
Charlene Yang
Application Performance Specialist

NERSC, LBNL
cjyang@lbl.gov

S9624:

Performance Analysis of
GPU-Accelerated Applications

using the Roofline Model

GTC 2019, San Jose

Samuel Williams
Senior Staff Scientist

CRD, LBNL
swwilliams@lbl.gov

You just bought a $10,000
throughput-optimized GPU!

Are you making good use of
your investment?

1

You could just run benchmarks

§ Imagine a mix of benchmarks or
kernels…

Kernel (or apps)

§ GFLOP/s alone may not be
particularly insightful

§ Moreover, speedup relative to a
Xeon may seem random

2

G
FL

O
P/

s

Making good use of your GPU?

2. If in the throughput-limited regime, are you making good use of the
GPU’s compute and bandwidth capabilities?

1. Are you operating it in the throughput-limited regime?
o Not sensitive to Amdahl effects
o Not sensitive to D2H/H2D transfers
o Not sensitive to launch overheads
o Not sensitive to latencies

3

The Roofline Model

§ Roofline Model is a throughput-
oriented performance model

§ Premised on the interplay between
FLOP/s, bandwidth, and reuse

§ Tracks rates not times
§ Independent of ISA and architecture

(applies to CPUs, GPUs, Google
TPUs, etc…)

Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing
Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

4

(DRAM) Roofline

§ One could hope to always attain
peak performance (GFLOP/s)

§ However, finite locality (reuse)
and bandwidth limit performance.

§ Assume:
o Idealized processor/caches
o Cold start (data in DRAM)

#FLOPs / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s

GPU
(compute, GFLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

5

(DRAM) Roofline

§ One could hope to always attain
peak performance (GFLOP/s)

§ However, finite locality (reuse)
and bandwidth limit performance.

§ Assume:
o Idealized processor/caches
o Cold start (data in DRAM)

GPU
(compute, GFLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
Note, Arithmetic Intensity (AI) = FLOPs / Bytes (as presented to DRAM)

6

Arithmetic Intensity

§ Arithmetic Intensity is the most important concept in Roofline.

§ Measure of data locality (data reuse)
§ Ratio of Total FLOPs performed to Total Bytes moved
§ For the DRAM Roofline…

o Total Bytes to/from DRAM and includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested) due to cache reuse

7

(DRAM) Roofline

§ Plot Roofline bound using
Arithmetic Intensity as the x-axis

§ Log-log scale makes it easy to
doodle, extrapolate performance
along Moore’s Law, etc…

§ Kernels with AI less than
machine balance are ultimately
DRAM bound (we’ll refine this
later…)

Peak GFLOP/s

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak Gflop/s / Peak GB/s ==

‘Machine Balance’

8

DRAM-bound Compute-bound

Example

§ Consider 3 kernels (A,B,C)

Peak GFLOP/s

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

9

o calculate or measure the Arithmetic
Intensity for each

A

B
C

o Determine the Roofline intercept for
each kernel

Ø kernels A and B are bound by
memory bandwidth

Ø kernel C is bound by peak FLOP/s

Scaling to Future GPUs

§ Imagine you run on a future GPU
with twice the peak FLOPs…

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

10

Ø kernel C’s performance could double
✘ kernels A and B will be no faster

2x GFLOP/s

A

B

C

Scaling to Future GPUs

§ What if that future GPU also
doubled its memory bandwidth…

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

11

Ø kernel A and B’s performance could
also double

2x GFLOP/s

A

B
C

Why is Roofline Useful?

§ Think back to our mix of loop
nests where GFLOP/s alone
wasn’t useful…

Kernel (or apps)

12

G
FL

O
P/

s

Why is Roofline Useful?

§ We can sort kernels by AI …

Arithmetic Intensity (FLOP:Byte)

13

G
FL

O
P/

s

Why is Roofline Useful?

§ We can sort kernels by AI …
§ … and compare performance

relative to machine capabilities
Peak GFLOP/s

G
FL

O
P/

s

Arithmetic Intensity (FLOP:Byte)

14

Why is Roofline Useful?

§ Kernels near the roofline are
making good use of
computational resources…

Peak GFLOP/s

G
FL

O
P/

s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

15

Ø kernels can have low performance
(GFLOP/s), but make good use of a
machine

Ø kernels can have high performance
(GFLOP/s), but make poor use of a
machine

Can Performance Be Below Roofline?

§ Analogous to asking whether
one can always attain either…
o Peak Bandwidth
o Peak GFLOP/s

§ Sure, there can be other
performance bottlenecks…
o Cache bandwidth / locality
o Lack of FMA / tensor instructions
o Thread divergence / predication
o Too many non-FP instructions
o …

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

16

Cache Effects…

§ Hierarchical Roofline Model
§ Construct superposition of

Rooflines…
o Measure AI and bandwidth for each

level of memory/cache
o Loop nests will have multiple AI’s and

multiple performance bounds…
o … but performance is ultimately the

minimum of these bounds.

L2 Bound
L2 AI*BW

is less than
DDR AI*BW

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

17

Cache Effects…

§ Hierarchical Roofline Model
§ Construct superposition of

Rooflines…
o Measure AI and bandwidth for each

level of memory/cache
o Loop nests will have multiple AI’s and

multiple performance bounds…
o … but performance is ultimately the

minimum of these bounds.

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

18

§ Extend to other memories…
o L1 / Shared
o System

Insights – Exploiting Caches

§ Widely separated Arithmetic
Intensities indicate high reuse in
the cache

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

19

High Reuse

Insights – Exploiting Caches

§ Widely separated Arithmetic
Intensities indicate high reuse in
the cache

§ Similar Arithmetic Intensities
indicate effectively no cache
reuse (== streaming)

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

20

no reuse
(streaming)

§ As one changes problem size,
L2 and DRAM arithmetic
intensities can behave very
differently

Failure to Exploit CISC Instructions

§ Death of Moore’s Law is motivating a return of Complex Instruction
Set Computing (CISC)

Ø Performance is now a weighted average of Mul/Add, FMA, and
HMMA operations.

21

§ Modern CPUs and GPUs are increasingly reliant on special (fused)
instructions that perform multiple operations.
o FMA (Fused Multiply Add): z=a*x+y …z,x,y are vectors or scalars
o 4FMA (quad FMA): z=A*x+z …A is a FP32 matrix; x,z are vectors
o HMMA (Tensor Core): Z=AB+C …Z,A,B,C are FP16 matrices
o …

FMA.f64 Peak

Failure to Exploit CISC Instructions

§ Total lack of FMA reduces Volta
performance by 2x…
o creates ADD.f64 ceiling

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

ADD.f64 Ceiling
Partial FMA

§ In reality, applications are a mix
of FMA.f64, ADD.f64, and
MUL.f64…
o Performance is a weighted average
Ø Produces a partial FMA ceiling that

bounds kernel performance

22

HMMA.f16 Peak

Failure to Exploit CISC Instructions

§ On Volta, Tensor cores provide
125 TFLOPs of FP16
performance (vs. 15 for FP32)

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

ADD.f32 Ceiling

Partial HMMA
Ceiling

§ However, kernels/apps will mix
HMMA with FMA, MULs,
ADDs, …
Ø A few non-HMMA operations can

quickly limit Tensor core
performance

23

Using Roofline To Drive Optimization

Driving Performance Optimization

§ Broadly speaking, there are
three approaches to improving
performance:

Peak GFLOP/s

No FMA

G
FL

O
P/

s

Arithmetic Intensity (FLOP:Byte)

25

Driving Performance Optimization

§ Broadly speaking, there are
three approaches to improving
performance:

§ Maximize SM performance
(e.g. minimize predication)

Peak GFLOP/s

No FMA

G
FL

O
P/

s

Arithmetic Intensity (FLOP:Byte)

C
ur

re
nt

 A
I

26

Driving Performance Optimization

§ Broadly speaking, there are
three approaches to improving
performance:

§ Maximize SM performance (e.g.
minimize predication)

§ Maximize memory bandwidth
(e.g. avoid pathological
memory access patterns)

Peak GFLOP/s

No FMA

G
FL

O
P/

s

Arithmetic Intensity (FLOP:Byte)

C
ur

re
nt

 A
I

27

Driving Performance Optimization

§ Broadly speaking, there are
three approaches to improving
performance:

§ Maximize SM performance (e.g.
minimize predication)

§ Maximize memory bandwidth
(e.g. avoid pathological memory
access patterns)

§ Minimize data movement
(i.e. exploit reuse)

Peak GFLOP/s

No FMA

G
FL

O
P/

s

Arithmetic Intensity (FLOP:Byte)

C
om

pu
ls

or
y

AI

C
ur

re
nt

 A
I

28

Estimating Arithmetic Intensity

DRAM vs L1 Arithmetic Intensity

§ Consider a 7-point constant
coefficient stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o AI = 0.11 FLOPs per byte (L1)

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

GPU
(compute, GFLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

30

DRAM vs L1 Arithmetic Intensity

§ Consider a 7-point constant
coefficient stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Cache can filter all but 1 read and 1 write per point
o AI = 0.44 FLOPs per byte
#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

GPU
(compute, GFLOP/s)

Ideal Cache
(only compulsory misses)

Cache Bandwidth
(GB/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

31

DRAM vs L1 Arithmetic Intensity

§ Consider a 7-point constant
coefficient stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Cache can filter all but 1 read and 1 write per point
o AI = 0.44 FLOPs per byte == memory bound

At
ta

in
ab

le
 G

FL
O

P/
s

7-point
Stencil

GFLOP/s ≤ 0.44 * DRAM GB/s

Arithmetic Intensity (FLOP:Byte)
0.44

Peak GFLOP/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

32

!

Collecting Roofline Data with nvprof

General Roofline Data Collection
Most kernels are more complicated than the 7-point stencil…

34

General Roofline Data Collection
Most kernels are more complicated than the 7-point stencil…

How do we measure the total number of FLOPs?
How do we measure the total number of bytes moved (read/write, L1/L2/HBM)?
How do we measure the runtime for each kernel?

How do we know the peak bandwidth (L1/L2/HBM) and the peak FLOP/s for the
architecture?

35

General Roofline Data Collection
Most kernels are more complicated than the 7-point stencil…

How do we measure the total number of FLOPs?
How do we measure the total number of bytes moved (read/write, L1/L2/HBM)?
How do we measure the runtime for each kernel?

How do we know the peak bandwidth (L1/L2/HBM) and the peak FLOP/s for the
architecture?

36

Step 1. Collect Roofline Ceilings
§ Empirical Roofline Toolkit (ERT)

– Different than the architecture specs, MORE REALISTIC
– Reflects actual execution environment (power constraints, etc)
– Sweeps through a range of configurations, and statistically stable

o Data elements per thread
o FLOPs per data element
o Threadblocks/threads
o Trails per dataset
o etc

Empirical Roofline Toolkit (ERT). https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

job script

./ert config.txt

ert (Python)

create directories
loop over ERT_FLOPS, ERT_GPU_BLOCKS/THREADS

call driver, kernel

config.txt

ERT_FLOPS 1,2,4,8,16,32,64,128,256
ERT_GPU_BLOCKS 80,160,320,640,1280,2560
ERT_GPU_THREADS 64,128,256,512,1024
ERT_MEMORY_MAX 1073741824
ERT_WORKING_SET_MIN 128
ERT_TRIALS_MIN 1
...

Driver.c (uses some Macros from config.txt)

initialize MPI, CUDA
loop over dataset sizes <= ERT_MEMORY_MAX

loop over trial sizes >= ERT_TRIALS_MIN
cudaMemcpy
start timer
call kernel
end timer

Kernel.c

loop over ntrails
distribute dataset on threads and each

computes ERT_FLOPS

Kernel.h

ERT_FLOPS=1: a = b + c
ERT_FLOPS=2: a = a x b + c

job script
• submit the job and run it

config script
• set up ranges of parameters

Driver.c
• setup
• call kernels
• loop over parameters

Kernel.c
• actual compute
• customizable

ERT Configuration

38

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c
FLOPs / Byte

Empirical Roofline Graph (Results.cori.nersc.gov.03/Run.001)

7068.9 GFLOPs/sec (Maximum)

L1
 - 2

99
6.8

 G
B/s

DRAM - 8
28

.8
GB/s

ERT Output
roofline.json roofline.ps

39

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c
FLOPs / Byte

Empirical Roofline Graph (Results.cori.nersc.gov.03/Run.001)

7068.9 GFLOPs/sec (Maximum)

L1
 - 2

99
6.8

 G
B/s

DRAM - 8
28

.8
GB/s

ERT Output
roofline.json roofline.ps

NVIDIA V100 -- Voltar at UOregon

L2

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c
FLOPs / Byte

Empirical Roofline Graph (Results.cori.nersc.gov.03/Run.001)

7068.9 GFLOPs/sec (Maximum)

L1
 - 2

99
6.8

 G
B/s

DRAM - 8
28

.8
GB/s

ERT Output
roofline.json roofline.ps

NVIDIA V100 -- Voltar at UOregon

!

§ Theoretical FP64 compute ceilings on V100:
– FMA: 80 SMs x 32 FP64 cores x 1.53 GHz x 2 = 7.83 TFLOP/s
– no FMA: 80 SMs x 32 FP64 cores x 1.53 GHz = 3.92 TFLOP/s

§ Theoretical memory bandwidths on V100:
– HBM: 900 GB/s
– L2: ~4.1 TB/s
– L1: ~14 TB/s

§ You may never achieve 7.8 TFLOP/s

§ You may be closer to the ceiling
than you think you are

Discrepancy Empirical vs. Theoretical

10%

10%

Voltar at UOregon42

Step 2. Collect Application Performance

43

Step 2. Collect Application Performance

44

Where to put these dots?

Require three raw measurements:

– Runtime
– FLOPs
– Bytes (on each cache level)

to calculate AI and GFLOP/s:

Step 2. Collect Application Performance

Performance	=	
𝒏𝒗𝒑𝒓𝒐𝒇	FLOPs

Runtime
		

Arithmetic	Intensity	=	
𝒏𝒗𝒑𝒓𝒐𝒇	FLOPs

𝒏𝒗𝒑𝒓𝒐𝒇	Data	Movement

(GFLOP/s)

(FLOPs/Byte)

45

Where to put these dots?

Collect Application Performance
§ Runtime:

– Time per invocation of a kernel
nvprof --print-gpu-trace ./application

– Average time over multiple invocations
nvprof --print-gpu-summary ./application

– Same kernel with different input parameters are grouped separately

§ FLOPs:
– Predication aware and complex-operation aware (such as divides)
– nvprof --kernels ‘kernel_name’ --metrics ‘flop_count_xx’

./application

– e.g. flop_count_{dp/dp_add/dp_mul/dp_fma, sp*, hp*}

46

Collect Application Performance
§ Bytes for different cache levels in order to construct hierarchical Roofline:

– Bytes = (read transactions + write transactions) x transaction size
– nvprof --kernels ‘kernel_name’ --metrics ‘metric_name’

./application

§ Note: surface and texture transactions are ignored here for simplicity (HPC applications)

Level Metrics Transaction
Size

First Level Cache*
gld_transactions, gst_transactions, atomic_transactions,
local_load_transactions, local_store_transactions,
shared_load_transactions, shared_store_transactions

32B

Second Level Cache l2_read_transactions, l2_write_transactions 32B
Device Memory dram_read_transactions, dram_write_transactions 32B
System Memory system_read_transactions, system_write_transactions 32B

47

Example Output
[cjyang@voltar source]$ nvprof --kernels "1:7:smooth_kernel:1" --metrics
flop_count_dp --metrics gld_transactions --metrics gst_transactions --
metrics l2_read_transactions --metrics l2_write_transactions --metrics
dram_read_transactions --metrics dram_write_transactions --metrics
sysmem_read_bytes --metrics sysmem_write_bytes ./hpgmg-fv-fp 5 8

§ Export to CSV: --csv -o nvprof.out

48

context : stream : kernel : invocation

Step 3. Plot Roofline with Python
§ Calculate Arithmetic Intensity and GFLOP/s performance

– x coordinate: Arithmetic Intensity
– y coordinate: GFLOP/s performance

§ Plot Roofline with Python Matplotlib
– Example scripts:
– https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting
– Tweak as needed for more complex Rooflines

Performance	=	
𝒏𝒗𝒑𝒓𝒐𝒇	FLOPs

Runtime
		, Arithmetic	Intensity	=	

𝒏𝒗𝒑𝒓𝒐𝒇	FLOPs
𝒏𝒗𝒑𝒓𝒐𝒇	Data	Movement(GFLOP/s) (FLOPs/Byte)

49

Plot Roofline with Python
§ Quick example: plot_roofline.py data.txt

§ Accepts space-delimited list for values
§ Use quotes to separate names/labels

data.txt

all data is space delimited
memroofs 14336.0 2996.8 828.758
mem_roof_names ‘L1’ ‘L2’ ‘HBM’
comproofs 7068.86 3535.79
comp_roof_names ‘FMA’ ‘No-FMA’

omit the following if only plotting roofs
AI: arithmetic intensity; GFLOPs: performance
AI 0.87 2.25 2.58
GFLOPs 2085.756683
labels ‘Kernel’

50

Recap: Methodology to Construct Roofline

1. Collect Roofline ceilings
– ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
– compute (FMA/no FMA) and bandwidth (DRAM, L2, …)

2. Collect application performance
– nvprof: --metrics, --events, --print-gpu-trace
– FLOPs, bytes (DRAM, L2, …), runtime

3. Plot Roofline with Python Matplotlib
– arithmetic intensity, GFLOP/s performance, ceilings
– example scripts: https://github.com/cyanguwa/nersc-roofline

51

Recap: Methodology to Construct Roofline

1. Collect Roofline ceilings
– ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
– compute (FMA/no FMA) and bandwidth (DRAM, L2, …)

2. Collect application performance
– nvprof: --metrics, --events, --print-gpu-trace
– FLOPs, bytes (DRAM, L2, …), runtime

3. Plot Roofline with Python Matplotlib
– arithmetic intensity, GFLOP/s performance, ceilings
– example scripts: https://github.com/cyanguwa/nersc-roofline

52

Recap: Methodology to Construct Roofline

1. Collect Roofline ceilings
– ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
– compute (FMA/no FMA) and bandwidth (DRAM, L2, …)

2. Collect application performance
– nvprof: --metrics, --events, --print-gpu-trace
– FLOPs, bytes (DRAM, L2, …), runtime

3. Plot Roofline with Python Matplotlib
– arithmetic intensity, GFLOP/s performance, ceilings
– example scripts: https://github.com/cyanguwa/nersc-roofline

53

Recap: Methodology to Construct Roofline

1. Collect Roofline ceilings
– ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
– compute (FMA/no FMA) and bandwidth (DRAM, L2, …)

2. Collect application performance
– nvprof: --metrics, --events, --print-gpu-trace
– FLOPs, bytes (DRAM, L2, …), runtime

3. Plot Roofline with Python Matplotlib
– arithmetic intensity, GFLOP/s performance, ceilings
– example scripts: https://github.com/cyanguwa/nersc-roofline

54

Roofline Analysis with Use Cases

Code Example 1: GPP
§ GPP (General Plasmon Pole) kernel from BerkeleyGW (Material Science)
§ https://github.com/cyanguwa/BerkeleyGW-GPP
§ Medium problem size: 512 2 32768 20

§ Tensor-contraction, abundant parallelism, large reductions
§ Low FMA counts, divides, complex double data type, HBM data 1.5GB

do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do ig = 1, ncouls #threadIdx.x
do iw = 1, nw #unrolled

compute; reductions

Pseudo Code

56

Code Example 1: GPP
§ Three experiments:

§ Note that nvprof has already taken care of
– Appropriate counting of FLOPs for complex instructions

• div, exp, log and sin/cos should be counted as multiple FLOPs rather than 1
– Appropriate counting of FLOPs for predicated-out threads

• FLOPs are only counted on non-predicated threads

57

Vary nw from 1 to 6 To study impact of varying Arithmetic Intensity on performance
Compile w/wo FMA To study impact of instruction mix on performance on performance
Stride ig loop To study impact of suboptimal memory coalescing on performance

Code Example 1: GPP
§ Highly parameterizable

1. Varying nw from 1 to 6 to increase arithmetic intensity
• FLOPs increases, but data movement stays (at least for HBM)

2. Compiling with and without FMA
• -fmad=true/false

do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do ig = 1, ncouls #threadsIdx.x
do iw = 1, nw #unrolled

compute; reductions

Pseudo Code

58

Code Example 1: GPP
§ Highly parameterizable

3. Striding ig loop to analyze impact of suboptimal memory coalescing
• Split ig loop to two loops and place the ‘blocking’ loop outside

do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do igs = 0, stride - 1
do ig = 1, ncouls/stride #threadIdx.x

do iw = 1, nw #unrolled
compute; reductions

Stride 2
Pseudo Code

59

Code Example 1: GPP
§ Experiments 1: study the impact of varying AI on performance

§ HBM Roofline, i.e. bytes are HBM bytes
– AI increases as nw grows
– GPP moves from a bandwidth bound

region to a compute bound region

§ Roofline captures the change in AI

60

Code Example 1: GPP
§ Experiments 1 & 2: study the impact of instruction mix on performance

§ HBM Roofline, i.e. bytes are HBM bytes
– No-FMA performance converges

to the no-FMA ceiling, but FMA
performance is still far from the
FMA ceiling

– Not reaching FMA ceiling due to lack
of FMA instructions

§ Roofline captures effects of instruction mix

61

Code Example 1: GPP
§ Experiments 1 & 2: study the impact of instruction mix on performance

§ At nw=6, GPP has of FMA instructions

§ Expected performance is

of compute peak.

But at nw=6, GPP is only achieving 66%.

§ Other FP/non-FP instructions may be taking
up the instruction issue/execution pipeline

§ Partial Roofline can show you the headroom

𝜶 =
FMA	FP64	instr.	

FMA	FP64	instr.	+	non-FMA	FP64	instr.
= 𝟔𝟎%

𝜷 =
α	×	2	+	(1	−	𝜶)	

2	
= 𝟖𝟎%

62

Code Example 1: GPP
§ Experiments 1 & 2: What else is going on?

§ Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
– GPP is HBM bound at low nw’s and compute bound at high nw’s
– FLOPs ∝ nw

– HBM bytes: constant
– L2 bytes: increasing at 𝛼 > 1
– L1 bytes: constant
– Spike in L2 curve at nw=2, 3

§ Hierarchical Roofline captures more details
about cache locality

63

Code Example 1: GPP
§ Experiment 3: study the effects of suboptimal memory coalescing

– nw=6

§ Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
– L1/L2 bytes doubles from stride 1 to 2,

but stays almost constant afterwards
– at nw=6, GPP moves from compute

bound to bandwidth bound
– Eventually all dots converge to HBM

§ Roofline captures effects of memory coalescing

64

Code Example 2: HPGMG
§ HPGMG (High-performance Geometric Multigrid) from Adaptive Mesh Refinement codes
§ https://bitbucket.org/nsakharnykh/hpgmg-cuda

§ Stencil code, F-cycles and V-cycles, GSRB smoother kernel (Gauss-Seidel Red-Black)

HPGMG. https://devblogs.nvidia.com/high-performance-geometric-multi-grid-gpu-acceleration/

Code Example 2: HPGMG
§ Hybrid GPU and CPU code

– Example: hpgmg-fv 7 8

– 1283 box x 8, Level 5-8 run on GPU, Level 1-4 on CPU

§ Three versions of GSRB kernel
– GSRB_FP, GSRB_BRANCH, GSRB_STRIDE2

66

Code Example 2: HPGMG

GSRB_FP

for(int k=klo; k<(klo+kdim); k++){
const int ijk = i + j*jStride + k*kStride;
const double *__restrict__ RedBlack =

level.RedBlack_FP + ghosts*(1+jStride)
+((k^color000)&1)*kStride;

const double Ax = apply_op_ijk();
const double lambda = Dinv_ijk();
const int ij = i + j*jStride;
xo[ijk] = X(ijk) + RedBlack[ij]*lambda*(rhs[ijk]-Ax);

}

1 0 1 0 1 0 1 0

8 elements

8 threadsSweep

67

Code Example 2: HPGMG
GSRB_FP

§ Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes

§ Highly bandwidth bound, inherent to stencil codes
§ From Level 5 to Level 8:

– AI slightly increases due to
better Surface: Volume ratio

– More HBM bound as more
data is read in

§ Roofline captures computational
characteristics of the algorithm

68

Code Example 2: HPGMG

§ GSRB_BRANCH has half the FLOPs as GSRB_FP but the same HBM/L1/L2 bytes

GSRB_FP

for(int k=klo; k<(klo+kdim); k++){
const int ijk = i + j*jStride + k*kStride;
const double *__restrict__ RedBlack =

level.RedBlack_FP + ghosts*(1+jStride)
+((k^color000)&1)*kStride;

const double Ax = apply_op_ijk();
const double lambda = Dinv_ijk();
const int ij = i + j*jStride;
xo[ijk] = X(ijk) + RedBlack[ij]*lambda*(rhs[ijk]-Ax);

}

GSRB_BRANCH

for(int k=klo; k<klo+kdim; k++){
const int ijk = i + j*jStride + k*kStride;
if(((i^j^k^color000^1)&1)){

const double Ax = apply_op_ijk();
const double lambda = Dinv_ijk();
xo[ijk] = X(ijk) + lambda*(rhs[ijk]-Ax);

}else{
xo[ijk] = X(ijk);

}
}

1 0 1 0 1 0 1 0

8 elements

1 1 1 1

8 elements

8 threads 8 threadsSweep

69

Code Example 2: HPGMG
GSRB_FP vs. GSRB_BRANCH
§ FLOPs halves, bytes doesn’t change, thus AI halves and GFLOP/s halves
§ Runtime is comparable even though GFLOP/s has halved
§ Same number of threads occupied, only with half predicated in GSRB_BRANCH

70

§ GSRB_STRIDE2 should have the same FLOPs as GSRB_BRANCH, but same bytes?
More writes than GSRB_BRANCH?

Code Example 2: HPGMG
GSRB_STRIDE2

for(int k=klo; k<klo+kdim; k++){
i = ilo +!((ilo^j^k^color000)&1) + threadIdx.x*2;
if(i < ilo+idim){
const int ijk = i + j*jStride + k*kStride;
xo[ijk] = X(ijk);

}
i = ilo + ((ilo^j^k^color000)&1) + threadIdx.x*2;
if(i < ilo+idim){
const int ijk = i + j*jStride + k*kStride;
const double Ax = apply_op_ijk();
const double lambda = Dinv_ijk();
xo[ijk] = X(ijk) + lambda*(rhs[ijk]-Ax);

}
}

1
0W
1
0W
1
0W
1
0W

8 elements

4 threads

71

Code Example 2: HPGMG
GSRB_BRANCH vs. GSRB_STRIDE2
§ Extra writes in GSRB_STRIDE2 cause more capacity misses in L2, leading to AI drop

on L2 and DRAM, starting from Level 7 (data size ≈ L2 cache size)
§ Runtime almost doubled and GFLOP/s halved

72

!

Conclusions

§ Roofline can gracefully capture various aspects of application performance and
architecture characteristics such as arithmetic intensity, instruction mix, memory
coalescing and thread predication.

§ The proposed methodology is effective in collecting machine characteristics and
application data on NVIDIA GPUs to construct hierarchical Roofline.

§ The Roofline model provides insights that profilers alone can not:
– identify the most immediate bottleneck
– prioritize optimization efforts
– tell you when you can stop

73

!

Reference
§ S. Williams, A. Waterman and D. Patterson, “Roofline: An insightful visual

performance model for multicore architectures,” Communications of the ACM, vol.
52, no. 4, pp. 65–76, 2009

§ Empirical Roofline Toolkit (ERT): https://bitbucket.org/berkeleylab/cs-roofline-toolkit
§ Example scripts for plotting Roofline: https://github.com/cyanguwa/nersc-roofline
§ General Plasmon Pole kernel: https://github.com/cyanguwa/BerkeleyGW-GPP
§ HPGMG-CUDA kernel: https://bitbucket.org/nsakharnykh/hpgmg-cuda

74

Acknowledgement
§ This material is based upon work supported by the Advanced Scientific Computing

Research Program in the U.S. Department of Energy, Office of Science, under
Award Number DE-AC02-05CH11231.

§ This material is based upon work supported by the DOE RAPIDS SciDAC Institute.

§ This research used resources of the National Energy Research Scientific Computing
Center (NERSC), which is supported by the Office of Science of the U.S.
Department of Energy under contract DE-AC02- 05CH11231.

75

Thank You!

