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Imaging Nearby Habitable Planets with the Largest 
Astronomical Telescopes and GPU-powered 
Adaptive Optics Algorithms



Olivier @ 3am this morning  - live connection with Maunakea @ 4200m elevation
… and Australia



What makes planets habitable ?
(Habitable = could harbor liquid water / carbon-based life as we know it) 

 
The planet must be in the habitable zone of its star: not be 
too close or too far
 

 
 
 
 
 
 
 
 
 

Venus: too close, too hot

Mars: too far, too cold

Image credit: NASA/JPL-Caltech/MSSS

Venera 13 lander, survived 127mn at 457 C, 89 atm



What makes planets habitable ? 
 
Size also matters: 
not too big, not too small
 

Moon: too small
Weak gravity can’t hold atmosphere
No atmosphere → no life

Jupiter: too massive

Gravity holds thick atmosphere 
of Hydrogen and Helium

Mostly gas 
→ no habitable surface for life to 
take hold
→ wrong atmosphere composition

Earth



Key statistical findings

Hot Jupiters are frequentHot Jupiters are frequent
(no analog in our solar system)(no analog in our solar system)

Planetary systems are common
23 systems with > 5 planets

7-planet Trappist-1 system, credit: NASA-JPLcredits: NASA/CXC/M. Weiss

Earth-size rocky planets are 
abundant

~10% of Sun-like stars and ~50% 
of dwarf stars have potentially 
habitable planets

Dressing & Charbonneau 2013

credits: NASA Ames/SETI Institute/JPL-Caltech

Current Status of Exoplanet Research



Spectacular recent discoveries 
around nearby stars

Trappist-1 system
7 planets
~3 in hab zone
likely rocky
40 ly away

Proxima Cen b 
planet
Possibly habitable

Closest star to our 
solar system (only 
4.2 light years 
away)

Current Status of Exoplanet Research



300 billion stars in our galaxy

→ 30 billion habitable planets 
 
If 100 explorers were sent to visit each habitable for 
10 seconds (only 300 million planets/explorer)...
 
… it would take 95 yrs to complete the habitable 
exoplanets tour … in our galaxy alone



.. and there are 200 
billion galaxies in 
the observable 
universe



Why should we image planets ?
 
 
 
 
 
 
 
 
 
 

Imaging allows spectroscopy to 
measure atmosphere composition 
 

Spectrum of Earth (taken by looking 
at Earthshine) shows evidence for 
life and plants

Woolf et al.



Taking images of  habitable exoplanets: Why is 
it so hard ?

This image was taken by the Cassini spacecraft when it was in Saturn’s shadow… looking back 
at the inner solar system. Can you spot Earth ?



Earth is 1,000,000,000 x fainter than sun !



Atmospheric Turbulence
 Atmosphere Turbulence: Earth’s atmosphere introduces strong and fast optical 

aberrations that blur images 

Light rays are bent by atmosphere

→ distortions 
→ blurring 



Adaptive Optics (AO)
 

Palomar obs / NASA JPL

AO OFF AO ON

Atmosphere Turbulence: Earth’s atmosphere introduces strong and fast optical 
aberrations that blur images 

Aberrations must be continuously measured and corrected to provide sharp images and 
image exoplanets

Imaging exoplanets is particularly demanding, as the planet is much fainter that the star it 
orbits: very little room for error !
→ AO for exoplanet imaging is referred to as Extreme-AO, which is widely 
recognized as the most challenging application for adaptive optics



Imaging exoplanets requires 3 techniques to be combined:
● Extreme-AO corrects atmospheric turbulence
● A coronagraph masks the light of the bright star
● Smart image processing to recognize planets

Simulated images below show how Extreme-AO and 
Coronagraphy deliver high contrast image of a star

Our team is deploying GPU-powered AI 
frameworks to address these challenges



AO Real-time controller (RTC)

High framerate

Sensors

Active elements

Real-time
controller

Low latency
Low jitter High bandwidth

Switch Supervisor

High throughput

Telemetry

Fast storage
High throughput

High bandwidth
Low latency

Switch



Enabling technologies for AO

From a standard data acquisition model ... 



Enabling technologies for AO

… to low latency low jitter data acquisition



Real-time data acquisition



Real-time HPC

Persistent kernels : avoid any communication between GPU kernel and 
CPU process during execution

Maximize overall performance => towards low latency

Minimize jitter => towards high level of determinism (real-time 
computing)



Real-time HPC

Persistent kernels for low jitter



Real-time HPC

Standard execution model (multiple kernel launches)



Real-time HPC

Standard execution model + RT patch + process shielding + RT 
scheduling



Real-time HPC

Standard execution model versus persistent kernels



Real-time HPC

Monitoring the pipeline execution with internal profiling tools to avoid 
profiling through a CPU process (introducing jitter)



Real-time HPC

Standard execution model versus persistent kernels



Real-time HPC

Persistent kernels concept 
works as well with 16 bits floats
(a.k.a. half precision)

Input vector needs reformating
(2xFP16 per individual kernel
instance)

Increased performance 
(x1.8 faster)

Same level of determinism

Accuracy compatible with AO 
application (verified with 
end-to-end AO simulator) 



Real-time HPC

Multi-GPU scalability on 
NVIDIA DGX-1

We are counting MAC/s 
(memory bound application)

Determinism checked with timing
from FPGA interface



The case for tomography

Multiple guide stars (Laser), multiple deformable mirrors



Loop supervision module

Mix of cost function optimization for parameters identification (“Learn” 
process) and linear algebra for reconstructor matrix computation 
(“apply” process)



Loop supervision module

Parameters identification (“Learn” process)

 Fitting measurements covariance matrix 
on a model including system and 
turbulence parameters

 Using a score function

 Levenberg-Marquardt algorithm for 
function optimization

 Exemple of turbulence profile 
reconstruction

 Dual stage process (5 layers + 40 layers)



Loop supervision module

Performance for parameters identification (“Learn” process)

Multi-GPU process, including matrix generation and LM fit

Time to solution for a matrix size of 86k : 240s (4 minutes)

– first pass (5 layers) : 25s

– Second pass (40 layers) : 213s



Loop supervision module

Performance for parameters identification (“Learn” process)

Multi-GPU process, including matrix generation and LM fit

Time to solution for a matrix size of 86k : 240s (4 minutes) 

– first pass (5 layers) : 25s

– Second pass (40 layers) : 213s



Loop supervision module

Reconstructor matrix computation (“apply” process)

 Compute the tomographic reconstructor matrix using covarince 
matrix between “truth” sensor and other WFS and invert of 
measurements covariance matrix

 Can use various methods. “Brute” force : direct solver

 Standard Lapack routine : “posv” : mostly compute-bound, high 
level of scalability

 Highly portable code : explore various architectures by using 
standard vendor provided maths libraries



Loop supervision module

Performance evolution over time on different platforms

 Comparing generations of GPU and CPUs (+Xeon Phi)



Loop supervision module

State of the art performance on NVIDIA DGX-1 with V100

 Versus P100 using BLAS library from KAUST: x1.6



Covariance matrix is data 
sparse



Experimenting with low rank



Leveraging half-precision



Leveraging half-precision

Work in progress on NVIDIA V100 GPUs:

● dgemm achieves about 6.4 Tflop/s on single V100

● sgemm achieves about 14 Tflop/s on single V100

● hgemm achieves about 27 Tflop/s on single V100

● hgemm (w/ tensor cores) reaches about 85 Tflop/s on single V100

● Single precision ToR performance: 42 Tflop/s on 8 V100s

● That is a ToR at ELT scale computed every 25 seconds

● Speedup factor of 6 between sgemm and hgemm tensor cores

● 6 x 42 TeraOps/s = 252 PetaOps/s on 8 V100s

● That is a ToR at ELT scale computed every 5 seconds

Probably one of the first real applications amenable for tensor cores usage outside of 
the traditional AI workloads



Subaru Telescope (8.2m diameter) has an exoplanet-imaging instrument (SCExAO)
The instrument team is developing advanced Extreme-AO techniques

Subaru Telescope, Mauna Kea, Hawaii
4200m altitude

Best snow in Hawaii

Regular size door

Very clear sky



Subaru Telescope (view from inside dome)              Photograph by Enrico Sachetti







HR8799 system imaged by our instrument
Four planets, orbital periods on the order of 100yr
Each planet 5 to 7 Jupiter Mass

Subaru Telescope/ SCExAO (Currie et. al 2017)

The central bright star is missing 
from the image: it has been 
successfully blocked by our 
optics, and removed by image 
processing 

… but notice that the image still 
has some residual noise due to 
non-perfect adaptive optics 
correction.
To image habitable planets, we 
have to remove this noise



A new approach to Adaptive Optics 
control

Conventional AO:

We calibrate the system in the lab, 
and then apply a linear input-output 
control law

Advanced AO control:

We continuously, optimally derive 
the input-output controller from the 
real-time data streams.

This is a formidable computing 
challenge:
input has ~10,000 degrees of 
freedom, output has ~2,000 
degrees of freedom, and controller 
must compute solutions at 3 kHz 
framerate



The Machine Learning challenge

Need to derive 100s of millions of control matrix (CM) values within 
minutes, using billions of samples...

Example: 
SCExAO, 3 kHz, 10-step predictive control, 100 sec training
Input: 14,400 x 3,000 x 100 = 4.32e9 measurements
Output: 14,400 x 2000 x 10 = 288e6 CM coefficients

Solution: 
We deploy linear Machine Learning technique on a modal control 
space (smaller # of dimensions). 
We use GPU cores (35,000 cores @ 1.6 GHz in SCExAO main RTC).



The Machine Learning challenge

One of two GPU chassis

SCExAO uses 35,000 cores 
running @~1.6GHz  



First on-sky results (2 kHz loop)
→ 2.5x contrast improvement

OFF (integrator, gain=0.2) ON

Average of 54 consecutives 0.5s images (26 sec exposure), 3 mn apart
Same star, same exposure time, same intensity scale

These images are dominated by starlight = noise

Area where we look for planets becomes 2.5x darker when 
machine learning predictive control is applied



Our Team Activities

We develop new advanced approaches 
and algorithms for the exoplanet imaging challenge

We deploy them on the largest telescopes 
in the world (Subaru, Keck, VLT, ...)

High Performance Computing
Fast linear algebra optimized for GPUs

King Abdullah University of Science 
and Technology (Saudi Arabia)
Group leader: Hatem Ltaief

On-sky deployment on large telescope
Exoplanets imaging

Subaru Telescope (Japan/US)
Group leader: Olivier Guyon

Algorithm Development
Software engineering, system-
level implementation

Observatoire de Paris (France) &
Australian National University
Group leader: Damien Gratadour



Keck Observatory  (US)



Very Large Telescope 
(European facility on Chile)



Thirty 
Meter 

Telescope



Giant Magellan Telescope



European 
Extremely 

Large 
Telescope



1: Coronagraph Focal plane mask
2: Calibration Speckles (astrometry and photometry)
3: Residual diffraction
4: Speckle Noise
5: Photon and Readout noise

1

2

3

4

5

RAW 
image

PROCESSED image

Detection noise dominated by :
- residual speckle noise
- photon noise
- readout noise

Machine Learning for image processing



On-sky Demonstration (Sept 2018)
We acquired, on the Subaru Telescope, data from 
two simultaneous cameras:

Science Camera looks at final image for 
planet, but is dominated by fast-changing unwanted 
starlight

Sensor Camera looks at starlight that has been 
rejected by the optical system 
Both cameras running at 6.5 kHz frame rate.

QUESTION: Can we train an algorithm to use the 
Sensor Camera image to identify where is the 
unwanted starlight in the Science Camera ?

FIRST TEST (pair-wise comparison): If two sensor 
camera images are similar, are the two science 
camera images also similar ? → we can use this 
information to subtract the starlight 

RESULT → On-sky data demonstrates ~10x gain 
obtained by selecting times when sensor camera 
images are similar to perform the science camera 
starlight subtraction.
Computation is extremely challenging due to 
large number of images (6,500 images per 
second)

NEXT STEPS (ongoing) : Deployment on GPUs for 
real-time use.

Science Camera Sensor Camera
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Neural Net reconstructs on-sky images

Courtesy of Barnaby Norris, Univ. Sydney



AO loop learns to optimize image quality



Predictive Control using NN

Courtesy of Alison Wong & Barnaby Norris, Univ. Sydney



GPUs for optical astronomy

Providing solutions for the most advanced world leading optical telescopes facilities 
in operation (Subaru, Keck, VLT) 

Designing solutions for future giant telescopes leveraging a worldwide collaboration 
(on 4 continents, Europe, US, Asia, Oceania)

GPUs can power real-time applications at the level of tens of µs

Like the human brain, we use only 10% of 
their capacity

Extremely high performance available is very 
promising, will be essential to image nearby 
habitable planets

Challenging due to high data rate and need 
for real-time operation
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