Scaling-Up Deep Learning For Autonomous Vehicles

JOSE M. ALVAREZ

GPU TECHNOLOGY

San Jose 2019

NVIDIA Al-Infra

Al-Infra Team

One of our top Goals

Industry grade Deep Learning to take AV Perception DNN into production, tested in multiple locations and conditions.

20% Complete

1355 47.4 m invalid 16.4 d -67.5

.7 m 15 s .6 dec

Deep Learning PerceptionDistance Detection

16.8 m -2.08 s 9.8 deg

14.7 m -126.44 s -10.2 deg 2.5 deg

27.2 m -51.18 -1.1 de -1.0 de 126

1016

51.8 m 6.77 s -22.3 deg 4.0 deg

Al-Infra Team

One of our top Goals

Industry grade Deep Learning to take AV Perception DNN into production, tested in multiple locations and conditions.

High-quality system

No failures in Millions of miles Quality-driven AV Perception

The Challenge of Scale

Self-driving cars requires tremendously large datasets for training and testing

DL for Autonomous Driving

The Challenge of Scale

Data Collection fleet => 100 cars 2000h of data collected per car, per year Assuming 5 2MP cameras per car, radar data, etc. => 1 TB / h / car Grand total of 200 PB collected per year! Only 1/1000 likely to be used for training (curated, labeled data)

DL for Autonomous Vehicles

The Challenge of Scale

Large Datasets:

12.1 years training a ResNet50-like network on Pascal

1.5 years on DGX1 w/ Volta

With 8 DGX1s, and 1/10th of that training data, can train in 1 week

💿 NVIDIA

DL for Autonomous Driving

The Challenge of Scale

Robustness / Reliable:

Tested around the world under multiple conditions

Need to show 0 failures in > 1M miles, covering 1000s of Conditions...

Talk Road Map

- Creating the Right Datasets
 - Active Learning
 - Domain Adaptation
- Improving Network Accuracy / Efficiency via overparameterization
 - Joint Training and pruning
 - Exploiting linear redundancies to train small networks.

Creating the right datasets is the cornerstone of (supervised) machine learning.

Creating the Right Datasets

Some Samples Are Much More Informative Than Others

1. How do we find the most informative unlabeled data to build the right datasets the fastest?

2. How do we build training datasets that are 1/1000 the size for the same result?

Active Learning needs uncertainty

Bayesian Deep Networks (BNN)

Bayesian networks are the principled way to model uncertainty. However, they are computationally demanding:

- Training: Intractable without approximations.
- Testing: distributions need ~100 forward passes (varying the model)

Bayesian Deep Networks (BNN)

A common (cheaper) approach consists of using ensembles of networks:

- Samples from the same distribution as the training set will have consensus while other samples will not.
- Ensembles do not approximate uncertainty in the same manner as a BNN.
 - I.e., parameters in different members serve for different purpose.

Bayesian Deep Networks (BNN)

We propose an approximation to BNN to train a network using ensembles.

We regularize the weights in the ensemble to approximate probability distributions.

[Chitta, Alvarez, Lesnikowski], Large-Scale Visual Active Learning with Deep Probabilistic Ensembles. Arxiv 2018

Bayesian Deep Networks (BNN)

Given this new network design, we can sample from this and quantify the uncertainty of the model on a new (unlabeled) sample.

Label those where the model is more uncertain.

[Chitta, Alvarez, Lesnikowski], Large-Scale Visual Active Learning with Deep Probabilistic Ensembles. Arxiv 2018

Classification Results

Quantitative Results

[Chitta, Alvarez, Lesnikowski], Large-Scale Visual Active Learning with Deep Probabilistic Ensembles. Arxiv 2018

Quantitative Results

[Chitta, Alvarez, Lesnikowski], Large-Scale Visual Active Learning with Deep Probabilistic Ensembles. Arxiv 2018

Quantitative Results

Table 2. Validation Accuracies comparing the proposed approach to standard ensembling. Initial 4% is randomly sampled.

Task	Data Sampling	8%	16%	32%
CIFAR-10	Random	80.60	86.80	91.08
	Standard	82.41	90.05	94.13
	Ours	82.88	90.15	94.33
CIFAR-100	Random	39.57	54.92	66.65
	Standard	40.49	56.89	69.68
	Ours	40.87	56.94	70.12

Quantitative Results

CIFAR-10

_

_

Method	10k (20%)	50k (100%)	Ratio
Core-set [43]	74 90		82.2
Ensemble [2]	85	95.5	89
Single + Random	85.2	94.4	90.3
DPE + Random	87.9	95.2	92.3
Single + Linear-8	87.5	94.4	92.7
Ours (DPE + Linear-8)	92	95.2	96.3

Quantitative Results

34-layer residual

How much data we need to outperform the performance using the entire dataset.

Dataset	% data
CIFAR-10	~50
CIFAR-100	~80
SVHN	~25

Beyond Classification

Active Semantic Segmentation

Framework

31 📀 NVIDIA

Domain Adaptation (Beyond a single domain / location)

Day

Twilight

Night

Artificial light

Backlit

Clear

Cloudy

Rain

Fog

Snow

Urban

Freeway

Unmarked Street

4. At train time, use only (synthetic) source images and annotations.

Synthetic data can be obtained in large amounts and is labeled automatically.

Domain	Images	Annotations
Source	\odot	©
Target		$\overline{\mathbf{S}}$

4. At train time, use only (synthetic) source images and annotations.

Unfortunately, **in general**, a network trained on synthetic data performs relatively poorly on real images.

Domain	Images	Annotations
Source	\odot	\odot
Target	(;)	\odot

Most require access to real images, albeit unsupervised, during training.
Efficient use of Synthetic Data

Our approach uses synthetic images and does not require seeing any real images at training time.

Domain	Images	Annotations			
Source	\odot	\odot			
Target	$\overline{\mathbf{i}}$	$\overline{\mathbf{O}}$			

Efficient use of Synthetic Data

Our approach uses synthetic images and does not require seeing any real images at training time.

Key observation:

Foreground and background classes are not affected in the same manner by the domain shift.

[Saleh, Salzmann, Alvarez et al. 2018], Efficient use of Synthetic data for Semantic Segmentation, ECCV2018

Efficient use of Synthetic Data

1. Texture of background classes is realistic -> semantic segmentation.

Efficient use of Synthetic Data

- 1. Texture of background classes is realistic -> semantic segmentation.
- 2. Texture of foreground classes is not photo-realistic, but their shape looks natural -> detection-based.

[Saleh, Salzmann, Alvarez et al. 2018], Efficient use of Synthetic data for Semantic Segmentation, ECCV2018

Efficient use of Synthetic Data

Inference on real data

[Saleh, Salzmann, Alvarez et al. 2018], Efficient use of Synthetic data for Semantic Segmentation, ECCV2018

Efficient use of Synthetic Data

Table 1: **Comparison of models trained on synthetic data.** All the results are reported on the Cityscapes validation set. Note that ps-GT (pseudo-GT) indicates the use of unlabeled real images during training.

	road	side.	buil.	wall	fence	pole	light	sign	Vege.	terr.	sky	person	rider	car	truck	snq	train	motor	bike	mIOU
GTA5 [5]	29.8	16.0	56.6	9.2	17.3	13.5	13.6	9.8	74.9	6.7	54.3	41.9	2.9	45.0	3.3	13.1	1.3	6.0	0.0	21.9
GTA5	80.5	26.0	74.7	23.0	9.8	9.1	13.4	7.3	79.4	28.6	72.1	40.4	5.1	77.8	23.0	18.6	1.2	5.3	0.0	31.3
SYNTHIA	36.7	22.7	51.0	0.3	0.1	16.6	0.1	9.5	72.5	0.0	78.4	47.5	5.6	61.4	0.0	13.0	0.0	3.2	3.1	22.1
VIPER	36.9	19.0	74.7	0.0	5.3	7.1	10.0	10.1	78.7	13.6	69.6	43.0	0.0	41.2	20.8	13.9	0.0	9.1	0.0	23.9
VEIS	70.8	9.5	50.9	0.0	0.0	0.3	15.6	26.8	66.8	12.7	52.3	44.0	14.2	60.6	10.2	8.2	3.2	5.5	11.8	24.4
GTA5+VEIS	66.2	21.6	72.3	15.7	18.3	12.3	22.3	23.8	78.4	11.3	74.6	48.7	13.3	75.1	14.3	21.2	2.1	24.2	7.3	32.8
GTA5+VEIS&ps-GT	77.6	26.8	75.5	19.4	19.5	4.8	18.7	19.8	79.5	21.7	78.9	47.3	8.7	77.6	23.1	16.1	2.2	15.6	0.0	33.3
Ours	71.9	23.8	75.5	23.4	14.9	9.3	26.7	42.5	80.1	34.0	76.3	52.2	28.5	76.2	19.6	31.6	6.9	18.1	9.8	38.0

Efficient use of Synthetic Data

Adding Pseudo-labels:

(unsupervised real training data)

Domain	Images	Annotations
Source	©	\odot
Target	٢	$\overline{\otimes}$

Domain	Images	Annotations			
Source	٢	©			
Target	٢	8			

Adding Pseudo-labels:

Efficient use of Synthetic Data

Image	Ours	Ours ps-GT	Comparison on models trained on synthetic data			
		Provide and the second second	Methods	mIOU		
			GTA5 $[5]$	21.9		
			$\operatorname{GTA5}$	31.3		
			SYNTHIA	22.1		
			VIPER	23.9		
			VEIS	24.4		
			GTA5+VEIS	32.8		
		- 40 - C - 4 - 4 -	GTA5+VEIS&ps-GT	33.3		
			Ours	38.0		
			Ours&ps-GT	42.5		

[Saleh, Salzmann, Alvarez et al. 2018], Efficient use of Synthetic data for Semantic Segmentation, ECCV2018

Domain	Images	Annotations			
Source	٢	©			
Target	٢	8			

Efficient use of Synthetic Data

Image	Ours	Ours ps-GT	Co
			and
			-
			ſ

Adding Pseudo-labels:

Comparison to domain adaptation and weakly- supervised methods

Methods	mIOU
Fully Sup.	56.2
Weakly-Sup.[2]	23.6
FCNs in Wld $[3]$	27.1
Curriculum [4]	28.9
ROAD [5]	35.9
CYCADA [6]	35.4
Ours	38.0
Ours+Pseudo-GT	42.5

[Saleh, Salzmann, Alvarez et al. 2018], Efficient use of Synthetic data for Semantic Segmentation, ECCV2018

Accuracy vs Efficiency (for Large datasets)

Efficient Training of DNN

Goal: maximize training resources while obtaining deployment 'friendly' network.

Over-parameterization

5x5 convolution

Same receptive field

two successive 3x3 convolutions

50 🔕 nvidia

https://blog.sicara.com/about-convolutional-layer-convolution-kernel-9a7325d34f7d

51 🙆 NVIDIA.

Filter Decompositions for Real-time Semantic Segmentation

[Alvarez and Petersson], DecomposeMe: Simplifying ConvNets for End-to-End Learning. Arxiv 2016 [Romera, Alvarez et al.], Efficient ConvNet for Real-Time Semantic Segmentation. IEEE-IV 2017, T-ITS 2018

Filter Decompositions for Real-time Semantic Segmentation

Cityscapes dataset (19 classes, 7 categories)

[Romera, Alvarez et al.], Efficient ConvNet for Real-Time Semantic Segmentation. IEEE-IV 2017, T-ITS 2018

[Romera, Alvarez et al.], Efficient ConvNet for Real-Time Semantic Segmentation. IEEE-IV 2017, T-ITS 2018

Efficient Training of DNN

Goal: maximize training resources while obtaining deployment 'friendly' network.

Efficient Training of DNN

Goal: maximize training resources while obtaining deployment 'friendly' network.

Common Approach

Train a large model (trade-off accuracy / computational cost)

Joint Training and Pruning Deep Networks

Train a large model (trade-off accuracy / computational cost)

Joint Training and Pruning Deep Networks

Joint Training and Pruning Deep Networks

Joint Training and Pruning Deep Networks

Our Approach: $\min_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(\mathbf{x}_i, \Theta)) + \frac{\rho}{2} ||\Theta||_2^2 + r(\Theta),$ $r(\Theta) = \sum_{l=1}^{L} \lambda_l \sqrt{P_l} \sum_{n=1}^{N_l} \|\theta_l^n\|_2$ Removed Size of the group To be kept

Classification Results

Joint Training and Pruning Deep Networks

Quantitative Results on ImageNet dataset:

1.2 million training images and 50.000 for validation split in 1000 categoriesBetween 5000 and 30000 training images per class.No data augmentation (random flip).

Joint Training and Pruning Deep Networks

Quantitative Results on ImageNet

Train an over-parameterized architecture up to 768 neurons per layer (*Dec*₈-768)

Joint Training and Pruning Deep Networ

Quantitative Results on ImageNet

Dec ₈ on ImageNet (in %)							
	Dec_8	Dec ₈	-640	Dec ₈ -768			
	GS	SGL	GS	GS			
neurons	3.39	12.42	4.02	26.83			
group param	2.46	13.69	4.22	31.53			
total param	2.46	22.72	4.22	31.63			
total induced	2.82	23.33	10.83	32.26			
accuracy gap	0.01	0.94	2.45	-0.02			

Joint Training and Pruning Deep Networks

Quantitative Results on ICDAR character recognition dataset

Joint Training and Pruning Deep Networks

Quantitative Results on ICDAR character recognition dataset

Train an over-parameterized architecture up to 512 neurons per layer (*Dec*₃-512)

Joint Training and Pruning Deep Networks

Quantitative Results on ICDAR character recognition dataset

^a Results from Jaderberg et al. [2014a] using MaxOut layer instead of Max-Pooling and decompositions as post-processing step
^b Results from Jaderberg et al. [2014a]

Joint Training and Pruning Deep Networks

71 📀 NVIDIA.

72 壑 nvidia.

KITTI

Object Detection Results

Object Detection

		TRAIN Promising model					Prune / Optimize For a specific application						
		00 P			$\widehat{\mathcal{T}}$	orroli	.+		7	nadaata	ion		Donoma
model	weighted	hard	easy	mdrt	weighted	hard	easy	mdrt	weighted	hard	easy	mdrt	params
model	75.03	69.59	84.45	77.37	28.42	21.95	26.78	21.72	23.94	18.89	$\frac{19.02}{19.02}$	19.95	11,022,095
model p 0	70.83	66.89	87.30	76.50	11.40	10.23	13.83	10.56	37.16	29.30	33.42	32.68	11,022,095
$model_p_1$	81.89	80.36	92.39	88.61	27.11	23.32	26.62	22.44	54.25	45.08	53.40	50.22	9,125,417
$model_p_2$	83.50	82.07	91.99	89.47	39.37	35.81	43.17	35.72	62.25	51.93	62.98	57.73	1,664,987
$model_p_3$	83.32	82.62	92.45	89.96	48.23	45.07	56.91	45.13	63.70	53.49	64.40	59.09	576,746
model_p_4	83.50	82.78	92.67	89.89	51.92	48.18	62.21	49.31	65.33	54.93	66.17	60.39	407,856
$model_p_5$	83.64	82.78	92.56	89.91	52.39	49.91	62.73	50.66	66.44	56.24	67.34	61.69	332,454
$model_p_6$	83.86	82.65	92.55	90.11	52.21	48.34	61.63	49.07	67.02	56.85	68.71	62.70	310,016
$model_p_7$	84.23	83.14	92.83	90.32	52.42	48.56	61.27	49.74	68.77	58.99	71.68	64.83	300,543
model_p_8	84.22	83.14	92.20	90.31	51.97	47.90	61.73	48.69	67.89	57.92	70.22	63.70	292,217
$model_p_9$	83.74	82.96	92.29	90.27	51.59	47.56	61.32	48.68	68.19	58.32	71.06	64.07	283,116

Object Detection

Joint Train / Pruning

Compression-aware Training of DNN

[Alvarez and Salzmann], Learning the number of neurons in Neural Nets, NIPS 2016 [Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017

Compression-aware Training of DNN

Uncorrelated filters should maximize the use of each parameter / kernel Cross-correlation of Gabor Filters.

Compression-aware Training of DNN

Weak-Points

Significantly larger training time (prohibitive at large scale).

Usually drops in accuracy.

Orthogonal filters are difficult to compress (post-processing).

Compression-aware Training of DNN

Compression-aware Training of DNN

[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017

Compression-aware Training of DNN

Our Approach:

[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017

Classification Results

Compression-aware Training of DNN

Quantitative Results on ImageNet using ResNet50*

[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017

Training Efficient (side benefit)

Compression-aware Training of DNN

[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017

Compression-aware Training of DNN

Compression-aware Training of DNN

	Epoch	Num. parameters	accuracy	Total	
	reload	Total no SVD	top-1	train-time	
Baseline	-	3.7M –	88.4%	1.69h	
r5	5	3.2M 3.71M	89.8%	1.81h	
r15	15	210K 2.08M	90.0%	0.77h	
r25	25	218K 1.60M	90.0%	0.88h	r5r45r65
r35	35	222K 1.52M	89.0%	0.99h	0 10 20 30 40 50 60 70 80 90 100
r45	45	324K 1.24M	90.1%	1.12h	Epocn number
r55	55	388K 1.24M	89.2%	1.26h	
r65	65	414K 1.23M	87.7%	1.36h	

Up to 70% train speed-up

(similar accuracy)

[Alvarez and Salzmann], Compression-aware training of DNN, NIPS 2017

Compression-aware Training of DNN

Is Over-parameterization needed?

	#Epochs		Trai	ning	Te	est	Parameters		
	Total	Reload	top-1	top-5	top-1	top-5	Total	Zeroed-out	
baseline	75	_	99.73%	99.96%	88.59%	96.73%	3717924	3088 (0)	
Ours	75	55	97.71%	99.62%	89.73%	97.25%	225851	782 (16)	
Compact	75	0	98.24%	99.76%	87.53%	96.65%	225851	34 (0)	

Observations:

Additional training parameters are needed to initially help the optimizer.

Small models are explicitly constrained, same training regime may not be fair.

Other optimizers lead to slightly better results in optimizing compact networks from scratch.

Compression-aware Training of DNN

Number of parameters decreases

Number of layers increases

Data Movements may be more significant than current savings.

Accuracy vs Efficiency (more on over-parameterization)

Same receptive field

ExpandNets Exploiting Linear Redundancies

ExpandNets

[Guo, Alvarez, Salzmann], ExpandNets: Exploiting Linear Redundancy to Train Small Networks. Arxiv 2018

[Guo, Alvarez, Salzmann], ExpandNets: Exploiting Linear Redundancy to Train Small Networks. Arxiv 2018

Classification Results

ImageNet	Baseline	Expanded			
N =128	46.72%	49.66%			
N =256	54.08%	55.46%			
N =512	58.35%	58.75%			

ExpandNets

MobileNetV2: The Next Generation of On-Device Computer Vision Networks

ExpandNets

MobileNetV2: The Next Generation of On-Device Computer Vision Networks

ExpandNet beyond classification

ExpandNets on Semantic Segmentation

CITYSCAPES

Relative ~2.2% improvement on mIoU

ExpandNets on Traffic Sign Recognition

Internal Dataset

Thanks Ian Ivanecky!

Relative ~2.34% improvement on fscore

Creating the right datasets

• Active Learning: Our Deep Probabilistic Ensembles achieve competitive performance using 1/4th of the training data (progressively selected).

Creating the right datasets

• Synthetic to real

Creating the right datasets Accuracyvs Efficiency (aka, the use of overparameterization)

• Joint train and prune

Creating the right datasets

Accuracy vs Efficiency (aka, the use of overparameterization)

• ExpandNets: Exploiting linear redundancy to Train Small Nets

107 📀 **DVIDIA**

Scaling-Up Deep Learning For Autonomous Vehicles

JOSE M. ALVAREZ

GPU TECHNOLOGY

San Jose 2019