resulting
new WES frame replaces the WFS reference. As the algorithm proceeds, the pyramid WFS is continuously rewarded for high
quality PSFs, and the visible light PSF quality improves. The evolution of the on-sky visible (670nm) selected PSFs is shown
here over a 2 Imn period (3.5mn between consecutive PSFs) on the SCEXAQO system. The strong coma aberration present in at the
beginning of the sequence is automatically removed.



Predictive Control using NN

MSE

0.00014

0.00012 }{

— Training NN

Validation NN
Training PF
Validation PF

0.00010 -}
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— Validation loss
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Figure 6: Left: Mean Square Error (MSE) prediction error: comparison between a neural network (NN) and linear EOF predictive
filter approach (PF). Right: NN loss function. The NN uses a single hidden layer with 2000 neurons and a sigmoid activation
function. The X axis shows the length of the training set (number of epochs). As the training set increases in size, the NN MSE
on the validation data improves. The EOF MSE values are only computed for the full training set, so the values are shown as flat
horizotal lines. On this very short dataset (150 epochs), the EOF approach overfits the input data, resulting so the training MSE is
nearly null, but the validation MSE is poor. NN offers better regularization due to the limited number of neurons, and outperforms
the linear EOF approach. Courtesy of Alison Wong and Barnaby Norris, Univ. of Sydney.

Courtesy of Alison Wong & Barnaby Norris, Univ. Sydney



GPUs for optical astronomy

Providing solutions for the most advanced world leading optical telescopes facilities
in operation (Subaru, Keck, VLT)

Designing solutions for future giant telescopes leveraging a worldwide collaboration
(on 4 continents, Europe, US, Asia, Oceania)

GPUs can power real-time applications at the level of tens of us

Like the human brain, we use only 10% of
their capacity

Extremely high performance available is very
promising, will be essential to image nearby
habitable planets

Challenging due to high data rate and need
for real-time operation

.
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