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Example biological problem:
understanding stem cell differentiation

fertilized egg

liver cells

Lung cells

Kidney cells

How is cell-type-specific gene expression controlled?

Ans: “regulatory elements” act like switches to turn genes on

Cell-types are different because different genes are turned on 
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“Regulatory elements” are switches that turn genes on

DNA sequence of a gene

Regulatory element

ACGTGTAACTGATAATGCCGATATT

Transcription factors bind to DNA words

Regulatory element + transcription factors loop over…

…and activate nearby genes
Sequence contain “DNA patterns” that 

proteins called transcription factors bind to
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90%+* of disease-associated mutations are outside genes!

DNA sequence of a gene
ACGTGTAACTGATAATGCCGATATT

Transcription factors

Regulatory element has “DNA patterns” 
that transcription factors bind to

Many positions in a regulatory element are not essential for its function!

→Which positions in regulatory elements matter?

*Stranger et al., Genet., 2011 2



Q: Which positions in regulatory elements matter?

Experimentally 
measure 

regulatory 
elements in 

different tissues

Predict tissue-
specific activity 

of regulatory 
elements from 
sequence using 
deep learning

Interpret the 
model to learn 

important 
patterns in the 

input!
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Questions for the model

- Which parts of the input are the most 
important for making a given prediction?

- What are the recurring patterns in the 
input?
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Questions for the model

- Which parts of the input are the most 
important for making a given prediction?

- What are the recurring patterns in the 
input?
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C G A T A A C C G A T A T

Learned pattern 
detectors

Input: DNA sequence represented as ones and zeros

Later layers build on patterns of 
previous layer

Accessible in 
Erythroid

Accessible in 
HSCs

Output: Active (+1) vs not 
active (0)

Overview of deep learning model
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C G A T A A C C G A T A T

Active in 
Liver

Active in 
Lung

How can we identify important nucleotides?

In-silico 
mutagenesis
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Alipanahi et al, 2015
Zhou & Troyanskaya, 2015 6



i1 i2

yo

yin

0
yin = i1 + i2

1

1 2

yo

Saturation problem illustrated

=1 =1

=1

0

Avoiding saturation means perturbing combinations of 
inputs → increased computational cost

=2
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C G A T A A C C G A T A T

Input: DNA sequence represented as ones and zeros

Active in 
Liver

Active in 
Lung

“Backpropagation” based approaches
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G A T AC C G A A

Examples
- Gradients (Simonyan et al.)
- Integrated Gradients (ICML 

2017)
- DeepLIFT (ICML 2017); 

https://github.com/kundajelab
/deeplift
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Saturation revisited
When (i1 + i2) >= 1,
gradient is 0

0
yin = i1 + i2

1

1 2

yo

Affects:
- Gradients
- Deconvolutional Networks
- Guided Backpropagation
- Layerwise Relevance Propagation

i1 i2

yo=1

=1=1

yin =2
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The DeepLIFT solution: difference from reference

0
yin = i1 + i2

1

1 2

yo
0=0 as (i1

0 + i2
0) = 0 (reference)

With (i1 + i2) = 2, the 
“difference from 
reference” (Δy) is 
+1, NOT 0 

Reference: i1
0=0 & i2

0=0

yo

Δi1=1 Δi2=1

i1 i2

yo=1

=1=1

yin =2

CΔi1Δy=0.5=CΔi2Δy

Detailed backpropagation rules in the paper
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Liver

Lung

Kidney

DeepLIFT scores at active regulatory element 
near HNF4A gene

Anna 
Shcherbina
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Choice of reference matters!

Original Reference
DeepLIFT 

scores

CIFAR10 model, class = “ship”
Suggestions on how to pick a 
reference:
- MNIST: all zeros (background)
- Consider using a distribution 

of references
- E.g. multiple references 

generated by 
dinucleotide-shuffling a 
genomic sequence
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Integrated Gradients: Another 
reference-based approach

0
i1 + i2
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1 2

y
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y =0
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dy/dix = 1
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0.0 0.0 1

i1 i2 dy/dix
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Integrated Gradients: Another 
reference-based approach
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Integrated Gradients: Another 
reference-based approach
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Integrated Gradients: Another 
reference-based approach
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Integrated Gradients: Another 
reference-based approach
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Integrated Gradients: Another 
reference-based approach

0
i1 + i2

1

1 2

y

i1 i2

y =0

=1.0=1.0

dy/dix = 0

i1 i2 dy/dix

0.0 0.0 1

0.2 0.2 1

0.4 0.4 1

i1 i2 dy/dix

0.6 0.6 0

0.8 0.8 0

1.0 1.0 0

Average dy/dix = 0.5
(Average dy/di1)*Δi1 = 0.5
(Average dy/di1)*Δi2 = 0.5 13



Integrated Gradients: Another 
reference-based approach

• Sundararajan et al.
• Pros:

– completely black-box except for gradient computation
– functionally equivalent networks guaranteed to give the same result

• Cons:
– Repeated gradient calc. adds computational overhead
– Linear interpolation path between the baseline and actual input can 

result in chaotic behavior from the network, esp. for things like one-
hot encoded DNA sequence
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- Original: Original one-hot encoded DNA sequences
- “Shuffled”: shuffled sequences as “baseline”
- Interpolation parameterized by “alpha” from 0 to 1
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Neural nets can behave 
unexpectedly when supplied inputs 
outside the training set distribution
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Might be why Integrated Gradients sometimes 
performs worse than grad*input on DNA…

Per-position perturbation
(“In-Silico Mutagenesis”)

DeepLIFT

Grad*Input

Integrated Gradients

Region active in cell type “A549”
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Integrated Gradients: Another 
reference-based approach

• Sundararajan et al.
• Pros:

– completely black-box except for gradient computation
– functionally equivalent networks guaranteed to give the same result

• Cons:
– Repeated gradient calc. adds computational overhead
– Linear interpolation path between the baseline and actual input can 

result in chaotic behavior from the network, esp. for things like one-
hot encoded DNA sequence

– Still relies on gradients, which are local by nature and can give 
misleading interpretations
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i1

i2

h = ReLU(i1 – i2)
= max(0, i1-i2)

y = i1 – h
= i1 – max(0, i1 – i2)

y = min(i1, i2)

Failure-case: “min” (AND) relation

i1, i2 y

i2 < i1 i1 – (i1-i2) = i2

i2 > i1 i1 – 0 = i1

Gradient=0 for either i1 or i2, whichever is larger

This is true even when interpolating from (0,0) to (i1,i2)!
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The DeepLIFT solution: consider different orders 
for adding positive and negative terms

y = i1 – ReLU(i1 – i2)
i1 = 10, i2 = 6

= 10 – ReLU(4) = 6 min(i1=10, i2=6)

19
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The DeepLIFT solution: consider different orders 
for adding positive and negative terms

y = i1 – ReLU(i1 – i2)

Standard breakdown:
4 = (10 from i1) + (-6 from i2)

ReLU(i1 - i2)

i1 - i2i1=10

i2=6

+10
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4
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i1 - i2

i1=10

i2=6
+40

Standard breakdown: y = 6 = (10 from i1) – [(10 from i1) – (6 from i2)] = 6 from i2
Average over both orders: y = 6 = (10 from i1) – [(7 from i1) + (-3 from i2)]

= (3 from i1) + (3 from i2)
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The DeepLIFT solution: consider different orders 
for adding positive and negative terms

y = i1 – ReLU(i1 – i2)

Standard breakdown:
4 = (10 from i1) + (-6 from i2)

ReLU(i1 - i2)

i1 - i2i1=10

i2=6

+10

Other possible breakdown:
4 = (4 from i1) + (0 from i2)

ReLU(i1 - i2)

i1 - i2

i1=10

i2=6
+40

Standard breakdown: y = 6 = (10 from i1) – [(10 from i1) – (6 from i2)] = 6 from i2
Average over both orders: y = 6 = (10 from i1) – [(7 from i1) + (-3 from i2)]

= (3 from i1) + (3 from i2)

i1 = 10, i2 = 6
= 10 – ReLU(4) = 6 min(i1=10, i2=6)

> 2 inputs: club pos & neg inputs 
into 2 “meta” terms, assign 
importance, distribute 
proportionally

4

4

4

4

“A unified approach to interpreting 
model predictions” - Lundberg & Lee

Average i1 & i2 contributions:
4 = (7 from i1) + (-3 from i2)
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Eg: morphing 8 to a 3 or a 6 
original 8->3 8->6
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Change in log-odds after morphing
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What do we gain (in terms of biology 
knowledge) from using Deep Learning?
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Conventional models of protein binding explain only a 
small fraction of regulatory genetic variants

For all five DNA-binding proteins studied, less than 
0.9% of genetic variants affecting binding were 
located in known patterns (“motifs”)
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Example genetic variant affecting binding 
that is “outside a known motif”

chr5:107857257:107857288
Genetic variant affecting SPI1 binding (p value: 1.6E-6)

Longest CIS-BP 
SPI1 motif

De-novo HOMER 
SPI1 motif

HOMER database SPI1 motif

“T” is incompatible

32



Conventional motifs are too simplified!
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Deep Learning models

Deep Learning far outperforms PWMs…
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Analysis by 
Abhimanyu Banerjee

Can we use interpretable 
deep learning to get better 
models of TF binding?

34



Revisiting our genetic variant…

DeepLIFT
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Deep learning is better 
at identifying weak 
affinity binding sites!

At high affinities, 
conventional 
motifs catch up

Katherine Tian
Variants ranked by deep learning 
importance in +/- 20bp

Variants ranked by maximum score 
of conventional motif in +/- 20bp
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Questions for the model

- Which parts of the input are the most 
important for making a given prediction?

- What are the recurring patterns in the 
input?
Question in biology: What are the DNA motifs driving 

transcription factor binding?
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Individual GATA pattern detectors motifs found by DeepBind (Alipanahi et al.)

Naïve idea: look at individual pattern detectors

Problem: High levels of redundancy, because multiple neurons cooperate with each other

Computer 
vision
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How do we combine the contributions of multiple 
pattern detectors to find consolidated patterns?

Insight: input-level importance scores reveal combined contributions

Sequence 1

Sequence 2

Sequence 3

sc
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o
re
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re

TF-MoDISco: TF Motif Discovery from Importance Scores
https://github.com/kundajelab/tfmodisco 39
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TF-MoDISco: More details

(2) Cluster affinity matrix
(3) Aggregate seqlets in a cluster to get motifs

(1) Compute affinities between pairs of seqlets using 
cross-correlation-like metric

40



Key idea: Density-Adaptive Distance (1)

Problem: notion of “far away” varies with the 
cluster

- Weak motif clusters: seqlets may be farther away on 
average

- Notion of “far” needs to take this into account

41



• Soln: Adapt notion of distance to the local density of the data!

- First step of t-sne: compute conditional probs

- βi is tuned to attain a desired perplexity!
• Larger βi will be used in denser region of the space

- Supply density-adapted probabilities to multiple rounds of 
Louvain community detection

Key idea: Density-Adaptive Distance (2)
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Corresponding 
TF-MoDISco motif

Hocomoco-ZNF143

CISBP-SIX5_M4692

CISBP-SIX5_M4693

CISBP-
ZNF143_M3964

CISBP-
ZNF143_M3965

CISBP-
ZNF143_M4484

CISBP-
ZNF143_M5966

CISBP-
ZNF143_M6551

ENCODE_SIX5_disc1/ZNF143_disc2

HOMER-ZNF143

ENCODE_SIX5_disc2/ZNF143_disc1

Known motifs for SIX5/ZNF143

TF-MoDISco motifs are broader and more 
consolidated than traditional motifs
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Base frequency (PWM)

10 bpTF-MODISCO motif

10 bp periodic Nanog motifŽiga
Avsec

Klf4 Nanog Oct4 Sox2

Nanog 
homeodomain
Hayakshi et al. 

PNAS 2015

10 bp periodic binding of homeobox 
TFs to nucleosome DNA 

from recent in vitro NCAP-SELEX data 
(Zhu et al. Nature 2018)

Experimental evidence:
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Summary
• DeepLIFT: can efficiently reveal important parts of the 

input for a given prediction

– https://github.com/kundajelab/deeplift

• TF-MoDISco: Motif Discovery from Importance Scores

– Reveals recurring patterns in the input

– https://github.com/kundajelab/tfmodisco

• Can be used to gain novel insights on the regulatory 
code of the genome

45
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Recent work on “Activation Atlases” 
(OpenAI)

• https://distill.pub/2019/activation-
atlas/

• Sample vectors of filter activations on 
real data

• Dimensionality reduce with t-sne; 
implicitly identifies filters that fire 
together

• At each region of the dimensionality-
reduced map, derive a visualization 
corresponding to the vector of filter 
activations present there

• Key Drawbacks:
• Dimensionality reduction to 2d might 

be missing a lot of information

• Does not provide clusters

https://distill.pub/2019/activation-atlas/


• I too found that t-sne was able to separate clusters better than k-means, DBSCAN, 
spectral clustering, etc…

• Plugging t-sne’s trick of density adaptation into Louvain successfully recapitulated 
the structure of t-sne.



Recent work on discovering “concept 
activation vectors” (Google Brain)

• Approach
• Segment image
• Resize segments to fill 

entire input, feed 
through network

• Cluster segments 
based on activation of 
bottleneck layer

• Drawbacks
• Classifier must give 

reasonable results 
when patch is resized 
to fill image

• Crude clustering: “The 
best results…were 
acquired using k-
means clustering 
followed by removing 
all points but the n 
points that have the 
smallest L2 distance 
from the cluster 
center”



Shapely values
• Comes from game theory; Shapely values assign contributions to players in 

cooperative games.

– Look at all possible orderings of including players in the game

– For each ordering, find marginal change in reward when a player is 
included

– Average a player’s marginal contribution to reward over all orderings

• Analogy for model importance:

– “reward” is model output

– “players” are individual inputs

– “including” an input means setting it to its actual value vs. sampling it 
from some background distribution

https://onlinelibrary.wiley.com/doi/abs/10.1002/asmb.446


SHAP values: more efficient Shapely approx.
– SHAP values (Lundberg & Lee, NIPS 2017) proposed more efficient way to 

estimate Shapely contributions by performing weighted linear regression. 
– Still requires a large number of samples to provide decent results!
– In paper, to interpret a single MNIST digit, used 50,000 model evaluations

– For efficiency, proposed a hybrid of SHAP and DeepLIFT called DeepSHAP
• Handles some operations that DeepLIFT doesn’t handle (e.g. elementwise 

multiplications). Current implementation doesn’t have RevealCancel rule. Reduces to 
DeepLIFT without RevealCancel rule for many standard architectures.

(New DeepLIFT = 
RevealCancel rule)

https://github.com/slundberg/shap#deep-learning-example-with-deepexplainer-tensorflowkeras-models


Tip: Beware GuidedBackprop and 
DeconvNet!

• These backprop-based methods do not produce class-specific 
visualizations (theoretically proven)

https://arxiv.org/abs/1805.07039




• These backprop-based methods do not produce class-specific 
visualizations (theoretically proven)

• Is possible to introduce class-specificity to GuidedBackprop
through multiplying with “class activation maps” (CAM)

– Idea of CAM: for some higher-level convolutional layer, 
assign class-specific importance to each channel (“feature 
map”) using gradients

Tip: Beware GuidedBackprop and 
DeconvNet!
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• These backprop-based methods do not produce class-specific 
visualizations (theoretically proven)

• Is possible to introduce class-specificity to GuidedBackprop
through multiplying with “class activation maps” (CAM)

– Idea of CAM: for some higher-level convolutional layer, 
assign class-specific importance to each channel (“feature 
map”) using gradients

– Do elementwise multiplication with GuidedBackprop to 
introduce class-specificity

– Method is called “Guided Grad-CAM”

Tip: Beware GuidedBackprop and 
DeconvNet!

https://arxiv.org/abs/1805.07039
https://arxiv.org/abs/1610.02391




input:

Which pattern is the input a better match to?

Option 1:

Option 2:

Key idea 1: Correlation alternative



Key idea 1: Correlation alternative

Correlation picks Option 2:

Our metric (“Continuous Jaccard”) picks Option 1:



Key idea 1: Correlation alternative

• What is the issue with correlation?
- Correlation involves element-wise products:

- Polynomial degree 2:  agreement at a few largest-
magnitude positions preferred to agreement at several 
smaller-magnitude positions

- Input = (-1, -1, -2, 4, -1, -1, -1)
- Correlation with (0, 0, 0, 4, 0, 0, 0) = 0.98
- Correlation with (-1, -1, -2, 0, -1, -1, -1) = 0.87



Key idea 1: Cross-correlation alternative

• Continuous Jaccard: like Jaccard distance for reals

- “Continuous Jaccard” = 

- Input = (-1, -1, -2, 4, -1, -1, -1)
- Contin. Jaccard with (0, 0, 0, 4, 0, 0, 0) = 4/11
- Contin. Jaccard with (-1, -1, -2, 0, -1, -1, -1) = 7/11



Goal: Understand the DNA patterns (“motifs”) 
determining in vivo transcription factor binding

Adapted from Shlyueva et al. (2014) 
Nature Reviews Genetics.

Target TF
Co-binding TFs

learn predictive sequence motifs

nucleosomes

accessible 
chromatin

Transcription Factor: A 
regulatory protein that 
binds to DNA

Backup


