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Al-Infra Team

Industry grade Deep Learning to take into production,
tested in multiple locations and conditions.
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Al-Infra Team

One of our top Goals

Industry grade

!

High-quality No failures in ) Quality-driven AV
system - Millions of miles Perception

The Challenge of Scale
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Self-driving cars
requires tremendously large datasets
for training and testing



DL for Autonomous Driving

Data Collection fleet =>
of data collected per car, per year
Assuming 5 2MP cameras per car, radar data, etc.
Grand total of !
Only 1/1000 likely to be used for training (curated, labeled data)

8 NVIDIA.



™ DL for Autonomous
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DL for Autonomous Vehicles
The Challenge of Scale

Large Datasets:

12.1 years training a ResNet50-like network on Pascal

1.5 years on DGX1 w/ Volta

With 8 DGX1s, and 1/10th of that training data, can train in 1 week
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™ DL for Autonomous
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DL for Autonomous Driving
The Challenge of Scale

Robustness / Reliable:
Tested around the world under multiple conditions

Need to show O failures in > 1M miles, covering 1000s of Conditions...
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™ DL for Autonomous

POST /datasets/{id} Vehicles

PBs of data, large-scale labeling, large-
scale training, etc.

Mine highly confused /
most informative data

Trained Models

Inference optimized DNN
(TensorRT)
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Talk Road Map

Creating the Right Datasets

Active Learning

Domain Adaptation

Improving Network Accuracy / Efficiency via overparameterization
Joint Training and pruning

Exploiting linear redundancies to train small networks.

14 NVIDIA.



Creating the right datasets
is the cornerstone of
(supervised) machine learning.



Creating the Right Datasets

EPRANCE C8 2016/05/23 16:47:20



1. How do we find the most informative
unlabeled data to build the right datasets the
fastest?

2. How do we build training datasets that are
1/1000 the size for the same result?



Active Learning



Active Learning

Model uncertainty
Training models

Collecting data

19 <ANVIDIA.



Active Learning needs uncertainty

Bayesian networks are the principled way to model . However, they
are computationally demanding:

Training: Intractable without approximations.
Testing: distributions need ~100 forward passes (varying the model)

! % :



Active Learning

A common (cheaper) approach consists of using ensembles of networks:

Samples from the same distribution as the training set will have consensus
while other samples will not.

Ensembles do not approximate uncertainty in the same manner as a BNN.
l.e., parameters in different members serve for different purpose.

21 NVIDIA.



Active Learning

We propose an to BNN to train a network using ensembles.

We regularize the weights in the ensemble to approximate probability
distributions.

[Chitta, Alvarez, Lesnikowski], Large-Scale Visual Active Learning with Deep Probabilistic Ensembles. Arxiv 2018 22 VDA



Active Learning

Given this new network design, we can sample from this and quantify the
of the model on a new (unlabeled) sample.

Label those where the model is more uncertain.

NVIDIA.
[Chitta, Alvarez, Lesnikowski], Large-Scale Visual Active Learning with Deep Probabilistic Ensembles. Arxiv 2018 #



Classification Results
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Active Learning

Quantitative Results

...... 96
© —— Random
‘;;_; 94 Active Learning
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¢ Image classification on Cifar-10:
2 - up to 50k training images
. - 10K validation images
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[Chitta, Alvarez, Lesnikowski], Large-Scale Visual Active Learning with Deep Probabilistic Ensembles. Arxiv 2018 2



Active Learning

Quantitative Results

34-layer residual
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[Chitta, Alvarez, Lesnikowski], Large-Scale Visual Active Learning with Deep Probabilistic Ensembles. Arxiv 2018 2



Active Learning

34-layer residual

Table 2. Validation Accuracies comparing the proposed approach
to standard ensembling. Initial 4% is randomly sampled.

Task Data Sampling | 8% 16% | 32%
CIFAR-10 Random 80.60 | 86.80 | 91.08
Standard 82.41 | 90.05 | 94.13

Ours 82.88 | 90.15 | 94.33

CIFAR-100 Random 39.57 | 54.92 | 66.65
Standard 40.49 | 56.89 | 69.68

ours 40.87 | 56.94 | 70.12

[Chitta, Alvarez, Lesnikowski], Large-Scale Visual Active Learning with Deep Probabilistic Ensembles. Arxiv 2018
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Active Learning

34-layer residual

CIFAR-10
Method 10k (20%) | 50k (100%) | Ratio

Core-set [43] 74 90 82.2

Ensemble [?] 85 95.5 89
Single + Random 85.2 94 4 90.3
DPE + Random 87.9 95.2 92.3
Single + Linear-8 87.5 94 4 92.7
Ours (DPE + Linear-8) 92 95.2 96.3

[Chitta, Alvarez, Lesnikowski], Large-Scale Visual Active Learning with Deep Probabilistic Ensembles. Arxiv 2018

28
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Active Learning

34-layer residual

How much data we need to outperform the performance using

- the entire dataset.
Dataset % data
CIFAR-10 ~50
CIFAR-100 ~80
SVHN =25

[Chitta, Alvarez, Lesnikowski], Large-Scale Visual Active Learning with Deep Probabilistic Ensembles. Arxiv 2018

29
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Beyond Classification
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Active Semantic Segmentation

Framework

== .

Avg Prediction
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<ANVIDIA.
[Chitta, Alvarez, Lesnikowski], Large-Scale Visual Active Learning with Deep Probabilistic Ensembles. Under review g



Domain Adaptation
(Beyond a single domain / location)



Domain Adaptation

.

Day Twilight Artificial light Backlit

Fog

Geographic
Locations

e

Urban Freeway

Unmarked Street
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Domain Adaptation
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4. At train time, use only (synthetic) source images and annotations.

Synthetic data can be
obtained in large
amounts and is
labeled automatically.

Domain Adaptation

Domain Images Annotations
Source © ©
Target ® ®

35 <ANVIDIA.



Domain Adaptation

4. At train time, use only (synthetic) source images and annotations.

Unfortunately, in Domain Images Annotations
general, a network Source
trained on synthetic data *

. Target ® ®
performs relatively poorly

on real images.

\

Most require accessto real images, albeit
unsupervised, during training.

36 NVIDIA.



Domain Adaptation

uses synthetic images and does not require seeing any real images

at training time.

Domain Images Annotations
Source
Target ® ®

[Saleh, Salzmann, Alvarez et al. 2018], Efficient use of Synthetic data for Semantic Segmentation, ECCV2018

37
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Domain Adaptation
Efficient use of Synthetic Data

Our approach uses synthetic images and does not require seeing any real images

at training time.

[Saleh, Salzmann, Alvarez et al. 2018], Efficient use of Synthetic data for Semantic Segmentation, ECCV2018

Key observation:
Foreground and background
classes are not affected in
the same manner

by the domain shift.

38 <ANVIDIA.



Domain Adaptation
Efficient use of Synthetic Data

1. Texture of background classes is realistic -> semantic segmentation.

4
4

[Saleh, Salzmann, Alvarez et al. 2018], Efficient use of Synthetic data for Semantic Segmentation, ECCV2018

39 €ANVIDIA.



Domain Adaptation
Efficient use of Synthetic Data

1. Texture of background classes is realistic -> semantic segmentation.

2. Texture of foreground classes is not photo-realistic, but their shape looks
natural -> detection-based.

BBox

Class

B e e ".?:‘

e ~—

i i i i s Y
P

[Saleh, Salzmann, Alvarez et al. 2018], Efficient use of Synthetic data for Semantic Segmentation, ECCV2018 40 NVIDIA.



Domain Adaptation
Efficient use of Synthetic Data

Inference on real data

7

[Saleh, Salzmann, Alvarez et al. 2018], Efficient use of Synthetic data for Semantic Segmentation, ECCV2018 41 ZMVIDIA.



Domain Adaptation
Efficient use of Synthetic Data

Table 1: Comparison of models trained on synthetic data. All the results are reported on the Cityscapes
validation set. Note that ps-GT (pseudo-GT) indicates the use of unlabeled real images during training.

. = o s -
GTA5 [5] 298160566 9.2 173135136 98 749 6.7 543419 2.9 450 3.3 13.1 1.3 60 001219
GTAS 80.526074723.0 98 9.1 134 7.3 794286721404 51 778230186 1.2 53 00313
SYNTHIA 367227510 03 01 166 0.1 95 725 00 784475 56 61.4 00 13.0 00 3.2 311221
VIPER 36.9190747 00 53 7.1 10010.178.713.669.6430 0.0 41.220813.929 0.0 91 0.0123.9
VEIS 708 95 50.9 0.0 00 03 15626866.812.752.344014.260.6102 82 3.2 55 118|244
GTA5S+VEIS 66.221.672.315.718312.322.323.878411.374.648.713.375.114.321.2 2.1 24.2 7.3|32.8

[Saleh, Salzmann, Alvarez et al. 2018], Efficient use of Synthetic data for Semantic Segmentation, ECCV2018 42 GAnVIDIA.



Domain Adaptation

Adding Pseudo-labels:
(unsupervisedreal training data)

Domain Images Annotations
Source
Target @

[Saleh, Salzmann, Alvarez et al. 2018], Efficient use of Synthetic data for Semantic Segmentation, ECCV2018
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Domain Images Annotations

Source © ©
Domain Adaptation ™ [ ° ¢
Adding Pseudo-labels: Efficient use of Synthetic Data
Image Ours Ours ps-GT Comparison on models trained
. : on synthetic data
Methods mlOU
GTAS [5] 21.9
GTAS5 31.3
SYNTHIA 22.1
VIPER 23.9
VEIS 24.4
GTA5+VEIS 32.8
GTA5+VEIS&ps-GT | 33.3
Ours
Ours&ps-GT

[Saleh, Salzmann, Alvarez et al. 2018], Efficient use of Synthetic data for Semantic Segmentation, ECCV2018 44 NVIDIA.



Domain Images

Annotations

Source © ©
: : Target © @
Domain Adaptation
Adding Pseudo-labels: Efficient use of Synthetic Data
Image Onzs Ours ps-GT ____ Comparison to domain adaptation
‘ e - and weakly- supervised methods
Methods mIOU
Fully Sup. 56.2
Weakly-Sup.[2] 23.6
FCNs in Wld [3] 27.1
Curriculum [4] 28.9
ROAD [5] 35.9
CYCADA [6] 35.4

Ours

Ours+Pseudo-GT

[Saleh, Salzmann, Alvarez et al. 2018], Efficient use of Synthetic data for Semantic Segmentation, ECCV2018

45 INVIDIA.




Accuracy vs Efficiency
(for Large datasets)



Accuracy vs Efficiency

TESTING

47 <ANVIDIA.



Accuracy vs Efficiency
Efficient Training of DNN

Goal: maximize training resources while obtaining deployment ‘friendly’
/ network.

48 <ANVIDIA.



Over-parameterization

49 NVIDIA.



Accuracy vs Efficiency

\ - _ Non-linearity Capacity .
e e d e m k= NI =]
P Y e
ool gl ] Sum.
L1 === Ny parameters

two successive
5x5 convolution 3x3 convolutions

Same receptive field
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Accuracy vs Efficiency

0.750
0.700
0.650
0.600
0.550

0.500

2.000 4.000 6.000 8.000 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00
Validation Accuracy on a 3x3-based Convnet ( ) and the equivalent 5x5-based Convnet (blue)

https://blog.sicara.com/about-conwvolutional-layer-convolution-kernel-9a7325d34f7d 51 CSNVIDIA



5x5 convolution

Same receptive field

Accuracy vs Efficiency

4 8C _ Non-linearity
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Accuracy vs Efficiency

3x1, w

¢ RelU

1x3, w

4 RelU

3x1, w

+ RelU

1x3, w

Single filter Convolutional layer (F filters)
dn dn K, dn 1
—
; : fL' | i —
: —
- dn k, d
= Inm? —
GLI | J —_—
——
_ | |
I ' E—
= K | | dr ke dr
—
== =l —
i | — —
Without filter With filter Qur approach
sharing sharing

[Alvarez and Petersson], DecomposeMe: Simplifying Conwets for End-to-End Learning. Arxiv 2016

RelLU

[Romera, Alvarez et al.], Efficient ConwNet for Real-Time Semantic Segmentation. IEEE-IV 2017, T-ITS 2018

53
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Accuracy vs Efficiency

Filter Decompositions for Real-time Semantic Segmentation

Cityscapes dataset (19 classes, 7 categories)

W =W,
3x1, w
mf’ " Scratch 94.7 % 70.0 % 86.0 %
y RelU Pre-trained 95.1 % 71.5% 86.9 %
3X1¢' :’LU Forward-Time: Cityscapes 19 classes
1x3, w
FF,;’I"; 512x256  1024x512  2048x1024 = 512x256 1°ng5 2048x1024
. Time 85 ms 310 ms 1240 ms 8 ms 24 ms 89 ms
FPS 11.8 3.2 0.8 125.0 41.7 11.2

54 <ANVIDIA.

[Romera, Alvarez et al.], Efficient ConwNet for Real-Time Semantic Segmentation. IEEE-IV 2017, T-ITS 2018
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[Romera, Alvarez et al.], Efficient ConwNet for Real-Time Semantic Segmentation. IEEE-IV 2017, T-ITS 2018



Accuracy vs Efficiency
Efficient Training of DNN

Goal: maximize training resources while obtaining deployment ‘friendly’
/ network.

56 <ANVIDIA.



Accuracy vs Efficiency
Efficient Training of DNN

network.

Goal: m?e training resources while obtaining deployment ‘friendly’

57 <ANVIDIA.



Accuracy vs Efficiency

Common Approach

Train a large model (trade-off accuracy / computational cost)

Prune /
TRAIN
Promising model Optl mlze
For a specific application
U

DEPLOY

Optimize for Specific hardware

58 <ANVIDIA.

Regularization at parameter level



Accuracy vs Efficiency

Joint Training and Pruning Deep Networks

Train a large model (trade-off accuracy / computational cost)

JOint Train / Pruning » OptimizechESPptl-.;?icrardware

59 <ANVIDIA.



Accuracy vs Efficiency

>

Convolutional layer
5x1x3x3




Accuracy vs Efficiency

Joint Training and Pruning Deep Networks

Common approach:

Hlll’l — Z€ yi, [(x:,0))

Neuron
->

—‘ “Convolutional kernel”

Weight Decay

m < (prevent weights with

Considers each parameter
Convolutional layer independently large values)

5x1x3x3

[Alvarez and Salzmann], Learning the number of neurons in Neural Nets, NIPS 2016
[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017
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Accuracy vs Efficiency

Joint Training and Pruning Deep Networks

Our Approach:

1=
[ | [ |
[ | ] ]
|
L N,
[ [ [ r(O) = E Y E o
] I=1 n=1
-Removed ‘

To be kept Size of the group

[Alvarez and Salzmann], Learning the number of neurons in Neural Nets, NIPS 2016

[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017 62 nvIDIA



Classification Results
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Accuracy vs Efficiency

Joint Training and Pruning Deep Networks

Quantitative Results on ImageNet dataset:
1.2 million training images and 50.000 for validation split in 1000 categorie

Between 5000 and 30000 training images per class.
No data augmentation (random flip).

[Alvarez and Salzmann], Learning the number of neurons in Neural Nets, NIPS 2016
[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017

64 <ANVIDIA.



Accuracy vs Efficiency

Joint Training and Pruning Deep Networks

Quantitative Results on ImageNet
Train an over-parameterized architecture up to 768 neurons per layer (Decg-768)

Decl Dec2 Dec3 Dec4 Dec5h Dec6 Dec?7 Dec8
32-64 128-256  384-384 512-512 768-768 768-768  768-768 768-768 1000

[Alvarez and Salzmann], Learning the number of neurons in Neural Nets, NIPS 2016

[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017 65 nvIDIA



Accuracy vs Efficiency

Joint Training and Pruning Deep Networf

Quantitative Results on ImageNet

768
o - Dec,-768-Baseline
5 |:| Deca-?ﬁ-ﬂ-ﬂurs
=P _
2 n
5 384 alls neurons
E o group param
£ total param
3 1287 total induced
6;_' | ” accuracy gap

NN kb hDbbNA DD
B R A TA T L e W

[Alvarez and Salzmann], Learning the number of neurons in Neural Nets, NIPS 2016
[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017
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Accuracy vs Efficiency

Joint Training and Pruning Deep Networks

Quantitative Results on ICDAR character recognition dataset

TESCO, Value
Washing Up Liquid

B RAB BUTLER &=
BUILDING

The Rab Butler Building

[Alvarez and Salzmann], Learning the number of neurons in Neural Nets, NIPS 2016

S | .
[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017 67 HNVIDIA



Accuracy vs Efficiency

Joint Training and Pruning Deep Networks

Quantitative Results on ICDAR character recognition dataset
Train an over-parameterized architecture up to 512 neurons per layer (Dec;-512)

Decl Dec2 Dec3 FC
48-96 160-256  512-512 36

[Alvarez and Salzmann], Learning the number of neurons in Neural Nets, NIPS 2016

[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017 68 (AnVIDIA



Accuracy vs Efficiency

Joint Training and Pruning Deep Networks

Quantitative Results on ICDAR character recognition dataset

512

256

160

- Da:a— Baseline
D Deﬂ3_GS-Durs

Number of Neurons

96
48
0

il

L1 L1 L2L2L3L3

Decs on ICDAR (1n %)

Top-1 acc. on ICDAR

S-GS GS
neurons 38.64 | 55.11

group param }L_ﬁkﬁlg\
total param 241 | 66.4

MaxOut p,.? 91.3%

MaxOut?
Maxpﬂ[}]?ﬂneuroﬂs
Dec3 (baseline)

total inducec( 72.08 | 66.52
accuracy gap W24 | 1.384

Ours-Decs_sar,
Ours-Decsy_ag

“ Results from Jaderberg et al. [2014a] using MaxOut layer instead of Max-
Pooling and decompositions as post-processing step

b Results from Jaderberg et al. [2014a]

[Alvarez and Salzmann], Learning the number of neurons in Neural Nets, NIPS 2016
[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017
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Accuracy vs Efficiency
Joint Training and Pruning Deep Networks
Skip connection
EEREEREREEEE
Decl Dec2 Dec3 Dec4d Dec5 Dec6 Dec7 Dec7-1 Dec7-2 | Dec8 Dec8-1 Dec8-2 | FC

100
0

Skip connection

[Alvarez and Salzmann], Learning the number of neurons in Neural Nets, NIPS 2016

S | .
[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017 70 HnVIDIA



Accuracy vs Efficiency

Skip connection

R T ey

Decl Dec2 Dec3 Dec4 Dec5 Dec6 Dec7 Dec7-1 Dec7-2

T T T —
600! I nitial number . . .
|:| Learned number

500—

400

300~ l I

200~

100+

=l |

0
Llv L1h L2v L2h L3v L3h L4v L4h L5v L5h L6v L6h L7v L7hL7-117-1h7-247-2hL8v L8hL8-1¥8-1h8-2¢8-2h 71 <ANVIDIA.
Layer Name

Dec8-1 De FC

100

Skip connection

Number of neurons




R T ey

er of neurons

Accuracy vs Efficiency

Skip connection

Decl Dec2 Dec3 Dec4 ' Dec5 Dec6é Dec7 Dec7-1 Dec7-2 Dec8-1 De FC
100
Skip connection
I nitial number | .
600 |:| Learned number . .
500—
400—
300 H !
(No drop in accuracy)
gy ]
=l
Liv L1h L2v L2h L3v L3h L4v L4h L5v L5h L6v L6h L7v L7hL7-117-1h7-21£7-2hL8v L8hL8-118-1h8-2%8-2h 72 <ANVIDIA.

Layer Name
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Detection Generator

: _ Multiway |
; PPt Classification
' Ragrnssim

T"""" {vgg, inception,
resnet, etc) B |

__________________________ FeamreExtmmr _____ 73 <ANVIDIA.



Accuracy vs Efficiency
Object Detection

Prune /
Pr;!-ngré!n'jdel Optimize

For a specific application

& cyclist ﬂ pedestrian Params

model weighted easy weighW weighted hard easy mdrt params
model 75.03 69.59 84.45 77.37 28.42 21.95 26.78 21.72 23.94 18.89 19.02 1995 | 11,022,095

model_p_0 70.83 66.89 87.30 76.50 11.40 10.23  13.83  10.56 37.16 29.30  33.42 32,68 | 11,022,095

model p 1 81.89 80.36  92.39 88.61 2711 2332 26.62 22.44 54.25 45.08  53.40 50.22 | 9,125,417

model _p_2 83.50 82.07 9199 8947 39.37 35.81 43.17 35.72 62.25 51.93 62,98 5H7.73 | 1,664,987

model p_3 83.32 82.62 9245 89.96 48.23 45.07 56.91 45.13 63.70 53.49 6440 59.09 | 576,746

model p 4 83.50 82,78 92.67 89.89 51.92 48.18 62.21 49.31 65.33 54.93 66.17 60.39 407,856

model _p_5 83.64 82,78 9256 89.91 52.39 49.91 62.73  50.66 66.44 56.24 67.34 61.69 332,454

model p 6 83.86 82.65 9255 90.11 52.21 48.34 61.63 49.07 67.02 56.85  68.71 62.70 310,016

model p 7 84.23 83.14 92.83 90.32 52.42 48.56 61.27 49.74 68.77 58.99 T71.68 64.83 300,543

model p 8 84.22 83.14 9220 90.31 51.97 47.90 61.73 48.69 67.89 87.92  70.22  63.70 292,217

model p 9 83.74 82.96 92.29 90.27 51.59 47.56 61.32 48.68 68.19 58.32 71.06 64.07 | 283,116 SAnVIDIA.




Accuracy vs Efficiency
Object Detection

Prune /
o
car u cyclist

weighted hard easy mdrt | weighted hard easy mdrt | weighted hard easy mdrt params|
Baseline (L1) model p 9 83.74 82.96 92.29 90.27 51.59 4756 6132 48.68 68.19 58.32  71.06 64.07 | 283,116

0.0005 85.22 8467 92.81 91.81 | 5842  55.02 7157 5543 | 7146  62.00 7468 67.63 | 535,463

model

pedestrian

Joint Train / Pruning

75 <ANVIDIA.



Accuracy vs Efficiency

>

Convolutional layer
5x1x3x3 -

[Alvarez and Salzmann], Learning the number of neurons in Neural Nets, NIPS 2016

[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017 76 HNVIDIA



Accuracy vs Efficiency

Compression-aware Training of DNN

Uncorrelated filters should maximize the use of each parameter / kernel
Cross-correlation of Gabor Filters.
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Accuracy vs Efficiency

Weak-Points
Significantly larger training time (prohibitive at large scale).
Usually drops in accuracy.
Orthogonal filters are difficult to compress (post-processing).

78 NVIDIA.
, J. , ] Regularizing CNNs with Locally Constrained Decorrelations. ICLR 2017


https://arxiv.org/find/cs/1/au:+Rodriguez_P/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Gonzalez_J/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Cucurull_G/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Gonfaus_J/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Roca_X/0/1/0/all/0/1

Accuracy vs Efficiency

>

Convolutional layer
5x1x3x3




Accuracy vs Efficiency

Compression-aware Training of DNN
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Accuracy vs Efficiency

Compression-aware Training of DNN

Our Approach:

N
o1
min = > ((yi, f(x:,0)) + 511613 + (©) € h(®)
=1

Kernel Similarity at

<€
layer level

Considers each Layer
independently

[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017 81 ZnVIDIA.



Classification Results
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Accuracy vs Efficiency

Compression-aware Training of DNNE&

Quantitative Results on ImageNet using ResNet50*

. Resnet-50%, ¢; = 90% top-1  Params.
1x1, 64 - Baseline 74.7 18M
3L, 64 [14] 74.0  -4.0%

relu Group-sparse [2] 745 -17.0%
222 el Ours (low-rank) 50  -20.6%
1x1, 256 Low-rank + group-sparse % -27.0%

*Modified to use 1D kernels.

83 <ANVIDIA.
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Training Efficient
(side benefit)



Accuracy vs Efficiency

Training Time (ms. for a batch size of 32)
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[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017 8 CSnVIDIA:



Accuracy vs Efficiency

Compression-aware Training of DNN
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Accuracy vs Efficiency

Compression-aware Training of DNN

[ —Baseline ==r15 ~=<135 ~~-195 | ...

=[25 mmer45 ==ei65| |

10

Epoch | Num. parameters | accuracy Total fof
reload | Total | no SVD top-1 train-time |3 |
Baseline - 3.TM - 88.4% 1.6%h g
rd 5 32M | 3.71M 89.8% 1.81h |3
rlS 15 210K | 2.08M | 90.0% 0.77h :é_4
125 25 218K | 1.60M 90.0% 0.88h g [
r35 35 222K | 1.52M 89.0% 0.99h —
r45 45 324K | 1.24M 90.1% 1.12h
35 55 388K | 1.24M 89.2% 1.26h
65 63 414K | 1.23M 87.7% 1.36h

20 30 40 50 60 70
Epoch number

Up to 70% train speed-up

(similar accuracy)

[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017
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Accuracy vs Efficiency

Is Over-parameterization needed?

#Epochs Training Test Parameters
Total Reload | top-1 top-5 top-1 top-5 Total Zeroed-out
baseline 73 — 99.73% _99.96% | 88.59% 96.73% | 3717924 3088 (0)
Ours 75 55 97.71%  99.62% | 89.73% 97.25% | 225851 782 (16)
compact R ) 98.24%  99.7/0% | 81.0537  90.03% 2256801 >4 (U)

Observations:
Additional training parameters are needed to initially help the optimizer.
Small models are explicitly constrained, same training regime may not be fair.

Other optimizers lead to slightly better results in optimizing compact networks from scratch.

88
[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017
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Accuracy vs Efficiency

Number of parameters decreases

Number of layers increases
Data Movements may be more significant than current savings.

89 NVIDIA.
[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017



Accuracy vs Efficiency
(more on over-parameterization)



Accuracy vs Efficiency

Y

/é 7V< Y - Non-linearity Capacity .

/A
. Y iy
e s v e e
) — - S—— Num.
e PN parameters

two successive

3x3 convolutions
5x5 convolution Num.
layers

Same receptive field
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ExpandNets
Exploiting Linear Redundancies
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ExpandNets

4 ¥ Y
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Input
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o Y,

[Guo, Alvarez, Salzmann], ExpandNets: Exploiting Linear Redundancy to Train Small Networks. Arxiv 2018



_ExpandNets

|
Channels:M %
k

Output Channels: N
(a) A Convolutional Layer

e e j N w250 77
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Expand Channels: P,
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\ (a.2) Convolutional Kernel Expand Block / \ (a.1) Basic Convolutional Expand Block

[Guo, Alvarez, Salzmann], ExpandNets: Exploiting Linear Redundancy to Train Small Networks. Arxiv 2018



ExpandNets
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[Guo, Alvarez, Salzmann], ExpandNets: Exploiting Linear Redundancy to Train Small Networks. Arxiv 2018




Classification Results



2

RGB image
2227x227x3

=227

\ SSxSS  Pooling Pooling,

1 27% 27

ExpandNets

Pooling
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input
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Conv4 Convs

\
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64 @3x3/

# classes

4096 4096 OutPVt

FC6

FC7

FC8

ImageNet | Baseline | Expanded
N=128 46.72% | 49.66%
N=256 54.08% | 55.46%
N=512 58.35% 58.75%

[Guo, Alvarez, Salzmann], ExpandNets: Exploiting Linear Redundancy to Train Small Networks. Arxiv 2018




MobileNetV2: The Next Generation of On-Device

ExpandNets

Computer Vision Networks

MobileNetV2 building block

© Transformation

f

[Guo, Alvarez, Salzmann], ExpandNets:

i Bottleneck Bottleneck
i Input @ Output 1
Shortcut

JR— ' Model | Top-1 Top-5
' ' MobileNetV2 | 70.78% | 91.47%
MobileNetV2- expanded | 74.85% | 92.15%

Exploiting Linear Redundancy to Train Small Networks. Arxiv 2018




MobileNetV2: The Next Generation of On-Device

ComputerVision Networks

MobileNetV2 building block

Ex

pandNets

r A 4 1
3x3 conv, 64
T bt
3x3 conv, 64
) e/
3x3 conv, 64 l Model | Top-1 | Top-5
\/ MobileNetV2 | 70.78% | 91.47%
3x3 conv, 64 :
| 4 MobileNetV2-expanded | 74.85% | 92.15%
3x3 conv, 64 || —————> MobileNetV2-expanded-nonlinear | 74.17% | 91.61%
v 7 MobileNetV2- expanded (nonlinear Init) | 75.46% | 92.58%

[Guo, Alvarez, Salzmann], ExpandNets: Exploiting Linear Redundancy to Train Small Networks. Arxiv 2018




ExpandNet beyond classification



ExpandNets on Semantic Segmentation

CITYSCAPES

Relative ~2.2% improvement
on mloU

[Guo, Alvarez, Salzmann], ExpandNets: Exploiting Linear Redundancy to Train Small Networks. Arxiv 2018



ExpandNets on Trafﬁc Signh Recognition

Internal Dataset

Relative ~2.34%
improvement on fscore

Thanks lan Ivanecky!

[Guo, Alvarez, Salzmann], ExpandNets: Exploiting Linear Redundancy to Train Small Networks. Arxiv 2018






Summary

Creating the right datasets

 Active Learning: Our Deep Probabilistic Ensembles achieve competitive
performance using 1/4™ of the training data (progressively selected).

. S e (T ™ —— Rando

O Q4

Validation Accuracy of

10k 12k 14k 16k

Number of Training Samples 104 NVIDIA.



Summary

Creating theright datasets
» Synthetic to real

105 <ANVIDIA.



Creating the right datasets

Accuracyvs Efficiency (aka, the use of overparameterization)
« Joint train and prune

Convolution layers*®
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*We use consecutive layers of 10 convolutional filters [1] { 1xd™) and (d"x1 )

runing & low-rank approximation

Parameter savings:
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Summary
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Layer Name
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Summary

Creating the right datasets

Accuracyvs Efficiency (aka, the use of overparameterization)
« ExpandNets: Exploiting linear redundancy to Train Small Nets

Input ConvLayer1 x 1

ConvlLayer k x k

ConvlLayer1 x 1

| ConvlLayer k x k

ConvLayer 3 x 3

ConvLayer 3 x 3

H 1)/2

Nonlinear Layer

Compress

Nonlinear Layer
Fully-connected Layer

I Fully-connected Layer I

Output

. Convolutional Neural Network |
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