
Understanding Genome Regulation
with Interpretable Deep Learning

Presented by: Avanti Shrikumar

Kundaje Lab

Stanford University

Example biological problem:
understanding stem cell differentiation

fertilized egg

liver cells

Lung cells

Kidney cells

How is cell-type-specific gene expression controlled?

Ans: “regulatory elements” act like switches to turn genes on

Cell-types are different because different genes are turned on

1

“Regulatory elements” are switches that turn genes on

DNA sequence of a gene

Regulatory element

ACGTGTAACTGATAATGCCGATATT

Transcription factors bind to DNA words

Regulatory element + transcription factors loop over…

…and activate nearby genes
Sequence contain “DNA patterns” that

proteins called transcription factors bind to

2

90%+* of disease-associated mutations are outside genes!

DNA sequence of a gene
ACGTGTAACTGATAATGCCGATATT

Transcription factors

Regulatory element has “DNA patterns”
that transcription factors bind to

Many positions in a regulatory element are not essential for its function!

→Which positions in regulatory elements matter?

*Stranger et al., Genet., 2011 2

Q: Which positions in regulatory elements matter?

Experimentally
measure

regulatory
elements in

different tissues

Predict tissue-
specific activity

of regulatory
elements from
sequence using
deep learning

Interpret the
model to learn

important
patterns in the

input!

3

Questions for the model

- Which parts of the input are the most
important for making a given prediction?

- What are the recurring patterns in the
input?

4

Questions for the model

- Which parts of the input are the most
important for making a given prediction?

- What are the recurring patterns in the
input?

4

C G A T A A C C G A T A T

Learned pattern
detectors

Input: DNA sequence represented as ones and zeros

Later layers build on patterns of
previous layer

Accessible in
Erythroid

Accessible in
HSCs

Output: Active (+1) vs not
active (0)

Overview of deep learning model

A
C
G
T

0
1
0
0

0
0
1
0

1
0
0
0

0
0
0
1

1
0
0
0

1
0
0
0

0
1
0
0

0
1
0
0

0
0
1
0

1
0
0
0

0
0
0
1

1
0
0
0

0
0
0
1

Active in
Liver

Active in
Lung

5

C G A T A A C C G A T A T

Active in
Liver

Active in
Lung

How can we identify important nucleotides?

In-silico
mutagenesis

A

?

G

T

A

C

T

C

G

T

…................................
Alipanahi et al, 2015
Zhou & Troyanskaya, 2015 6

i1 i2

yo

yin

0
yin = i1 + i2

1

1 2

yo

Saturation problem illustrated

=1 =1

=1

0

Avoiding saturation means perturbing combinations of
inputs → increased computational cost

=2

7

C G A T A A C C G A T A T

Input: DNA sequence represented as ones and zeros

Active in
Liver

Active in
Lung

“Backpropagation” based approaches

A
C
G
T

0
1
0
0

0
0
1
0

1
0
0
0

0
0
0
1

1
0
0
0

1
0
0
0

0
1
0
0

0
1
0
0

0
0
1
0

1
0
0
0

0
0
0
1

1
0
0
0

0
0
0
1

Active in
Liver

G A T AC C G A A

Examples
- Gradients (Simonyan et al.)
- Integrated Gradients (ICML

2017)
- DeepLIFT (ICML 2017);

https://github.com/kundajelab
/deeplift

8

https://github.com/kundajelab/deeplift

Saturation revisited
When (i1 + i2) >= 1,
gradient is 0

0
yin = i1 + i2

1

1 2

yo

Affects:
- Gradients
- Deconvolutional Networks
- Guided Backpropagation
- Layerwise Relevance Propagation

i1 i2

yo=1

=1=1

yin =2

9

The DeepLIFT solution: difference from reference

0
yin = i1 + i2

1

1 2

yo
0=0 as (i1

0 + i2
0) = 0 (reference)

With (i1 + i2) = 2, the
“difference from
reference” (Δy) is
+1, NOT 0

Reference: i1
0=0 & i2

0=0

yo

Δi1=1 Δi2=1

i1 i2

yo=1

=1=1

yin =2

CΔi1Δy=0.5=CΔi2Δy

Detailed backpropagation rules in the paper
10

Liver

Lung

Kidney

DeepLIFT scores at active regulatory element
near HNF4A gene

Anna
Shcherbina

11

Choice of reference matters!

Original Reference
DeepLIFT

scores

CIFAR10 model, class = “ship”
Suggestions on how to pick a
reference:
- MNIST: all zeros (background)
- Consider using a distribution

of references
- E.g. multiple references

generated by
dinucleotide-shuffling a
genomic sequence

12

Integrated Gradients: Another
reference-based approach

0
i1 + i2

1

1 2

y

i1 i2

y =0

=0.0=0.0

dy/dix = 1

i1 i2 dy/dix

0.0 0.0 1

i1 i2 dy/dix

13

Integrated Gradients: Another
reference-based approach

0
i1 + i2

1

1 2

y

i1 i2

y =0

=0.2=0.2

dy/dix = 1

i1 i2 dy/dix

0.0 0.0 1

0.2 0.2 1

i1 i2 dy/dix

13

Integrated Gradients: Another
reference-based approach

0
i1 + i2

1

1 2

y

i1 i2

y =0

=0.4=0.4

dy/dix = 1

i1 i2 dy/dix

0.0 0.0 1

0.2 0.2 1

0.4 0.4 1

i1 i2 dy/dix

13

Integrated Gradients: Another
reference-based approach

0
i1 + i2

1

1 2

y

i1 i2

y =0

=0.6=0.6

dy/dix = 0

i1 i2 dy/dix

0.0 0.0 1

0.2 0.2 1

0.4 0.4 1

i1 i2 dy/dix

0.6 0.6 0

13

Integrated Gradients: Another
reference-based approach

0
i1 + i2

1

1 2

y

i1 i2

y =0

=0.8=0.8

dy/dix = 0

i1 i2 dy/dix

0.0 0.0 1

0.2 0.2 1

0.4 0.4 1

i1 i2 dy/dix

0.6 0.6 0

0.8 0.8 0

13

Integrated Gradients: Another
reference-based approach

0
i1 + i2

1

1 2

y

i1 i2

y =0

=1.0=1.0

dy/dix = 0

i1 i2 dy/dix

0.0 0.0 1

0.2 0.2 1

0.4 0.4 1

i1 i2 dy/dix

0.6 0.6 0

0.8 0.8 0

1.0 1.0 0

Average dy/dix = 0.5
(Average dy/di1)*Δi1 = 0.5
(Average dy/di1)*Δi2 = 0.5 13

Integrated Gradients: Another
reference-based approach

• Sundararajan et al.
• Pros:

– completely black-box except for gradient computation
– functionally equivalent networks guaranteed to give the same result

• Cons:
– Repeated gradient calc. adds computational overhead
– Linear interpolation path between the baseline and actual input can

result in chaotic behavior from the network, esp. for things like one-
hot encoded DNA sequence

14

- Original: Original one-hot encoded DNA sequences
- “Shuffled”: shuffled sequences as “baseline”
- Interpolation parameterized by “alpha” from 0 to 1

15

15

15

15

15

15

15

Neural nets can behave
unexpectedly when supplied inputs
outside the training set distribution

15

Might be why Integrated Gradients sometimes
performs worse than grad*input on DNA…

Per-position perturbation
(“In-Silico Mutagenesis”)

DeepLIFT

Grad*Input

Integrated Gradients

Region active in cell type “A549”

16

Integrated Gradients: Another
reference-based approach

• Sundararajan et al.
• Pros:

– completely black-box except for gradient computation
– functionally equivalent networks guaranteed to give the same result

• Cons:
– Repeated gradient calc. adds computational overhead
– Linear interpolation path between the baseline and actual input can

result in chaotic behavior from the network, esp. for things like one-
hot encoded DNA sequence

– Still relies on gradients, which are local by nature and can give
misleading interpretations

17

i1

i2

h = ReLU(i1 – i2)
= max(0, i1-i2)

y = i1 – h
= i1 – max(0, i1 – i2)

y = min(i1, i2)

Failure-case: “min” (AND) relation

i1, i2 y

i2 < i1 i1 – (i1-i2) = i2

i2 > i1 i1 – 0 = i1

Gradient=0 for either i1 or i2, whichever is larger

This is true even when interpolating from (0,0) to (i1,i2)!

18

The DeepLIFT solution: consider different orders
for adding positive and negative terms

y = i1 – ReLU(i1 – i2)
i1 = 10, i2 = 6

= 10 – ReLU(4) = 6 min(i1=10, i2=6)

19

-6

The DeepLIFT solution: consider different orders
for adding positive and negative terms

y = i1 – ReLU(i1 – i2)

Standard breakdown:
4 = (10 from i1) + (-6 from i2)

ReLU(i1 - i2)

i1 - i2i1=10

i2=6

+10

i1 = 10, i2 = 6
= 10 – ReLU(4) = 6 min(i1=10, i2=6)

4

4

19

-6

The DeepLIFT solution: consider different orders
for adding positive and negative terms

y = i1 – ReLU(i1 – i2)

Standard breakdown:
4 = (10 from i1) + (-6 from i2)

ReLU(i1 - i2)

i1 - i2i1=10

i2=6

+10

Standard breakdown: y = 6 = (10 from i1) – [(10 from i1) – (6 from i2)]

i1 = 10, i2 = 6
= 10 – ReLU(4) = 6 min(i1=10, i2=6)

4

4

= 6 from i2

19

-6

The DeepLIFT solution: consider different orders
for adding positive and negative terms

y = i1 – ReLU(i1 – i2)

Standard breakdown:
4 = (10 from i1) + (-6 from i2)

ReLU(i1 - i2)

i1 - i2i1=10

i2=6

+10

Other possible breakdown:
4 = (4 from i1) + (0 from i2)

ReLU(i1 - i2)

i1 - i2

i1=10

i2=6
+40

Standard breakdown: y = 6 = (10 from i1) – [(10 from i1) – (6 from i2)] = 6 from i2

i1 = 10, i2 = 6
= 10 – ReLU(4) = 6 min(i1=10, i2=6)

4

4

4

4

19

-6

The DeepLIFT solution: consider different orders
for adding positive and negative terms

y = i1 – ReLU(i1 – i2)

Standard breakdown:
4 = (10 from i1) + (-6 from i2)

ReLU(i1 - i2)

i1 - i2i1=10

i2=6

+10

Other possible breakdown:
4 = (4 from i1) + (0 from i2)

ReLU(i1 - i2)

i1 - i2

i1=10

i2=6
+40

Standard breakdown: y = 6 = (10 from i1) – [(10 from i1) – (6 from i2)] = 6 from i2

Average i1 & i2 contributions:
4 = (7 from i1) + (-3 from i2)

i1 = 10, i2 = 6
= 10 – ReLU(4) = 6 min(i1=10, i2=6)

4

4

4

4

19

-6

The DeepLIFT solution: consider different orders
for adding positive and negative terms

y = i1 – ReLU(i1 – i2)

Standard breakdown:
4 = (10 from i1) + (-6 from i2)

ReLU(i1 - i2)

i1 - i2i1=10

i2=6

+10

Other possible breakdown:
4 = (4 from i1) + (0 from i2)

ReLU(i1 - i2)

i1 - i2

i1=10

i2=6
+40

Standard breakdown: y = 6 = (10 from i1) – [(10 from i1) – (6 from i2)] = 6 from i2
Average over both orders: y = 6 = (10 from i1) – [(7 from i1) + (-3 from i2)]

= (3 from i1) + (3 from i2)

Average i1 & i2 contributions:
4 = (7 from i1) + (-3 from i2)

i1 = 10, i2 = 6
= 10 – ReLU(4) = 6 min(i1=10, i2=6)

4

4

4

4

19

-6

The DeepLIFT solution: consider different orders
for adding positive and negative terms

y = i1 – ReLU(i1 – i2)

Standard breakdown:
4 = (10 from i1) + (-6 from i2)

ReLU(i1 - i2)

i1 - i2i1=10

i2=6

+10

Other possible breakdown:
4 = (4 from i1) + (0 from i2)

ReLU(i1 - i2)

i1 - i2

i1=10

i2=6
+40

Standard breakdown: y = 6 = (10 from i1) – [(10 from i1) – (6 from i2)] = 6 from i2
Average over both orders: y = 6 = (10 from i1) – [(7 from i1) + (-3 from i2)]

= (3 from i1) + (3 from i2)

i1 = 10, i2 = 6
= 10 – ReLU(4) = 6 min(i1=10, i2=6)

> 2 inputs: club pos & neg inputs
into 2 “meta” terms, assign
importance, distribute
proportionally

4

4

4

4

“A unified approach to interpreting
model predictions” - Lundberg & Lee

Average i1 & i2 contributions:
4 = (7 from i1) + (-3 from i2)

19

Eg: morphing 8 to a 3 or a 6
original 8->3 8->6

G
u

id
e

d

B
ac

kp
ro

p
In

te
gr

at
e

d

gr
ad

ie
n

ts
D

e
e

p
LI

FT

20

Change in log-odds after morphing

20

What do we gain (in terms of biology
knowledge) from using Deep Learning?

30

Conventional models of protein binding explain only a
small fraction of regulatory genetic variants

For all five DNA-binding proteins studied, less than
0.9% of genetic variants affecting binding were
located in known patterns (“motifs”)

31

Example genetic variant affecting binding
that is “outside a known motif”

chr5:107857257:107857288
Genetic variant affecting SPI1 binding (p value: 1.6E-6)

Longest CIS-BP
SPI1 motif

De-novo HOMER
SPI1 motif

HOMER database SPI1 motif

“T” is incompatible

32

Conventional motifs are too simplified!

33

Deep Learning models

Deep Learning far outperforms PWMs…
JU

N
D

 H
ep

G
2

 b
in

d
in

g
A

u
P

R
C

Analysis by
Abhimanyu Banerjee

Can we use interpretable
deep learning to get better
models of TF binding?

34

Revisiting our genetic variant…

DeepLIFT

35

Deep learning is better
at identifying weak
affinity binding sites!

At high affinities,
conventional
motifs catch up

Katherine Tian
Variants ranked by deep learning
importance in +/- 20bp

Variants ranked by maximum score
of conventional motif in +/- 20bp

Fo
ld

 e
n

ri
ch

m
en

t
fo

r
ge

n
et

ic
 v

ar
ia

n
ts

af

fe
ct

in
g

b
in

d
in

g
w

it
h

 p
 <

 0
.0

0
0

1

36

Questions for the model

- Which parts of the input are the most
important for making a given prediction?

- What are the recurring patterns in the
input?
Question in biology: What are the DNA motifs driving

transcription factor binding?
37

Individual GATA pattern detectors motifs found by DeepBind (Alipanahi et al.)

Naïve idea: look at individual pattern detectors

Problem: High levels of redundancy, because multiple neurons cooperate with each other

Computer
vision

38

How do we combine the contributions of multiple
pattern detectors to find consolidated patterns?

Insight: input-level importance scores reveal combined contributions

Sequence 1

Sequence 2

Sequence 3

sc
o

re
sc

o
re

sc
o

re

TF-MoDISco: TF Motif Discovery from Importance Scores
https://github.com/kundajelab/tfmodisco 39

https://github.com/kundajelab/tfmodisco

TF-MoDISco: More details

(2) Cluster affinity matrix
(3) Aggregate seqlets in a cluster to get motifs

(1) Compute affinities between pairs of seqlets using
cross-correlation-like metric

40

Key idea: Density-Adaptive Distance (1)

Problem: notion of “far away” varies with the
cluster

- Weak motif clusters: seqlets may be farther away on
average

- Notion of “far” needs to take this into account

41

• Soln: Adapt notion of distance to the local density of the data!

- First step of t-sne: compute conditional probs

- βi is tuned to attain a desired perplexity!
• Larger βi will be used in denser region of the space

- Supply density-adapted probabilities to multiple rounds of
Louvain community detection

Key idea: Density-Adaptive Distance (2)

42

Corresponding
TF-MoDISco motif

Hocomoco-ZNF143

CISBP-SIX5_M4692

CISBP-SIX5_M4693

CISBP-
ZNF143_M3964

CISBP-
ZNF143_M3965

CISBP-
ZNF143_M4484

CISBP-
ZNF143_M5966

CISBP-
ZNF143_M6551

ENCODE_SIX5_disc1/ZNF143_disc2

HOMER-ZNF143

ENCODE_SIX5_disc2/ZNF143_disc1

Known motifs for SIX5/ZNF143

TF-MoDISco motifs are broader and more
consolidated than traditional motifs

43

Base frequency (PWM)

10 bpTF-MODISCO motif

10 bp periodic Nanog motifŽiga
Avsec

Klf4 Nanog Oct4 Sox2

Nanog
homeodomain
Hayakshi et al.

PNAS 2015

10 bp periodic binding of homeobox
TFs to nucleosome DNA

from recent in vitro NCAP-SELEX data
(Zhu et al. Nature 2018)

Experimental evidence:

44

Summary
• DeepLIFT: can efficiently reveal important parts of the

input for a given prediction

– https://github.com/kundajelab/deeplift

• TF-MoDISco: Motif Discovery from Importance Scores

– Reveals recurring patterns in the input

– https://github.com/kundajelab/tfmodisco

• Can be used to gain novel insights on the regulatory
code of the genome

45

https://github.com/kundajelab/deeplift
https://github.com/kundajelab/tfmodisco

Recent work on “Activation Atlases”
(OpenAI)

• https://distill.pub/2019/activation-
atlas/

• Sample vectors of filter activations on
real data

• Dimensionality reduce with t-sne;
implicitly identifies filters that fire
together

• At each region of the dimensionality-
reduced map, derive a visualization
corresponding to the vector of filter
activations present there

• Key Drawbacks:
• Dimensionality reduction to 2d might

be missing a lot of information

• Does not provide clusters

https://distill.pub/2019/activation-atlas/

• I too found that t-sne was able to separate clusters better than k-means, DBSCAN,
spectral clustering, etc…

• Plugging t-sne’s trick of density adaptation into Louvain successfully recapitulated
the structure of t-sne.

Recent work on discovering “concept
activation vectors” (Google Brain)

• Approach
• Segment image
• Resize segments to fill

entire input, feed
through network

• Cluster segments
based on activation of
bottleneck layer

• Drawbacks
• Classifier must give

reasonable results
when patch is resized
to fill image

• Crude clustering: “The
best results…were
acquired using k-
means clustering
followed by removing
all points but the n
points that have the
smallest L2 distance
from the cluster
center”

Shapely values
• Comes from game theory; Shapely values assign contributions to players in

cooperative games.

– Look at all possible orderings of including players in the game

– For each ordering, find marginal change in reward when a player is
included

– Average a player’s marginal contribution to reward over all orderings

• Analogy for model importance:

– “reward” is model output

– “players” are individual inputs

– “including” an input means setting it to its actual value vs. sampling it
from some background distribution

https://onlinelibrary.wiley.com/doi/abs/10.1002/asmb.446

SHAP values: more efficient Shapely approx.
– SHAP values (Lundberg & Lee, NIPS 2017) proposed more efficient way to

estimate Shapely contributions by performing weighted linear regression.
– Still requires a large number of samples to provide decent results!
– In paper, to interpret a single MNIST digit, used 50,000 model evaluations

– For efficiency, proposed a hybrid of SHAP and DeepLIFT called DeepSHAP
• Handles some operations that DeepLIFT doesn’t handle (e.g. elementwise

multiplications). Current implementation doesn’t have RevealCancel rule. Reduces to
DeepLIFT without RevealCancel rule for many standard architectures.

(New DeepLIFT =
RevealCancel rule)

https://github.com/slundberg/shap#deep-learning-example-with-deepexplainer-tensorflowkeras-models

Tip: Beware GuidedBackprop and
DeconvNet!

• These backprop-based methods do not produce class-specific
visualizations (theoretically proven)

https://arxiv.org/abs/1805.07039

• These backprop-based methods do not produce class-specific
visualizations (theoretically proven)

• Is possible to introduce class-specificity to GuidedBackprop
through multiplying with “class activation maps” (CAM)

– Idea of CAM: for some higher-level convolutional layer,
assign class-specific importance to each channel (“feature
map”) using gradients

Tip: Beware GuidedBackprop and
DeconvNet!

https://arxiv.org/abs/1805.07039

• These backprop-based methods do not produce class-specific
visualizations (theoretically proven)

• Is possible to introduce class-specificity to GuidedBackprop
through multiplying with “class activation maps” (CAM)

– Idea of CAM: for some higher-level convolutional layer,
assign class-specific importance to each channel (“feature
map”) using gradients

– Do elementwise multiplication with GuidedBackprop to
introduce class-specificity

– Method is called “Guided Grad-CAM”

Tip: Beware GuidedBackprop and
DeconvNet!

https://arxiv.org/abs/1805.07039
https://arxiv.org/abs/1610.02391

input:

Which pattern is the input a better match to?

Option 1:

Option 2:

Key idea 1: Correlation alternative

Key idea 1: Correlation alternative

Correlation picks Option 2:

Our metric (“Continuous Jaccard”) picks Option 1:

Key idea 1: Correlation alternative

• What is the issue with correlation?
- Correlation involves element-wise products:

- Polynomial degree 2: agreement at a few largest-
magnitude positions preferred to agreement at several
smaller-magnitude positions

- Input = (-1, -1, -2, 4, -1, -1, -1)
- Correlation with (0, 0, 0, 4, 0, 0, 0) = 0.98
- Correlation with (-1, -1, -2, 0, -1, -1, -1) = 0.87

Key idea 1: Cross-correlation alternative

• Continuous Jaccard: like Jaccard distance for reals

- “Continuous Jaccard” =

- Input = (-1, -1, -2, 4, -1, -1, -1)
- Contin. Jaccard with (0, 0, 0, 4, 0, 0, 0) = 4/11
- Contin. Jaccard with (-1, -1, -2, 0, -1, -1, -1) = 7/11

Goal: Understand the DNA patterns (“motifs”)
determining in vivo transcription factor binding

Adapted from Shlyueva et al. (2014)
Nature Reviews Genetics.

Target TF
Co-binding TFs

learn predictive sequence motifs

nucleosomes

accessible
chromatin

Transcription Factor: A
regulatory protein that
binds to DNA

Backup

