S9624:

Performance Analysis of GPU-Accelerated Applications using the Roofline Model

GTC 2019, San Jose

Charlene Yang
Application Performance Specialist
NERSC, LBNL
cjyang@lbl.gov

Samuel Williams
Senior Staff Scientist
CRD, LBNL
swwilliams@lbl.gov

You just bought a \$10,000 throughput-optimized GPU!

Are you making good use of your investment?

You could just run benchmarks

- Imagine a mix of benchmarks or kernels...
- GFLOP/s alone may not be particularly insightful
- Moreover, speedup relative to a Xeon may seem random

Making good use of your GPU?

- 1. Are you operating it in the throughput-limited regime?
 - Not sensitive to Amdahl effects
 - Not sensitive to D2H/H2D transfers
 - Not sensitive to launch overheads
 - Not sensitive to latencies
- 2. If in the throughput-limited regime, are you making good use of the GPU's compute and bandwidth capabilities?

The Roofline Model

- Roofline Model is a throughputoriented performance model
- Premised on the interplay between FLOP/s, bandwidth, and reuse
- Tracks <u>rates</u> not times
- Independent of ISA and architecture (applies to CPUs, GPUs, Google TPUs, etc...)

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

Jouppi et al, "In-Datacenter Performance Analysis of a Tensor Processing Unit", ISCA, 2017.

(DRAM) Roofline

- One could hope to always attain peak performance (GFLOP/s)
- However, finite locality (reuse)
 and bandwidth limit performance.
- Assume:
 - Idealized processor/caches
 - Cold start (data in DRAM)

(DRAM) Roofline

- One could hope to always attain peak performance (GFLOP/s)
- However, finite locality (reuse)
 and bandwidth limit performance.
- Assume:
 - Idealized processor/caches
 - Cold start (data in DRAM)

Note, Arithmetic Intensity (AI) = FLOPs / Bytes (as presented to DRAM)

Arithmetic Intensity

- Arithmetic Intensity is the most important concept in Roofline.
- Measure of data locality (data reuse)
- Ratio of <u>Total FLOPs</u> performed to <u>Total Bytes</u> moved
- For the DRAM Roofline...
 - Total Bytes to/from DRAM and includes all cache and prefetcher effects
 - Can be very different from total loads/stores (bytes requested) due to cache reuse

(DRAM) Roofline

- Plot Roofline bound using
 Arithmetic Intensity as the x-axis
- Log-log scale makes it easy to doodle, extrapolate performance along Moore's Law, etc...
- Kernels with Al less than machine balance are ultimately DRAM bound (we'll refine this later...)

Example

- Consider 3 kernels (A,B,C)
 - calculate or measure the Arithmetic
 Intensity for each
 - Determine the Roofline intercept for each kernel
 - kernels A and B are bound by memory bandwidth
 - kernel C is bound by peak FLOP/s

Scaling to Future GPUs

- Imagine you run on a future GPU with twice the peak FLOPs...
 - kernel C's performance could double
 - **X** kernels A and B will be no faster

Scaling to Future GPUs

- What if that future GPU also doubled its memory bandwidth...
 - kernel A and B's performance could also double

 Think back to our mix of loop nests where GFLOP/s alone wasn't useful...

We can sort kernels by Al ...

- We can sort kernels by AI ...
- and compare performance relative to machine capabilities

- Kernels near the roofline are making good use of computational resources...
 - kernels can have low performance (GFLOP/s), but make good use of a machine
 - kernels can have high performance (GFLOP/s), but make <u>poor</u> use of a machine

Can Performance Be Below Roofline?

- Analogous to asking whether one can always attain either...
 - Peak Bandwidth
 - Peak GFLOP/s
- Sure, there can be other performance bottlenecks...
 - Cache bandwidth / locality
 - Lack of FMA / tensor instructions
 - Thread divergence / predication
 - Too many non-FP instructions

Cache Effects...

- Hierarchical Roofline Model
- Construct superposition of Rooflines...
 - Measure AI and bandwidth for each level of memory/cache
 - Loop nests will have multiple Al's and multiple performance bounds...
 - ... but performance is ultimately the minimum of these bounds.

Cache Effects...

- Hierarchical Roofline Model
- Construct superposition of Rooflines...
 - Measure AI and bandwidth for each level of memory/cache
 - Loop nests will have multiple Al's and multiple performance bounds...
 - ... but performance is ultimately the minimum of these bounds.
- Extend to other memories...
 - o L1 / Shared
 - System

Arithmetic Intensity (FLOP:Byte)

Insights – Exploiting Caches

Widely separated Arithmetic
 Intensities indicate high reuse in the cache

Insights – Exploiting Caches

- Widely separated Arithmetic
 Intensities indicate high reuse in the cache
- Similar Arithmetic Intensities indicate effectively no cache reuse (== streaming)
- As one changes problem size,
 L2 and DRAM arithmetic
 intensities can behave very
 differently

Failure to Exploit CISC Instructions

- Death of Moore's Law is motivating a return of Complex Instruction Set Computing (CISC)
- Modern CPUs and GPUs are increasingly reliant on special (fused) instructions that perform multiple operations.

```
    FMA (Fused Multiply Add): z=a*x+y ...z,x,y are vectors or scalars
```

○ 4FMA (quad FMA): z=A*x+z ... A is a FP32 matrix; x,z are vectors

HMMA (Tensor Core):
 Z=AB+C
 Z,A,B,C are FP16 matrices

0 ...

Performance is now a weighted average of Mul/Add, FMA, and HMMA operations.

Failure to Exploit CISC Instructions

- Total lack of FMA reduces Volta performance by 2x...
 - creates ADD.f64 <u>ceiling</u>
- In reality, applications are a mix of FMA.f64, ADD.f64, and MUL.f64...
 - Performance is a weighted average
 - Produces a partial FMA ceiling that bounds kernel performance

Failure to Exploit CISC Instructions

- On Volta, Tensor cores provide
 125 TFLOPs of FP16
 performance (vs. 15 for FP32)
- However, kernels/apps will mix HMMA with FMA, MULs, ADDs, ...
 - A few non-HMMA operations can quickly limit Tensor core performance

Using Roofline To Drive Optimization

 Broadly speaking, there are three approaches to improving performance:

- Broadly speaking, there are three approaches to improving performance:
- Maximize SM performance (e.g. minimize predication)

- Broadly speaking, there are three approaches to improving performance:
- Maximize SM performance (e.g. minimize predication)
- Maximize memory bandwidth (e.g. avoid pathological memory access patterns)

- Broadly speaking, there are three approaches to improving performance:
- Maximize SM performance (e.g. minimize predication)
- Maximize memory bandwidth (e.g. avoid pathological memory access patterns)
- Minimize data movement (i.e. exploit reuse)

Estimating Arithmetic Intensity

DRAM vs L1 Arithmetic Intensity

- Consider a 7-point constant coefficient stencil...
 - 7 FLOPs
 - 8 memory references (7 reads, 1 store) per point
 - AI = 0.11 FLOPs per byte (L1)

DRAM vs L1 Arithmetic Intensity

- Consider a 7-point constant coefficient stencil...
 - o 7 FLOPs
 - 8 memory references (7 reads, 1 store) per point
 - Cache can filter all but 1 read and 1 write per point
 - AI = 0.44 FLOPs per byte

DRAM vs L1 Arithmetic Intensity

- Consider a 7-point constant coefficient stencil...
 - 7 FLOPs
 - o 8 memory references (7 reads, 1 store) per point
 - Cache can filter all but 1 read and 1 write per point
 - AI = 0.44 FLOPs per byte == memory bound

Collecting Roofline Data with nvprof

General Roofline Data Collection

Most kernels are more complicated than the 7-point stencil...

General Roofline Data Collection

Most kernels are more complicated than the 7-point stencil...

How do we measure the total number of FLOPs? How do we measure the total number of bytes moved (read/write, L1/L2/HBM)? How do we measure the runtime for each kernel?

How do we know the peak bandwidth (L1/L2/HBM) and the peak FLOP/s for the architecture?

General Roofline Data Collection

Most kernels are more complicated than the 7-point stencil...

How do we measure the total number of FLOPs?

How do we measure the total number of bytes moved (read/write, L1/L2/HBM)?

How do we measure the runtime for each kernel?

How do we know the peak bandwidth (L1/L2/HBM) and the peak FLOP/s for the architecture?

Step 1. Collect Roofline Ceilings

Empirical Roofline Toolkit (ERT)

- Different than the architecture specs, MORE REALISTIC
- Reflects actual execution environment (power constraints, etc)
- Sweeps through a range of configurations, and statistically stable
 - Data elements per thread
 - FLOPs per data element
 - Threadblocks/threads
 - Trails per dataset
 - o etc

ERT Configuration

Kernel.c

- actual compute
- customizable

Driver.c

- setup
- call kernels
- loop over parameters

config script

set up ranges of parameters

job script

submit the job and run it

ERT Output

roofline.json

roofline.ps

ERT Output

roofline.json

roofline.ps

ERT Output

roofline.json

Discrepancy Empirical vs. Theoretical

Theoretical FP64 compute ceilings on V100:

- FMA: 80 SMs x 32 FP64 cores x 1.53 GHz x 2 = 7.83 TFLOP/s

- no FMA: $80 \text{ SMs } \times 32 \text{ FP64 cores } \times 1.53 \text{ GHz} = 3.92 \text{ TFLOP/s}$

Theoretical memory bandwidths on V100:

- HBM: 900 GB/s

- L2: ~4.1 TB/s

- L1: ~14 TB/s

You may never achieve 7.8 TFLOP/s

 You may be closer to the ceiling than you think you are

Step 2. Collect Application Performance

Step 2. Collect Application Performance

Step 2. Collect Application Performance

Require three raw measurements:

- Runtime
- FLOPs
- Bytes (on each cache level)

to calculate AI and GFLOP/s:

Arithmetic Intensity =
$$\frac{nvprof \text{ FLOPs}}{nvprof \text{ Data Movement}}$$

$$\frac{\text{Performance}}{\text{(GFLOP/s)}} = \frac{nvprof \text{ FLOPs}}{\text{Runtime}}$$

Collect Application Performance

Runtime:

Time per invocation of a kernel

```
nvprof --print-gpu-trace ./application
```

Average time over multiple invocations

```
nvprof --print-gpu-summary ./application
```

Same kernel with different input parameters are grouped separately

FLOPs:

- Predication aware and complex-operation aware (such as divides)
- nvprof --kernels 'kernel_name' --metrics 'flop_count_xx'
 ./application
- e.g. flop_count_{dp/dp_add/dp_mul/dp_fma, sp*, hp*}

Collect Application Performance

- Bytes for different cache levels in order to construct hierarchical Roofline:
 - Bytes = (read transactions + write transactions) x transaction size
 - nvprof --kernels 'kernel_name' --metrics 'metric_name'
 ./application

Level	Metrics	Transaction Size
First Level Cache*	<pre>gld_transactions, gst_transactions, atomic_transactions, local_load_transactions, local_store_transactions, shared_load_transactions, shared_store_transactions</pre>	32B
Second Level Cache	12_read_transactions, 12_write_transactions	32B
Device Memory	Device Memory dram_read_transactions, dram_write_transactions	
System Memory	<pre>system_read_transactions, system_write_transactions</pre>	32B

Note: surface and texture transactions are ignored here for simplicity (HPC applications)

Example Output


```
[cjyang@voltar source]$ nvprof --kernels "1:7:smooth_kernel:1" --metrics flop_count_dp --metrics gld_transactions --metrics gst_transactions --metrics 12_read_transactions --metrics 12_write_transactions --metrics dram_read_transactions --metrics dram_write_transactions --metrics sysmem_read_bytes --metrics sysmem_write_bytes ./hpgmg-fv-fp 5 8
```

Export to CSV: --csv -o nvprof.out

context: stream: kernel: invocation

Invocations	Metric Name		Metric Description	Min	Max	Avg
Device "Tesla V100-PCIE-	-16GB (0)"					
Kernel: void smooth_	_kernel <int=6, i<="" int="4," td=""><td>int=8>(level_type,</td><td>, int, int, double, double, int,</td><td>double*,</td><td>double*)</td><td></td></int=6,>	int=8>(level_type,	, int, int, double, double, int,	double*,	double*)	
1	flop_count_dp	Floating Point	Operations(Double Precision)	30277632	30277632	30277632
1	gld_transactions		Global Load Transactions	4280320	4280320	4280320
1	gst_transactions		Global Store Transactions	73728	73728	73728
1	12_read_transactions		L2 Read Transactions	890596	890596	890596
1	12_write_transactions		L2 Write Transactions	85927	85927	85927
1	dram_read_transactions		ice Memory Read Transactions	702911	702911	702911
1	dram_write_transactions	Devi	ice Memory Write Transactions	151487	151487	151487
1	sysmem_read_bytes		System Memory Read Bytes	Θ	0	9
1	sysmem_write_bytes		System Memory Write Bytes	160	160	160

Step 3. Plot Roofline with Python

- Calculate Arithmetic Intensity and GFLOP/s performance
 - x coordinate: Arithmetic Intensity
 - y coordinate: GFLOP/s performance

$$\frac{\text{Performance}}{\text{(GFLOP/s)}} = \frac{nvprof \text{ FLOPs}}{\text{Runtime}} \text{,} \quad \frac{\text{Arithmetic Intensity}}{\text{(FLOPs/Byte)}} = \frac{nvprof \text{ FLOPs}}{nvprof \text{ Data Movement}}$$

- Plot Roofline with Python Matplotlib
 - Example scripts:
 - https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting
 - Tweak as needed for more complex Rooflines

Plot Roofline with Python

• Quick example:

- plot roofline.py data.txt
- Accepts space-delimited list for values
- Use quotes to separate names/labels

```
data.txt

# all data is space delimited
memroofs 14336.0 2996.8 828.758
mem_roof_names `L1' `L2' `HBM'
comproofs 7068.86 3535.79
comp_roof_names `FMA' `No-FMA'

# omit the following if only plotting roofs
# AI: arithmetic intensity; GFLOPs: performance
AI 0.87 2.25 2.58
GFLOPs 2085.756683
labels `Kernel'
```


1. Collect Roofline ceilings

- ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
- compute (FMA/no FMA) and bandwidth (DRAM, L2, ...)

2. Collect application performance

- nvprof: --metrics, --events, --print-gpu-trace
- FLOPs, bytes (DRAM, L2, ...), runtime

- arithmetic intensity, GFLOP/s performance, ceilings
- example scripts: https://github.com/cyanguwa/nersc-roofline

1. Collect Roofline ceilings

- ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
- compute (FMA/no FMA) and bandwidth (DRAM, L2, ...)

2. Collect application performance

- nvprof: --metrics, --events, --print-gpu-trace
- FLOPs, bytes (DRAM, L2, ...), runtime

- arithmetic intensity, GFLOP/s performance, ceilings
- example scripts: https://github.com/cyanguwa/nersc-roofline

1. Collect Roofline ceilings

- ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
- compute (FMA/no FMA) and bandwidth (DRAM, L2, ...)

2. Collect application performance

- nvprof: --metrics, --events, --print-gpu-trace
- FLOPs, bytes (DRAM, L2, ...), runtime

- arithmetic intensity, GFLOP/s performance, ceilings
- example scripts: https://github.com/cyanguwa/nersc-roofline

1. Collect Roofline ceilings

- ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
- compute (FMA/no FMA) and bandwidth (DRAM, L2, ...)

2. Collect application performance

- nvprof: --metrics, --events, --print-gpu-trace
- FLOPs, bytes (DRAM, L2, ...), runtime

- arithmetic intensity, GFLOP/s performance, ceilings
- example scripts: https://github.com/cyanguwa/nersc-roofline

Roofline Analysis with Use Cases

- GPP (General Plasmon Pole) kernel from BerkeleyGW (Material Science)
- https://github.com/cyanguwa/BerkeleyGW-GPP
- Medium problem size: 512 2 32768 20
- Tensor-contraction, abundant parallelism, large reductions
- Low FMA counts, divides, complex double data type, HBM data 1.5GB

Pseudo Code

Three experiments:

Vary nw from 1 to 6	To study impact of varying Arithmetic Intensity on performance
Compile w/wo FMA	To study impact of instruction mix on performance on performance
Stride ig loop	To study impact of suboptimal memory coalescing on performance

- Note that nvprof has already taken care of
 - Appropriate counting of FLOPs for complex instructions
 - div, exp, log and sin/cos should be counted as multiple FLOPs rather than 1
 - Appropriate counting of FLOPs for predicated-out threads
 - FLOPs are only counted on non-predicated threads

- Highly parameterizable
 - 1. Varying **nw** from 1 to 6 to increase arithmetic intensity
 - FLOPs increases, but data movement stays (at least for HBM)

Pseudo Code

- 2. Compiling with and without FMA
 - -fmad=true/false

- Highly parameterizable
 - 3. Striding ig loop to analyze impact of suboptimal memory coalescing
 - Split ig loop to two loops and place the 'blocking' loop outside

Pseudo Code

```
do band = 1, nbands  #blockIdx.x
  do igp = 1, ngpown  #blockIdx.y

  do igs = 0, stride - 1
      do ig = 1, ncouls/stride #threadIdx.x
      do iw = 1, nw  #unrolled
      compute; reductions
```

Stride 2

- Experiments 1: study the impact of varying AI on performance
- HBM Roofline, i.e. bytes are HBM bytes
 - Al increases as nw grows
 - GPP moves from a bandwidth bound region to a compute bound region

Roofline captures the change in Al

- Experiments 1 & 2: study the impact of instruction mix on performance
- HBM Roofline, i.e. bytes are HBM bytes
 - No-FMA performance converges to the no-FMA ceiling, but FMA performance is still far from the FMA ceiling
 - Not reaching FMA ceiling due to lack of FMA instructions
- Roofline captures effects of instruction mix

- **Experiments 1 & 2:** study the impact of instruction mix on performance
- At nw=6, GPP has $\alpha = \frac{\text{FMA FP64 instr.}}{\text{FMA FP64 instr.} + \text{non-FMA FP64 instr.}} = 60\%$ of FMA instructions

$$\beta = \frac{\alpha \times 2 + (1 - \alpha)}{2} = 80\%$$
 of compute peak.

- up the instruction issue/execution pipeline
- Partial Roofline can show you the headroom

- Experiments 1 & 2: What else is going on?
- Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
 - GPP is HBM bound at low nw's and compute bound at high nw's

 - HBM bytes: constant
 - L2 bytes: increasing at $\alpha > 1$
 - L1 bytes: constant
 - Spike in L2 curve at nw=2, 3

 Hierarchical Roofline captures more details about cache locality

- Experiment 3: study the effects of suboptimal memory coalescing
 - **nw**=6
- Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
 - L1/L2 bytes doubles from stride 1 to 2,
 but stays almost constant afterwards
 - at nw=6, GPP moves from compute
 bound to bandwidth bound
 - Eventually all dots converge to HBM

Roofline captures effects of memory coalescing

Performance [GFLOP/sec]

- HPGMG (High-performance Geometric Multigrid) from Adaptive Mesh Refinement codes
- https://bitbucket.org/nsakharnykh/hpgmg-cuda
- Stencil code, F-cycles and V-cycles, GSRB smoother kernel (Gauss-Seidel Red-Black)

- Hybrid GPU and CPU code
 - Example: hpgmg-fv 7 8
 - 128³ box x 8, Level 5-8 run on GPU, Level 1-4 on CPU
- Three versions of GSRB kernel
 - GSRB_FP, GSRB_BRANCH, GSRB_STRIDE2


```
GSRB FP
for(int k=klo; k<(klo+kdim); k++){</pre>
  const int ijk = i + j*jStride + k*kStride;
  const double * restrict RedBlack =
      level.RedBlack FP + ghosts*(1+jStride)
      +((k^color000)&1)*kStride;
  const double Ax = apply_op_ijk();
  const double lambda = Dinv ijk();
  const int ij = i + j*jStride;
 xo[ijk] = X(ijk) ** RedBlack[ij] *lambda*(rhs[ijk]-Ax);
```


Sweep

GSRB_FP

- Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
- Highly bandwidth bound, inherent to stencil codes
- From Level 5 to Level 8:
 - Al slightly increases due to better Surface: Volume ratio
 - More HBM bound as more data is read in

 Roofline captures computational characteristics of the algorithm

V100, HPGMG, GSRB FJ

 10^{3}


```
GSRB_FP

for(int k=klo; k<(klo+kdim); k++) {
  const int ijk = i + j*jStride + k*kStride;
  const double *__restrict__ RedBlack =
        level.RedBlack_FP + ghosts*(1+jStride)
        +((k^color000)&1)*kStride;
  const double Ax = apply_op_ijk();
  const double lambda = Dinv_ijk();
  const int ij = i + j*jStride;
  xo[ijk] = X(ijk) + RedBlack[ij]*lambda*(rhs[ijk]-Ax);
}</pre>
```

```
GSRB_BRANCH

for(int k=klo; k<klo+kdim; k++);
  const int ijk = i + j*jStm; + k*kStride;
  if(((i^j^k^color000^1)&1));
    const double Ax = apply_op_ijk();
    const double lambda = Dinv_ijk();
    xo[ijk] = X(ijk) + lambda*(rhs[ijk]-Ax);
  }else{
    xo[ijk] = X(ijk);
  }
}</pre>
```


8 elements

1 1 1 1

8 elements

8 threads

Sweep

0 1 0 1 0 1 0 8 threads

GSRB_BRANCH has half the FLOPs as GSRB_FP but the same HBM/L1/L2 bytes

GSRB_FP vs. GSRB_BRANCH

- FLOPs halves, bytes doesn't change, thus AI halves and GFLOP/s halves
- Runtime is comparable even though GFLOP/s has halved
- Same number of threads occupied, only with half predicated in GSRB_BRANCH


```
GSRB STRIDE2
for(int k=klo; k<klo+kdim; k++){</pre>
  i = ilo +!((ilo^*j^*k^*color000)&1) + threadIdx.x*2;
  if(i < ilo+idim) {</pre>
    const int ijk = i + istride + k*kStride;
    xo[ijk] = X(ijk);
  i = ilo + ((ilo^j^k^color000)&1) + threadIdx.x*2;
  if(i < ilo+idim) {</pre>
    const int ijk = i + j*jStride + k*kStride;
    const double Ax = apply_op_ijk();
    const double lambda = Dinv ijk();
    xo[ijk] = X(ijk) + lambda*(rhs[ijk]-Ax);
```


GSRB_STRIDE2 should have the same FLOPs as GSRB_BRANCH, but same bytes?
 More writes than GSRB_BRANCH?

GSRB_BRANCH vs. GSRB_STRIDE2

Extra writes in GSRB_STRIDE2 cause more capacity misses in L2, leading to Al drop on L2 and DRAM, starting from Level 7 (data size ≈ L2 c/ze)

Runtime almost doubled and GFLOP/s halved

Science

Conclusions

- Roofline can gracefully capture various aspects of application performance and architecture characteristics such as arithmetic intensity, instruction mix, memory coalescing and thread predication.
- The proposed methodology is effective in collecting machine characteristics and application data on NVIDIA GPUs to construct **hierarc** construct
- The Roofline model provides insights that profile
 - identify the most immediate bottleneck
 - prioritize optimization efforts
 - tell you when you can stop

Reference

- S. Williams, A. Waterman and D. Patterson, "Roofline: An insightful visual performance model for multicore architectures," *Communications of the ACM*, vol. 52, no. 4, pp. 65–76, 2009
- Empirical Roofline Toolkit (ERT): https://bitbucket.org/berkeleylab/cs-roofline-toolkit
- Example scripts for plotting Roofline: https://github.com/cyanguwa/nersc-roofline
- General Plasmon Pole kernel: https://github.com/cyanguwa/BerkeleyGW-GPP
- HPGMG-CUDA kernel: https://bitbucket.org/nsakharnykh/hpgmg-cuda

Acknowledgement

- This material is based upon work supported by the Advanced Scientific Computing Research Program in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.
- This material is based upon work supported by the DOE RAPIDS SciDAC Institute.
- This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02- 05CH11231.

Thank You!

