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Motivation

Why Attend this Talk

• 5 of the top 10 supercomputers are using NVIDIA GPUs

• Most of the codes optimized for CPUs have to now be rewritten for GPUs

• Compiler directive based approaches are attractive due to their ease of use

◦ Port incrementally for big codes

• This talk would provide a detailed analysis of the current state of the
directive based programming models

◦ Their performance compared to optimized CUDA code

◦ Supported compilers

◦ Differences in compiler implementations
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Overview

Outline of the Presentation

• BerkeleyGW, a material science code

◦ General Plasmon Pole (GPP), a mini-app

• Baseline CPU implementation

• GPU programming models (OpenMP, OpenACC, CUDA)

• GPP on GPU

◦ Naive implementation

◦ Optimized implementation

◦ Compare approaches and performance of each implementation

• Backport GPU implementation on CPU for performance portability
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BerkeleyGW

BerkeleyGW

• The GW method is an accurate approach to simulate the excited state
properties of materials

◦ What happens when you add or remove an electron from a system

◦ How do electrons behave when you apply a voltage

◦ How does the system respond to light or x-rays

• Extract stand alone kernels that could be run as mini-apps
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Test Case Kernel

General Plasmon Pole (GPP)

• Mini-app from BerkeleyGW

◦ Computes the electron self-energy using the General Plasmon Pole
approximation

• Characteristics of GPP

◦ Reduction over a series of double complex arrays involving multiply, divide and
add instructions (partial FMA)

◦ For typical calculations, it evaluates to an arithmetic intensity (Flops/Byte)
between 1-10, i.e., the kernel has to be optimized for memory locality and
vectorization/SIMT efficiency
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Complex Number in C/C++

Complex Number Class

• BerkeleyGW consist of double-complex number calculation

• std::complex difficulties

◦ Performance issues

◦ Difficult to vectorize

◦ Cannot offload operations onto the device using OpenMP 4.5

• Thrust::complex

◦ Challenges in offloading complex operator routines on device

• Built an in-house complex class

◦ 2-doubles on CPU

◦ double2 vector type on GPU
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GPP

GPP pseudo code - reduction in the innermost loop

Code

for(X){ // X = 512

for(N){ // N = 1638

for(M){ // M = 32768

for(int iw = 0; iw < 3; ++iw){

//Some computation

output[iw] += ...

}

}

}

}

• Memory O(2GBs)

• Typical single node problem size

• output - double complex
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GPP On CPU
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GPP CPU Parallelization

OpenMP 3.0 parallelization of GPP

#pragma omp parallel for

reduction(output re[0-2], output im[0-2]

for(X){

for(N){

for(M){ //Vectorize

for(int iw = 0; iw < 3; ++iw){ //Unroll

//Store local

}

}

for(int iw = 0; iw < 3; ++iw){

output_re[iw] += ...

output_im[iw] += ...

}

}

}

• Unroll innermost iw-loop

• Vectorize M-loop

• Collapse increased the
runtime by 10%

• Check compiler reports
(intel/2018) to guarantee
vectorization and unrolling

• Flatten arrays into scalars
with compilers that do not
support array reduction
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GPP Performance on CPU

Runtime of GPP on Cori

 0

 1

 2

 3

 4

 5

 6

 7

 8

CPU-architecture

Lower is Better

T
[s

e
c
s]

Performance of GPP on Cori
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Xeon Phi

• Performance numbers from Cori
at NERSC,LBL

◦ Haswell
◦ Xeon Phi

• intel/2018 compilers

• A perfect scaling would allow a
KNL execution to be 4× faster
than Haswell

◦ KNL implementation of GPP
is approximately 3.5× faster
than Haswell
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GPP Performance on CPU

Runtime of GPP on Cori

Xeon Phi - 2.2 seconds
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• Performance numbers from Cori
at LBNL

◦ Haswell
◦ Xeon Phi

• intel/2018 compilers

• A perfect scaling would allow a
KNL execution to be 4× faster
than Haswell

◦ KNL implementation of GPP
is 3× faster than Haswell
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GPP On GPU
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Parallelism on GPU KNL to Volta

GPU Hardware

KNL GPU • Going from 272 to
164K threads

• 164k threads
◦ 80 SMs
◦ 2048 threads within

a SM
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GPU Programming Models

Programming Models used to port GPP on GPU

• OpenMP 4.5
◦ Cray
◦ XL(IBM)
◦ Clang
◦ GCC

• OpenACC
◦ PGI
◦ Cray

• CUDA

Volta GPU available on Cori and Summit
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GPU Programming Models OpenMP 4.5

OpenMP offloading to GPU

• OpenMP 4.5
◦ Cray
◦ XL(IBM)
◦ Clang
◦ GCC

• OpenACC
◦ PGI
◦ Cray

• CUDA

Volta GPU available on Cori and Summit
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OpenMP 4.5 Offload Directives

OpenMP directives to offload code-blocks onto GPUs

Directives to distribute work across GPU threads

target − offload the code−block on to the device

teams − spawn one or more thread team

distribute − distribute iterations of the loops onto master threads of the team

parallel for − distribute loop iterations among threads in a threadblock

simd − implementation dependent on compilers

#pragma omp target teams distribute
for () //Distribute the loop across threadblocks

#pragma omp parallel for
for () //Distribute the loop across threads within a threadblock
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OpenMP 4.5 Data Movement

OpenMP 4.5 directives to move data from device to
host

Allocate and delete data on the device

#pragma omp target enter data map(alloc: list−of−data−structures[:])
#pragma omp target exit data map(delete: list−of−data−structures[:])

Update data on device and host

#pragma omp target update to/from (list−of−data−structures[:])
to − HostToDevice
from − DeviceToHost

Clauses to use with target directives

map(to:...) map(from:...) map(tofrom:...)
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OpenMP 4.5 Routines on Device

OpenMP 4.5 directives to offload routines on the
device

Routines

#pragma omp declare target
void foo() ;
#pragma omp end declare target

Not necessary if routines are inlined

GTC 2019 Rahul (NERSC-LBL) March 8, 2019 18 / 41



OpenMP Offload of GPP

Naive OpenMP 4.5 implementation of GPP

#pragma omp target teams distribute

map(to:...)

map(tofrom:output re[0-2], output im[0-2])

for(X){

#pragma omp parallel for

for(N){

for(M){

for(int iw = 0; iw < 3; ++iw){

//Store local

}

}

for(int iw = 0; iw < 3; ++iw){

#pragma omp atomic

output_re[iw] += ...

#pragma omp atomic

output_im[iw] += ...

}

}

• Distribute M-loop across
threadblocks

• Distribute N-loop among
threads in a threadblocks

• No array reduction with
OpenMP 4.5 directives.
Hence use atomic to
maintain correctness

• Parallelizing M-loop
increases overhead of
synchronization
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Optimized Implementation

Optimized implementation with OpenMP 4.5

#pragma omp target enter data

map(alloc:input[0:X])

#pragma omp target update input[0:X])

#pragma omp target teams distribute \

parallel for collapse(2) \

reduction(+:output re(0,1,2), output im(0,1,2))

for(X){

for(N){

for(M){

for(int iw = 0; iw < 3; ++iw){

//Store local

}

}

output_re(0,1,2) += ...

output_im(0,1,2) += ...

}

}

#pragma omp target exit data map(delete:input)

• XL, Clang, Cray and GCC
gave the best performance
with the same parallelization
technique

◦ Collapse N and M loops
and distribute them across
threadblocks and threads
within a block

• Memory allocation improved
the performance of the kernel
by 10%

◦ #pragma omp target
enter/exit data

• Reduction gave a 3× boost
in the performance

◦ Flatten arrays to scalars
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GPP on GPU

Performance of GPP on V100 with OpenMP 4.5
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Performance of GPP on V100 with OpenMP 4.5 • Cray is 3× slower than
XL

• Clang is 30% slower
than XL

• GCC implementation
takes 26 seconds
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OpenMP 4.5 directives Compiler Interpretations

OpenMP 4.5 directives map onto hardware

Grid Thread

GCC teams distribute parallel for

XL teams distribute parallel for

Clang teams distribute parallel for

Cray teams distribute simd

Table 1: OpenMP 4.5 mapping onto GPU hardware
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XL Implementation

Optimized implementation with XL

#pragma omp target enter data

map(alloc:input[0:X])

#pragma omp target teams distribute \

parallel for collapse(2) \

map(to:input[0:X]) \

reduction(+:output re(0,1,2), output im(0,1,2))

for(X){

for(N){

for(M){

for(int iw = 0; iw < 3; ++iw){

//Store local

}

}

output_re(0,1,2) += ...

output_im(0,1,2) += ...

}

}

#pragma omp target exit data map(delete:input)

• Did not support class
operators in older versions.

• Variables passed to the
reduction clause should not
be passed to any other
clause in the same directive

• All data accessed inside the
target region has to be
passed via a map clause

• simd has no effect
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Clang Implementation

Optimized implementation with Clang

#pragma omp target enter data

map(alloc:input[0:X])

#pragma omp target update input[0:X])

#pragma omp target teams distribute \

parallel for collapse(2) \

map(tofrom:output re(0,1,2), output im(0,1,2)) \

reduction(+:output re(0,1,2), output im(0,1,2))

for(X){

for(N){

for(M){

for(int iw = 0; iw < 3; ++iw){

//Store local

}

}

output_re(0,1,2) += ...

output_im(0,1,2) += ...

}

}

#pragma omp target exit data map(delete:input)

• Data allocated on the
device using OpenMP 4.5
directives need not be
passed via map clauses

• Variables passed to the
reduction clause have to
also be passed to map
clauses
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Cray Implementation

Optimized Cray implementation

#pragma omp target enter data

map(alloc:input[0:X])

#pragma omp target update input[0:X])

#pragma omp target teams distribute \

simd collapse(2) \

map(tofrom:output re(0,1,2), output im(0,1,2))

reduction(+:output re(0,1,2), output im(0,1,2))

for(X){

for(N){

for(M){

for(int iw = 0; iw < 3; ++iw){

//Store local

}

}

output_re(0,1,2) += ...

output_im(0,1,2) += ...

}

}

#pragma omp target exit data map(delete:input)

• parallel for is executed
sequentially inside the target
region

• simd distributes loop across
threads of a threadblock

• reduction variables have to
be passed to the map clauses

• Previously allocated data
allocated need not be passed
via the map clauses

• printf is not supported inside
routines annotated with
declare target
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GCC Implementation

Optimized GCC implementation

#pragma omp target enter data

map(alloc:input[0:X])

#pragma omp target teams distribute \

parallel for collapse(2) \

map(tofrom:output re(0,1,2), output im(0,1,2)) \

reduction(+:output re(0,1,2), output im(0,1,2))

for(X){

for(N){

for(M){

for(int iw = 0; iw < 3; ++iw){

//Store local

}

}

output_re(0,1,2) += ...

output_im(0,1,2) += ...

}

}

#pragma omp target exit data map(delete:input)

• simd gives compiler error

• If data is allocated
beforehand using data map
(alloc:...) clauses, they
need not be passed to map
clauses again

• Variables passed to the
reduction clause have to
also be passed to map
clauses
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OpenMP 4.5 Summary

Cheat Sheet of Do’s and Dont’s

• XL

◦ Everything accessed inside the target region has to be mapped explicitly via
map clauses

. Even if they are allocated on the device beforehand

◦ Do not pass the same data to two different clauses in the same directive

. Even if one of them is a reduction clause

• Clang, GCC, Cray

◦ Always pass the directionality information to the reduction variables via map
clauses

• GCC - Do not use simd
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OpenACC

OpenACC offloading to GPU

• OpenMP
◦ Cray
◦ XL(IBM)
◦ Clang
◦ GCC

• OpenACC
◦ PGI
◦ Cray

• CUDA
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OpenACC Directies OpenMP-OpenACC 1-1 Directive Map

OpenACC directive map on GPU

OpenACC

gang − threadblock

vector − Threads in a threadblock

worker − y dimension inside a
threadblock (PGI compiler)

OpenMP

teams distribute

parallel for

simd

#pragma acc parallel loop gang

#pragma acc loop vector

#pragma acc loop worker
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OpenACC Directives OpenACC Directionality Clauses

OpenACC directives for memory movement

#pragma acc enter data copyin

#pragma acc enter data copyout

#pragma acc enter data copy

#pragma acc enter data create(...)

#pragma acc exit data delete(...)
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OpenACC Implementation of GPP PGI vs Cray

Optimized GPP implementation with PGI OpenACC

#pragma acc enter data create

copyin(input[0:X])

#pragma acc enter data update

device(input[0:X]

#pragma acc parallel loop gang collapse(2)

present(input) \

reduction(+:output re(0,1,2), output im(0,1,2))

for(X){

for(N){

#pragma acc loop vector\

reduction(+:output re(0,1,2), output im(0,1,2))

for(M){

for(int iw = 0; iw < 3; ++iw){

//Store local

}

}

output_re{0,1,2} += ...

output_im{0,1,2} += ...

}

}

• Collapse X and N loops to
distribute across
threadblocks

• Distribute M loops across
threads of a threadblock

• reduction required at
gang and vector level
since the output variables
are updated by every
thread.
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OpenACC Implementation of GPP PGI vs Cray

Optimized GPP implementation with Cray OpenACC

#pragma acc enter data create copyin(input[0:X])

#pragma acc enter data update device(input[0:X]

#pragma acc parallel loop gang vector collapse(2)

present(input[0:X]) \

reduction(+:output re(0,1,2), output im(0,1,2))

for(X){

for(N){

for(M){

for(int iw = 0; iw < 3; ++iw){

//Store local

}

}

output_re{0,1,2} += ...

output_im{0,1,2} += ...

}

}

• Collapse Distribute X and
N loops to distribute
across threadblocks and
threads within a block

• Dimensions of the data
structures have to be
passed to the present
clause
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GPP on GPU OpenACC Performance on Volta

Cray and PGI implementations of GPP using
OpenACC
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Performance of GPP on V100 with OpenACC • Cray is 3× slower than
PGI

• Cray is 50% slower than
optimized Xeon Phi
runtime
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Comparison of Performance on GPU Performance on Volta

Performance comparison of all GPU implementations
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Performance Comparison of GPP on V100

OpenACC(Cray)

OpenMP(Cray)

OpenACC(PGI)

OpenMP(Clang)

OpenMP(XL)

CUDA

• Dashed line is Xeon Phi
reference time

• Cray OpenMP and
OpenACC give similar
performance and is slower
than Xeon Phi

• CUDA is 2× faster than
the 2nd best
implementation
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CUDA Implementation of GPP cuda/10.0

CUDA Implementation of GPP

CUDA

for(X){ // blockIdx.x

for(N){ // blockIdx.y

for(M){ // threadIdx.x

for(int iw = 0; iw < 3; ++iw){

//Store local

}

}

output_re{0,1,2} += ... //Atomic

Add

output_im{0,1,2} += ... //Atomic

Add

}

}

• 2-dimensional grid for X and N
loops

• Distribute M-loop across threads in
a threadblock

• CUDA atomics to maintain
correctness

dim3 numBlocks(X,N,1);

dim3 numThreads(64,1,1);

gpp_kernel<<<numBlocks, nunThreads>>>;
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OpenMP Implementation to match CUDA Loop reordering

OpenMP loop re-reordering to match CUDA
implementation

CUDA

for(X){ // blockIdx.x

for(N){ // blockIdx.y

for(M){ // threadIdx.x

for(int iw = 0; iw < 3; ++iw){

//Store local

}

}

output_re{0,1,2} += ... //Atomic

output_im{0,1,2} += ... //Atomic

}

}

OpenMP

#pragma omp target teams distribute \

parallel for collapse(2) \

map(to:...) \

reduction(+:output re0,1,2, output im0,1,2)

for(N){

for(X){

for(M){

for(int iw = 0; iw < 3; ++iw){

//Store local

}

}

output_re{0,1,2} += ...

output_im{0,1,2} += ...

}

}
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Comparison of Performance on GPU Performance on Volta

Performance of GPP implementations after loop
reordering
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• OpenMP(XL and Clang)
are 2× faster after loop
re-ordering

• OpenACC(PGI) is 30%
faster

• OpenACC(Cray) is 3×
faster

• XL and Clang OpenMP
similar to optimized CUDA

GTC 2019 Rahul (NERSC-LBL) March 8, 2019 37 / 41



Performance Portability
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Performance Portability

Interpretation of OpenMP 4.5 dierctives on CPU

#pragma omp target enter data

map(alloc:input[0:X])

#pragma omp target update input[0:X])

#pragma omp target teams distribute \

parallel for collapse(2) \

map(tofrom:output re(0,1,2), output im(0,1,2)) \

reduction(+:output re(0,1,2), output im(0,1,2))

for(N){

for(X){

for(M){

for(int iw = 0; iw < 3; ++iw){

//Store local

}

}

output_re(0,1,2) += ...

output_im(0,1,2) += ...

}

}

#pragma omp target exit data map(delete:input)

• intel/2018 compilers

• teams - creates a single
team and associates all
threads to that team

◦ Reverse the order of X
and N loops and
distribute them across
threads

• Ignores other OpenMP 4.5
related directives, for
example device memory
allocation directives
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Performance Portability

Performance of GPU implementations on CPU
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GPU - clang compiler

CPU - intel/2018 compilers

• GPU optimized OpenMP is
10% slower than optimized
Xeon Phi

• CPU optimized OpenMP is
30× slower on Volta
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Conclusions

Summary of the Presentation

• Multiple implementations of OpenMP offloading gave us close to optimized
CUDA performance

◦ Differences in Compiler interpretations of OpenMP 4.5 offload directives

• Loop reordering might provide benefits due to change in data access patterns

• OpenACC had difficulty in CPU-vectorization

• Portable code but not performance portable
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