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3

Deep Learning  

 Investment & Risk Management  

— Forecast Volatility Regimes, Factor Trends, Economic Cycles  

— Big Data including  Time Series Data,  Interday, and Intraday

— Neural Networks: Static vs Dynamic/ Black Box/Pattern Recognition 

— Ensemble of Econometric and Machine learning based models  

 Challenges include state dependency and stochastic nature of markets   

— Time series

— Overfitting/Underfitting

— Stochastic Nature of Data
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Artificial Intelligence 

Data: Structured/Unstructured 
Asset Prices, Volatility

Fundamentals ( P/E,PCE, Debt to Equity) 

Macro (GDP Growth, Interest Rates, Oil prices)

Technical(Momentum) 

News Events 

Machine Learning 

Unsupervised Learning

Cluster Analysis 

Principal Components   

Expectation Maximization

Supervised Learning

(Linear/Nonlinear)

Deep Learning 

Neural Networks  
Support Vector Machines 

Classification & Regression Trees

K-Nearest Neighbors

Regression

Reinforcement Learning 

Deep Learning

Q-Learning

Trial & Error

Source: Yigal Jhirad
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Factor Analysis

 Factor Analysis 

— Identify factors that are driving the market and predict relative factor performance

— Establish a portfolio of sectors or stocks that benefits from factor performance  

— Align risk management with forecasts of volatility 

 Identifying and Assessing factors driving performance 

— Look at factors such as Value vs. Growth, Large Cap vs. Small Cap, Volatility

Period: 2018.  Based on long/short monthly factor portfolios. This information is for illustrative purposes only. 
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Neural Networks 

 Static vs. Dynamic Neural Network  

— Static vs Dynamic 

— Dynamic feedforward vs. feedback and recurrent connections

— Focused Time Delay vs. Distributive Time Delay   

 Recurrent Neural Network  

— Feedback output back through layers 

— LSTM captures the temporal nature of financial data   
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Inputs:
Fundamental/Macro/Technical

Price/Earnings

Momentum/RSI

Realized & Implied  Volatility

Value vs Growth

GDP Growth/Interest Rates 

Dollar Strength

Credit Spreads 

Feature(Factor)Identification & Regularization

Forecast:
Factor Returns

Risk/Volatility 

∑|∂

∑|∂

∑|∂

∑|∂

∑|∂

∑|∂

∑|∂𝑥2
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𝑥4

𝑥5

Static Neural Networks 

Source: Yigal Jhirad
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Inputs:
Fundamental/Macro/Technical

Price/Earnings

Momentum/RSI

Realized & Implied  Volatility

Value vs Growth

GDP Growth/Interest Rates 

Dollar Strength

Credit Spreads 

Feature(Factor)Identification & Regularization

Forecast:
Factor Returns

Risk/Volatility 

∑|∂
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∑|∂

∑|∂
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∑|∂𝑥2

𝑥1
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𝑥4

𝑥5

Dynamic Neural Networks 

Source: Yigal Jhirad

Tapped   Delay   Line 

Feedforward of  Information/Backpropagation of  Errors

Genetic Programming/Evolutionary Algorithms

Constraints:max{max X(t)−X(τ)}≤ψ
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Supervised Learning: Neural Networks

Source: Yigal Jhirad

Forecast:

Market Returns

Risk/Volatility 

Liquidity
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Market Returns
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Focused Time Delay Neural Network

Recurrent Neural Network

Tapped   Delay   Line 

Tapped   Delay   Line 
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Neural Network Work Flow 

Input Data: Prices, Fundamentals, Macro, Technical

Structured/Unstructured Data 

Pre-Processing 

Normalization & Determine Model Parameters

Tap Delay Line 

Forecast 

Outcome

Training/Validation/Test

Feedforward/Back 

Propagation/Genetic Algorithm

Source: Yigal Jhirad
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Predicting Factor Regimes

Period: 2009-2018. This information is for illustrative purposes only.  
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Predicting Factor Regimes

Period: 2007-2018. This information is for illustrative purposes only. 
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Predicting Factor Regimes
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Lags (Months) 

Volatility Clustering

Autocorrelation of  Momentum (Absolute Returns)

Period: 2004-2018. This information is for illustrative purposes only. 
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Volatility Signals using  LSTM

 Build a Volatility Signal for 

Momentum to avoid periods 

of high dispersion    

 Reduce overall volatility 

and minimize drawdowns

Momentum Momentum

No Filter 
LSTM Volatility 

Filter 
# Months 110 59

Average Return 0.04% 0.09%
Volatility 3.5% 3.1%

Drawdown -14.7% -8.9%

Period: 2004-2018. This information is for illustrative purposes only. 
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Neural Networks

 Neural Networks 

— Feed-Forward  vs. Recurrent Neural Networks

— LSTM  and Time –Delay explicitly capture the temporal nature of financial data   

— Complement existing quantitative and qualitative signals

 Advantages 

— Captures non-linearity that are prevalent in financial data

— Time Sequencing, Pattern Recognition 

— Modularity

— Parallel Processing

 Considerations 

— Black Box

— Overfitting/Underfitting 

— Optimization/Local Minima 
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Genetic Algorithms 

• Genetic Algorithms complement traditional optimization techniques    

• Gradient Descent may not be efficient. Local Minimums pose a challenge.

• Greater flexibility in imposing constraints  

• Apply the computational power within CUDA to create a more robust 

evolutionary algorithm to drive multi-layer Neural Networks 

Local Maximum

Local Minimum

Local Maximum
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Summary

 Focused Time-Delay and LSTM Neural Network may help identify volatility and 

factor regimes

 Enhance modeling by utilizing constrained optimizations and implementing genetic 

algorithms

 CUDA leverages GPU Hardware  providing computational power to drive 

optimization algorithms and Deep Learning

 Application in Investment and Risk Management as part of an ensemble of 

econometric and machine learning based models
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