

Towards Weakly-Supervised Visual Understanding

Zhiding Yu Learning & Perception Research, NVIDIA zhidingy@nvidia.com

Introduction

The Benefit of Big Data and Computation Power

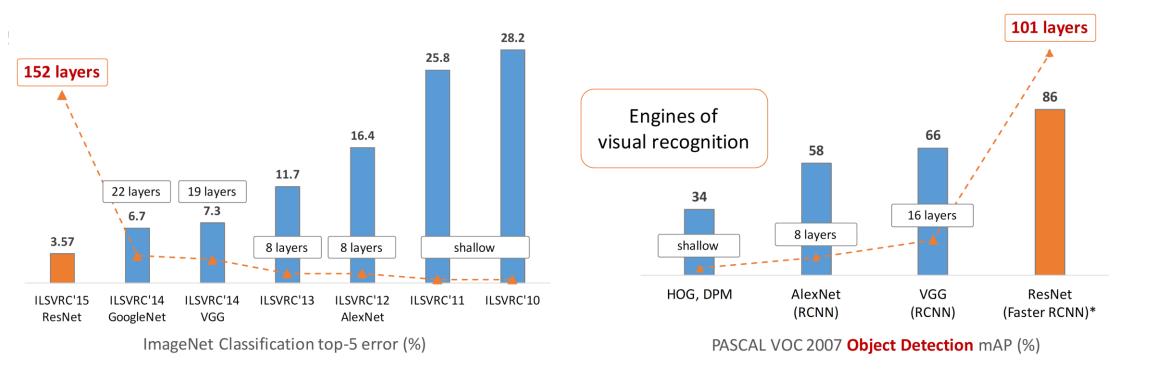


Figure credit: Kaiming He et al., Deep Residual Learning for Image Recognition, CVPR16

Beyond Supervised Learning

Reinforcement Learning (Cherry)

Supervised Learning (Icing)

Unsupervised Learning (Cake)

"The revolution will not be supervised!"

— Alyosha Efros

"If intelligence was a cake, unsupervised learning would be the cake, supervised learning would be the icing on the cake, and reinforcement learning would be the cherry on the cake." — Yann LeCun

Weakly-Supervised Learning

Image credit: https://firstbook.org/blog/2016/03/11/ teaching-much-more-than-basic-concepts/

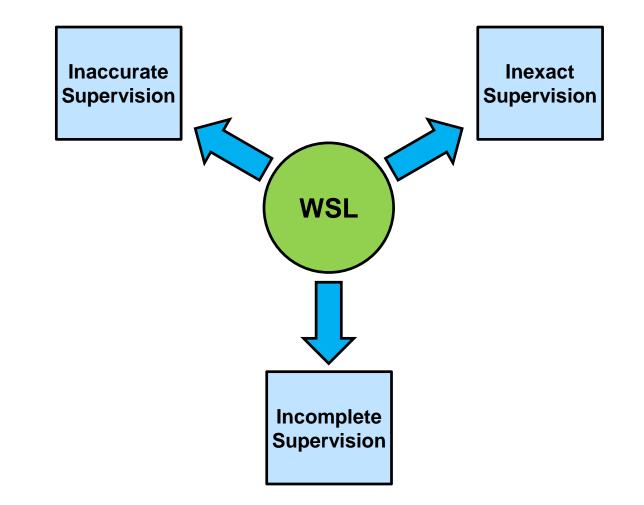
From Research Perspective

- Similar to how human learns to understand the world
- Good support for "continuous learning"

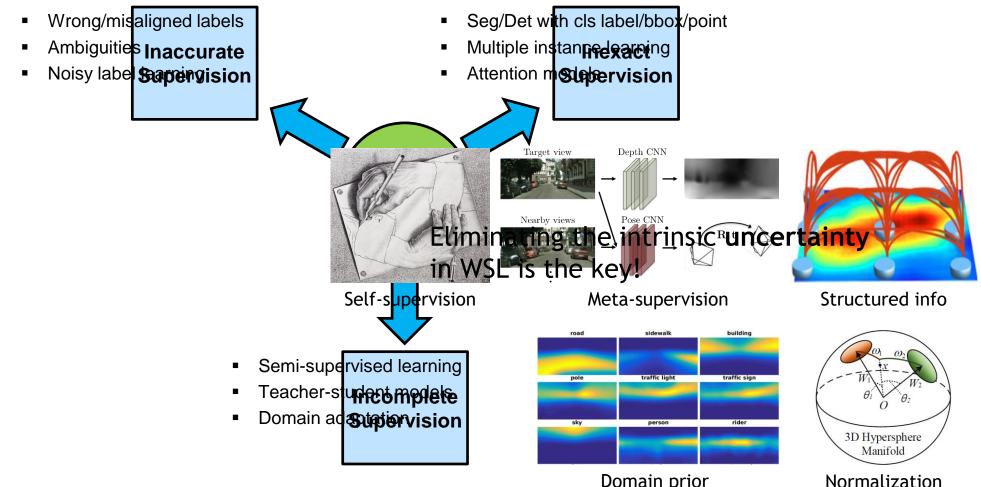
From Application Perspective

- Good middle ground between unsupervised learning and supervised learning
- Potential to accommodate labels in diverse forms
- Scalable to much larger amount of data

Weakly-Supervised Learning



Weakly-Supervised Learning



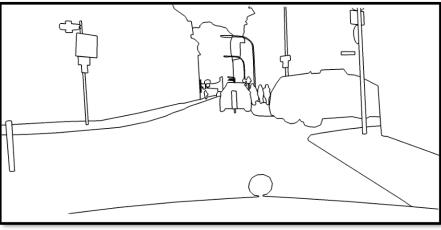
Domain prior

Learning with Inaccurate Supervision

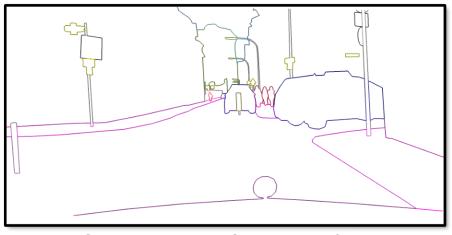
Category-Aware Semantic Edge Detection

Original Image

Perceptual Edges

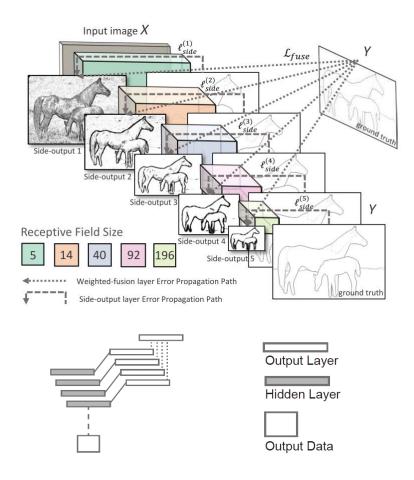


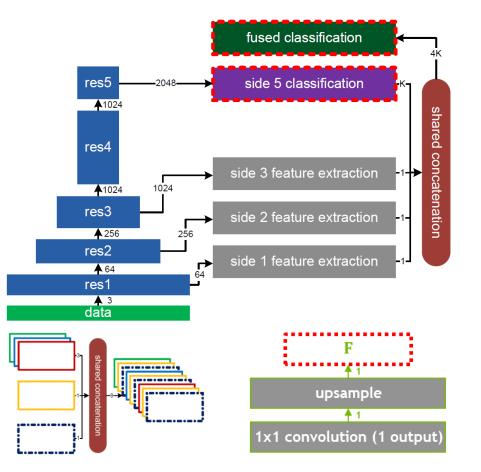
Semantic Edges



Category-Aware Semantic Edges

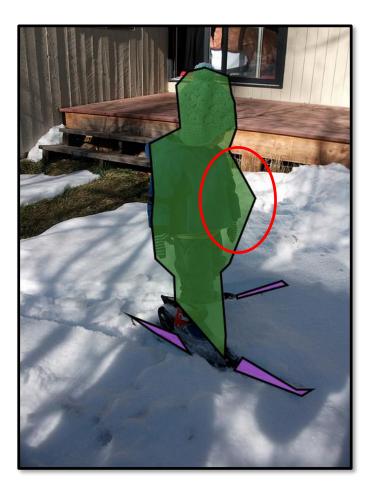
Category-Aware Semantic Edge Detection





Saining Xie et al., Holistically-Nested Edge Detection, ICCV15 Zhiding Yu et al., CASENet: Deep Category-Aware Semantic Edge Detection, CVPR17

Human Annotations Can Be Noisy!



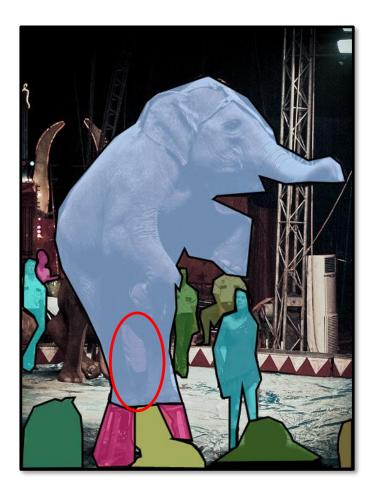


Image credit: Microsoft COCO: Common Objects in Context (http://cocodataset.org)

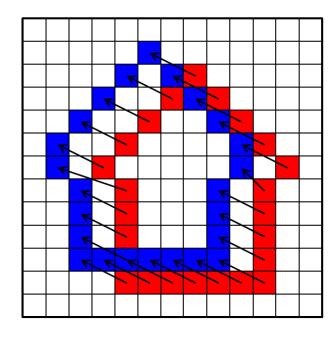
Motivations of This Work

bike bird bottle chair boat bus cat aero c ar cow dog mbike plant sheep sofa horse $\mathbf{t}\mathbf{v}$ (a) Original image (b) Ground truth (c) CASENet (d) SEAL sidewalk building wall traffic lgt traffic sgn vegetation road bike skv rider truck bus train motorcycle car terrain person (f) Ground truth (g) CASENet (h) SEAL (e) Original image

Automatic edge alignment

Producing high quality sharp/crisp edges during testing

The Proposed Learning Framework



 $\mathbf{p} = (x_p, y_p), \mathbf{q} = (x_q, y_q): \text{ Pixel index}$ $k \in \{1, ..., K\}: \text{ Semantic class index}$ $\mathbf{y} = \{y_{\mathbf{q}}^k \in \{0, 1\}\}: \text{ Human annotation}$ $\mathbf{\hat{y}} = \{\hat{y}_{\mathbf{p}}^k \in \{0, 1\}\}: \text{ Aligned edge label}$ $\mathbf{y}_{\mathbf{q}}^k = 1 \quad \square \quad \hat{y}_{\mathbf{p}}^k = 1 \quad \bigwedge \quad m(\mathbf{q}) - \mathbf{q}$

Traditional edge learning:

 $\max_{\mathbf{W}} \mathcal{L}(\mathbf{W}) = P(\mathbf{y} | \mathbf{x}; \mathbf{W})$

Simultaneous edge alignment & learning:

$$\max_{\hat{\mathbf{y}},\mathbf{W}} \mathcal{L}(\hat{\mathbf{y}},\mathbf{W}) = P(\mathbf{y},\hat{\mathbf{y}}|\mathbf{x};\mathbf{W}) = P(\mathbf{y}|\hat{\mathbf{y}})P(\hat{\mathbf{y}}|\mathbf{x};\mathbf{W})$$
$$= \prod_{k} P(\mathbf{y}^{k}|\hat{\mathbf{y}}^{k})P(\hat{\mathbf{y}}^{k}|\mathbf{x};\mathbf{W})$$

Edge prior

Network likelihood

Edge prior model

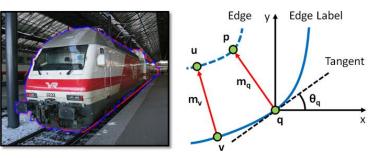
$$P(\mathbf{y}^{k}|\hat{\mathbf{y}}^{k}) \propto \sup_{m \in \mathcal{M}(\mathbf{y}^{k}, \hat{\mathbf{y}}^{k})} \prod_{(\mathbf{p}, \mathbf{q}) \in E_{m}} \exp\left(-\frac{\|\mathbf{p} - \mathbf{q}\|^{2}}{2\sigma^{2}}\right)$$
$$= \exp\left(-\inf_{m \in \mathcal{M}(\mathbf{y}^{k}, \hat{\mathbf{y}}^{k})} \sum_{(\mathbf{p}, \mathbf{q}) \in E_{m}} \frac{\|\mathbf{p} - \mathbf{q}\|^{2}}{2\sigma^{2}}\right)$$

Network likelihood model

$$P(\hat{\mathbf{y}}^{k}|\mathbf{x};\mathbf{W}) = \prod_{\mathbf{p}} P(\hat{y_{\mathbf{p}}}^{k}|\mathbf{x};\mathbf{W})$$
$$= \prod_{\mathbf{p}} h_{k}(\mathbf{p}|\mathbf{x};\mathbf{W})^{\hat{y}_{\mathbf{p}}^{k}}(1 - h_{k}(\mathbf{p}|\mathbf{x};\mathbf{W}))^{(1-\hat{y}_{\mathbf{p}}^{k})}$$

Zhiding Yu et al., Simultaneous Edge Alignment and Learning, ECCV18

Issue with isotropic Gaussian kernels:



Biased Gaussian kernel and neighbor smoothness:

$$\begin{split} P(\mathbf{y}|\hat{\mathbf{y}}) \propto \sup_{m \in \mathcal{M}(\mathbf{y}, \hat{\mathbf{y}})} \prod_{\substack{(\mathbf{p}, \mathbf{q}) \in E_m \\ (\mathbf{p}, \mathbf{q}) \in E_m, \\ \mathbf{v} \in \mathcal{N}(\mathbf{q})}} \exp(-\mathbf{m}_{\mathbf{q}}^\top \mathbf{\Sigma}_{\mathbf{q}} \mathbf{m}_{\mathbf{q}}) \end{split}$$

$$\mathbf{m}_{\mathbf{q}} = \mathbf{p} - \mathbf{q}$$
, and $\mathbf{m}_{\mathbf{v}} = \mathbf{u} - \mathbf{v}$

$$\boldsymbol{\Sigma}_{\mathbf{q}} = \begin{bmatrix} \frac{\cos(\theta_{\mathbf{q}})^2}{2\sigma_x^2} + \frac{\sin(\theta_{\mathbf{q}})^2}{2\sigma_y^2} & \frac{\sin(2\theta_{\mathbf{q}})}{4\sigma_y^2} - \frac{\sin(2\theta_{\mathbf{q}})}{4*\sigma_x^2} \\ \frac{\sin(2\theta_{\mathbf{q}})}{4\sigma_y^2} - \frac{\sin(2\theta_{\mathbf{q}})}{4\sigma_x^2} & \frac{\sin(\theta_{\mathbf{q}})^2}{2\sigma_x^2} + \frac{\cos(\theta_{\mathbf{q}})^2}{2\sigma_y^2} \end{bmatrix}$$

Learning and Optimization

Optimization as the following assignment problem:

$$\begin{split} \min_{m \in \mathbf{M}} \ \mathcal{C}(m) &= \mathcal{C}_{Unary}(m) + \mathcal{C}_{Pair}(m) \\ &= \sum_{(\mathbf{p}, \mathbf{q}) \in E_m} \left[\mathbf{m}_{\mathbf{q}}^\top \boldsymbol{\Sigma}_{\mathbf{q}} \mathbf{m}_{\mathbf{q}} + \log((1 - \sigma(\mathbf{p})) / \sigma(\mathbf{p})) \right. \\ &+ \lambda \sum_{(\mathbf{p}, \mathbf{q}) \in E_m} \sum_{\substack{(\mathbf{u}, \mathbf{v}) \in E_m, \\ \mathbf{v} \in \mathcal{N}(\mathbf{q})}} \| \mathbf{m}_{\mathbf{q}} - \mathbf{m}_{\mathbf{v}} \|^2 \end{split}$$

Take iterated conditional mode like optimization:

Initialize:
$$m^{(1)} = \underset{m \in \mathbf{M}}{\operatorname{arg\,min}} \ \mathcal{C}_{Unary}(m)$$

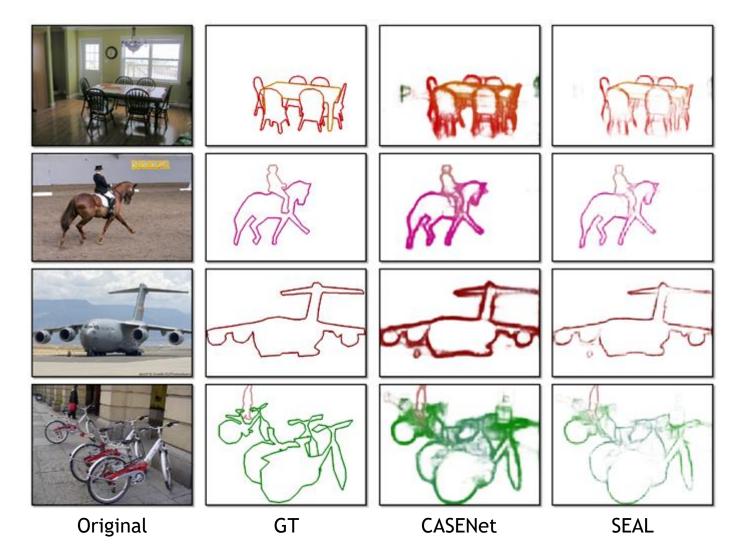
Assign:
$$m^{(t+1)} = \underset{m \in \mathbf{M}}{\operatorname{arg\,min}} \ \mathcal{C}_{Unary}(m) + \mathcal{C}_{Pair}(m, m^{(t)})$$

Update:
$$C_{Pair}(m, m^{(t)}) \rightarrow C_{Pair}(m, m^{(t+1)})$$

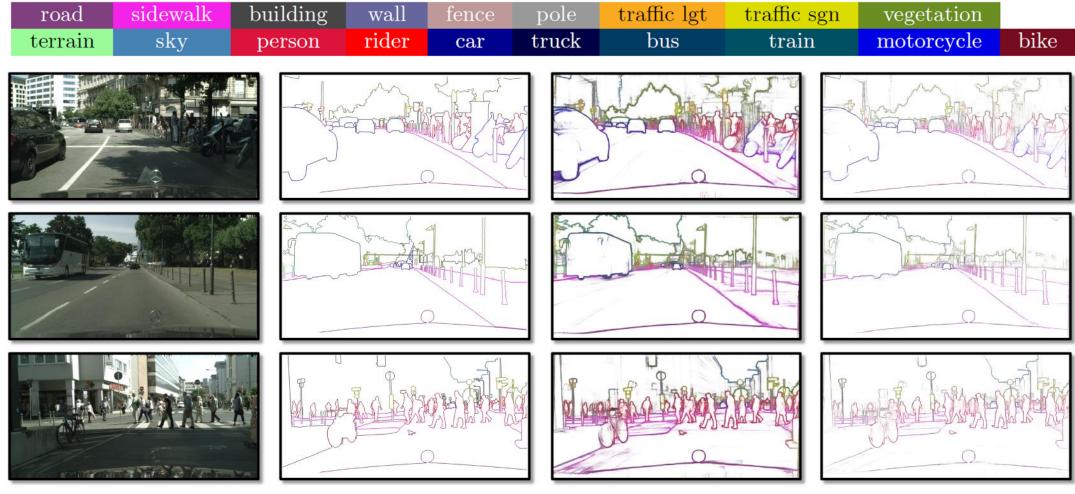
Relaxation by decouple mappings in pairwise cost:

$$\mathcal{C}_{Pair}(m,m') = \sum_{(\mathbf{p},\mathbf{q})\in E_m} \sum_{\substack{(\mathbf{u},\mathbf{v})\in E_{m'},\\\mathbf{v}\in\mathcal{N}(\mathbf{q})}} \|\mathbf{m}_{\mathbf{q}} - \mathbf{m}_{\mathbf{v}}\|^2$$

Experiment: Qualitative Results (SBD)



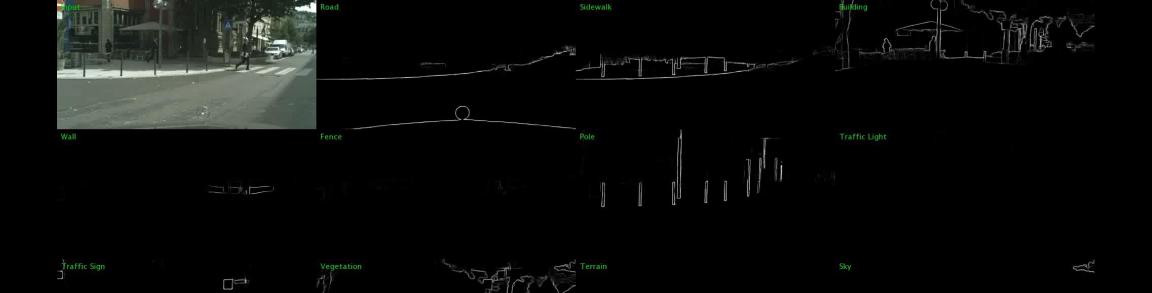
Experiment: Qualitative Results (Cityscapes)



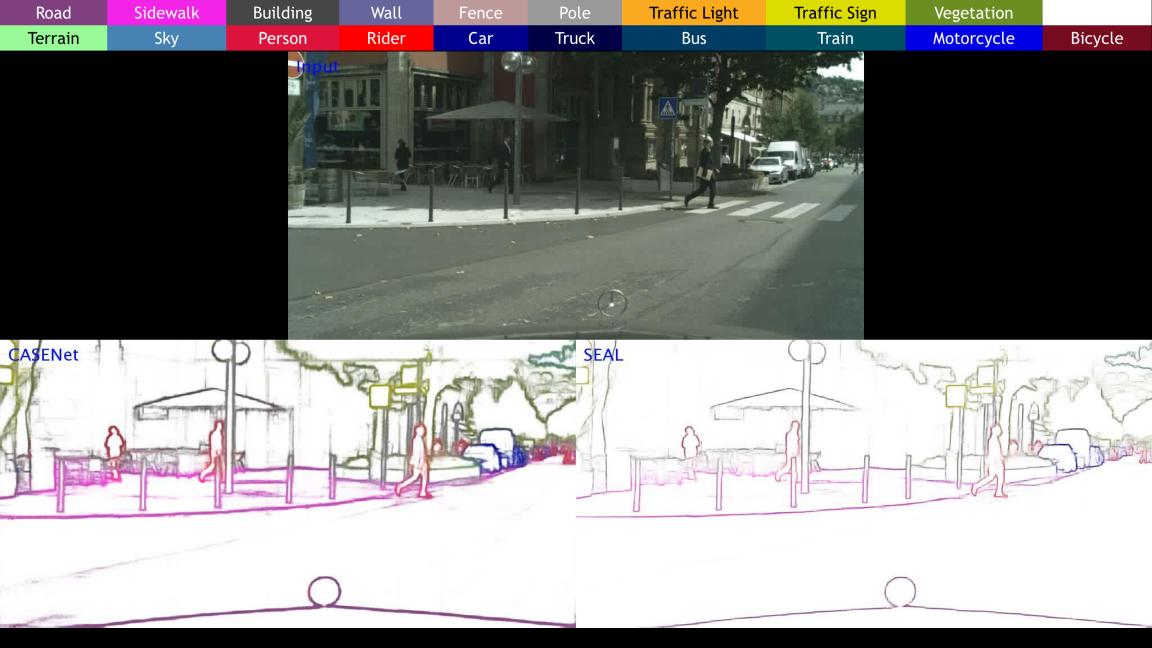
Original

CASENet

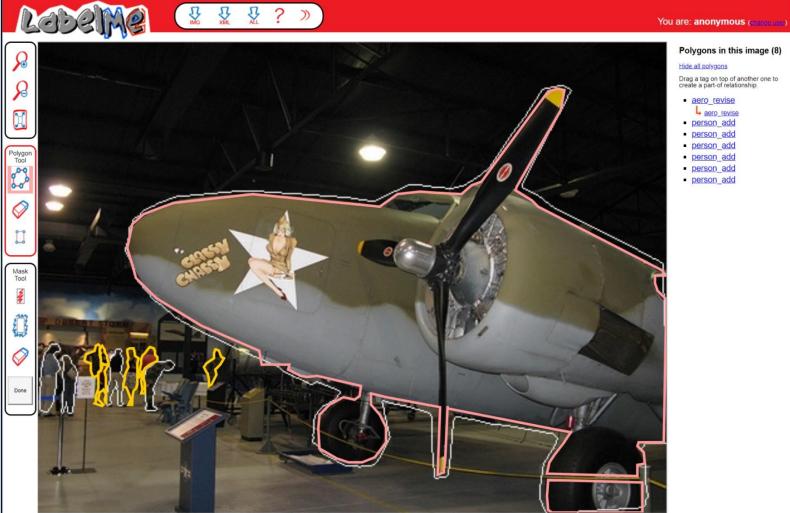
SEAL



S Dear



SBD Test Set Re-Annotation



Experiment: Quantitative Results

MF scores on the re-annotated SBD test set. Results are measured by %.

Metric	Method	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	\log	horse	mbike	person	plant	sheep	sofa	train	tv	mean
	CASENet	83.6	75.3	82.3	63.1	70.5	83.5	76.5	82.6	56.8	76.3	47.5	80.8	80.9	75.6	80.7	54.1	77.7	52.3	77.9	68.0	72.3
${ m MF}$	CASENet-S	84.5	76.5	83.7	65.3	71.3	83.9	78.3	84.5	58.8	76.8	50.8	81.9	82.3	77.2	82.7	55.9	78.1	54.0	79.5	69.4	73.8
(Thin)	CASENet-C	83.9	71.1	82.5	62.6	71.0	82.2	76.8	83.4	56.5	76.9	49.2	81.0	81.1	75.4	81.4	54.0	78.5	53.3	77.1	67.0	72.2
	SEAL	84.5	76.5	83.7	64.9	71.7	83.8	78.1	85.0	58.8	76.6	50.9	82.4	82.2	77.1	83.0	55.1	78.4	54.4	79.3	69.6	73.8
	CASENet	71.8	60.2	72.6	49.5	59.3	73.3	65.2	70.8	51.9	64.9	41.2	67.9	72.5	64.1	71.2	44.0	71.7	45.7	65.4	55.8	62.0
${ m MF}$	CASENet-S	75.8	65.0	78.4	56.2	64.7	76.4	71.8	75.2	55.2	68.7	45.8	72.8	77.0	68.1	76.5	47.1	75.5	49.0	70.2	60.6	66.5
(Raw)	CASENet-C	80.4	67.1	79.9	57.9	65.9	77.6	72.6	79.2	53.5	72.7	45.5	76.7	79.4	71.2	78.3	50.8	77.6	50.7	71.6	61.6	68.5
	SEAL	81.1	69.6	81.7	60.6	68.0	80.5	75.1	80.7	57.0	73.1	48.1	78.2	80.3	72.1	79.8	50.0	78.2	51.8	74.6	65.0	70.3

MF scores on the Cityscapes validation set. Results are measured by %.

Metric	Method	road	sidewalk	building	wall	fence	pole	t-light	t-sign	veg	$\operatorname{terrain}$	sky	person	rider	car	truck	\mathbf{bus}	train	motor	bike	mean
MF	CASENet	86.2	74.9	74.5	47.6	46.5	72.8	70.0	73.3	79.3	57.0	86.5	80.4	66.8	88.3	49.3	64.6	47.8	55.8	71.9	68.1
(Thin)	CASENet-S	87.6	77.1	75.9	48.7	46.2	75.5	71.4	75.3	80.6	59.7	86.8	81.4	68.1	89.2	50.7	68.0	42.5	54.6	72.7	69.1
(1 mn)	SEAL	87.6	77.5	75.9	47.6	46.3	75.5	71.2	75.4	80.9	60.1	87.4	81.5	68.9	88.9	50.2	67.8	44.1	52.7	73.0	69.1
MF	CASENet	66.8	64.6	66.8	39.4	40.6	71.7	64.2	65.1	71.1	50.2	80.3	73.1	58.6	77.0	42.0	53.2	39.1	46.1	62.2	59.6
(Raw)	CASENet-S	79.2	70.8	70.4	42.5	42.4	73.9	66.7	68.2	74.6	54.6	82.5	75.7	61.5	82.7	46.0	59.7	39.1	47.0	64.8	63.3
(raw)	SEAL	84.4	73.5	72.7	43.4	43.2	76.1	68.5	69.8	77.2	57.5	85.3	77.6	63.6	84.9	48.6	61.9	41.2	49.0	66.7	65.5

Experiment: Automatic Label Refinement

Maximum Distance

 $\times 10^{-3}$

Alignment on Cityscapes (red: before alignment, blue: after alignment)

Learning with Incomplete Supervision

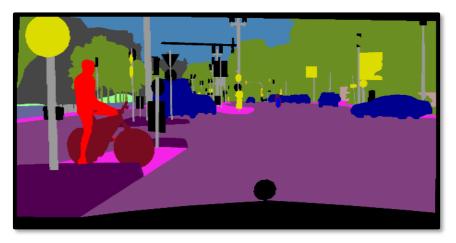
Obtaining Per-Pixel Dense Labels is Hard

Real application often requires model robustness over scenes with large diversity

- Different cities, different weather, different views
- Large scale annotated image data is beneficial

Annotating large scale real world image dataset is expensive

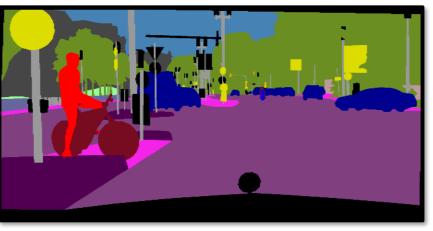
• Cityscapes dataset: 90 minutes per image on average



road	sidewalk	building	wall	fence	pole	traffic lgt	$\operatorname{traffic}\operatorname{sgn}$	vegetation	
terrain	sky	person	rider	car	truck	bus	train	$\operatorname{motorcycle}$	bike

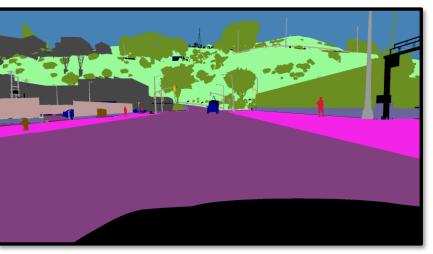
Use Synthetic Data to Obtain Infinite GTs?

Original image from Cityscapes



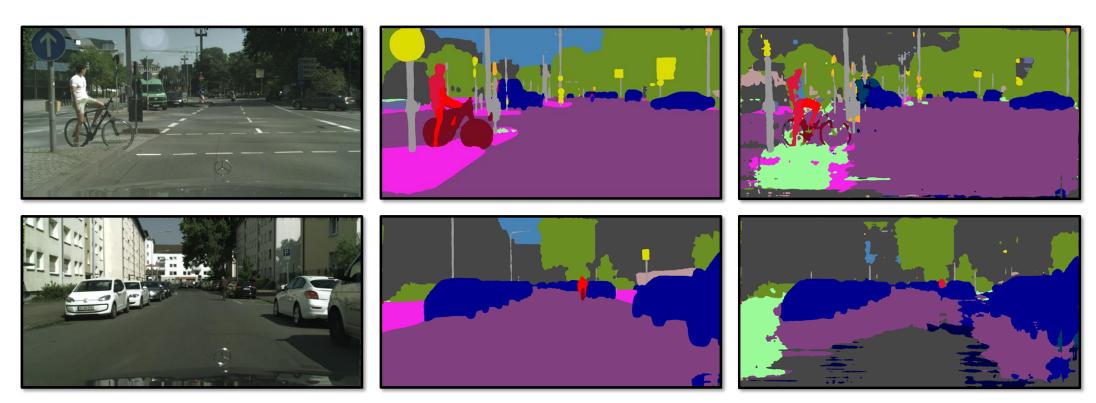
Human annotated ground truth

Original image from GTA5



Ground truth from game Engine

Drop of Performance Due to Domain Gaps



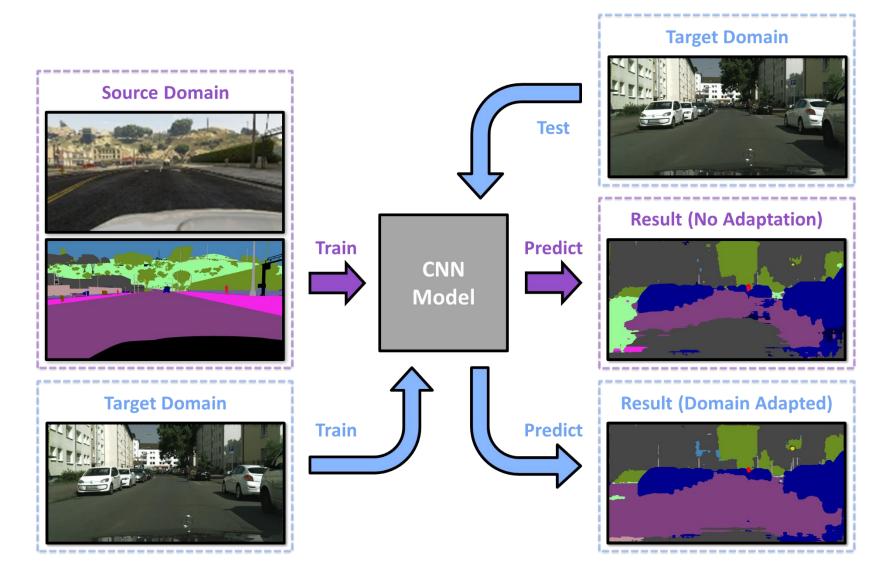
Cityscapes images

Model trained on Cityscapes

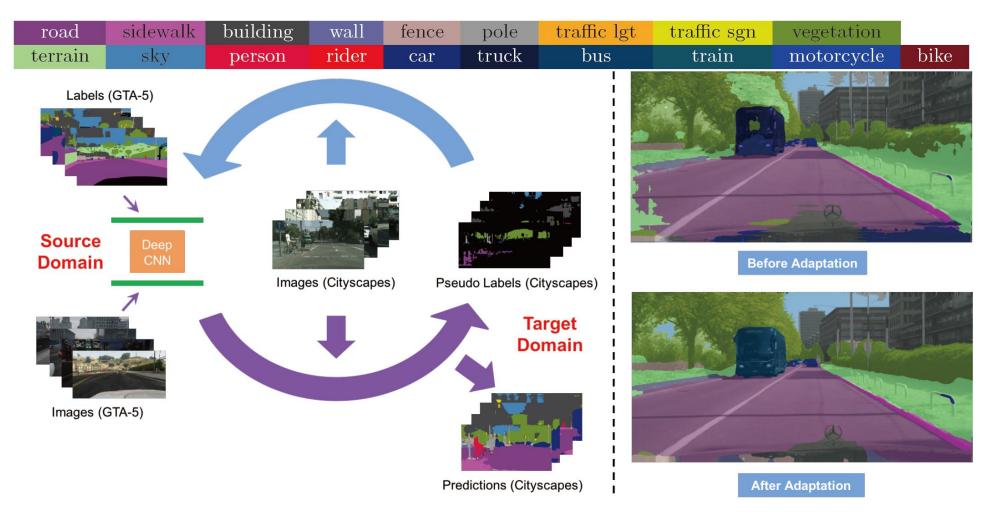
Model trained on GTA5

road	sidewalk	building	wall	fence	pole	traffic lgt	$\operatorname{traffic}\operatorname{sgn}$	vegetation	
terrain	$_{ m sky}$	person	rider	car	truck	bus	train	motorcycle	bike

Unsupervised Domain Adaptation



Domain Adaptation via Deep Self-Training



Yang Zou*, Zhiding Yu* et al., Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training, ECCV18

Preliminaries and Definitions

Fine-tuning for Supervised Domain Adaptation $\min_{\mathbf{w}} \mathcal{L}_{S}(\mathbf{w}) = -\sum_{s=1}^{S} \sum_{n=1}^{N} \mathbf{y}_{s,n}^{\top} \log(\mathbf{p}_{n}(\mathbf{w}, \mathbf{I}_{s})) - \sum_{t=1}^{T} \sum_{n=1}^{N} \mathbf{y}_{t,n}^{\top} \log(\mathbf{p}_{n}(\mathbf{w}, \mathbf{I}_{t}))$ where: I: input image (crop) p: pixel class probability vector y: pixel label vector w: network parameters s: source image index t: target image index

Self-Training for Unsupervised Domain Adaptation $\min_{\mathbf{w}, \hat{\mathbf{y}}} \mathcal{L}_U(\mathbf{w}, \hat{\mathbf{y}}) = -\sum_{s=1}^{S} \sum_{n=1}^{N} \mathbf{y}_{s,n}^{\top} \log(\mathbf{p}_n(\mathbf{w}, \mathbf{I}_s)) - \sum_{t=1}^{T} \sum_{n=1}^{N} \hat{\mathbf{y}}_{t,n}^{\top} \log(\mathbf{p}_n(\mathbf{w}, \mathbf{I}_t))$ s.t. $\hat{\mathbf{y}}_{t,n} \in {\mathbf{e}^{(i)} | \mathbf{e}^{(i)} \in \mathbb{R}^C}, \forall t, n$ where: $\hat{\mathbf{y}}$: pseudo label vector $\mathbf{e}^{(i)}$: one-hot vector

Self-Training (ST) with Self-Paced Learning

$$\min_{\mathbf{w}, \hat{\mathbf{y}}} \mathcal{L}_{ST}(\mathbf{w}, \hat{\mathbf{y}}) = -\sum_{s=1}^{S} \sum_{n=1}^{N} \mathbf{y}_{s,n}^{\top} \log(\mathbf{p}_{n}(\mathbf{w}, \mathbf{I}_{s})) - \sum_{t=1}^{T} \sum_{n=1}^{N} \left[\hat{\mathbf{y}}_{t,n}^{\top} \log(\mathbf{p}_{n}(\mathbf{w}, \mathbf{I}_{t})) + k | \hat{\mathbf{y}}_{t,n} |_{1} \right]$$

$$s.t. \ \hat{\mathbf{y}}_{t,n} \in \{\{\mathbf{e}^{(i)} | \mathbf{e}^{(i)} \in \mathbb{R}^{C}\} \cup \mathbf{0}\}, \forall t, n$$

$$k > 0$$

The cost can be minimized via mixed integer programming, which leads to the following solution:

$$\hat{y}_{t,n}^{(c)*} = \begin{cases} 1, \text{ if } c = \arg\max_{c} p_n(c|\mathbf{w}, \mathbf{I}_t), \\ p_n(c|\mathbf{w}, \mathbf{I}_t) > \exp(-k) \\ 0, \text{ otherwise} \end{cases} \qquad \mathbf{Car} \qquad$$

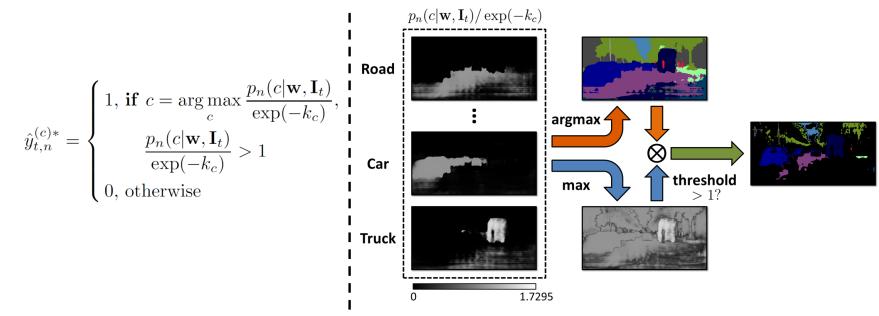
Class-Balanced Self-Training

$$\min_{\mathbf{w}, \hat{\mathbf{y}}} \mathcal{L}_{CB}(\mathbf{w}, \hat{\mathbf{y}}) = -\sum_{s=1}^{S} \sum_{n=1}^{N} \mathbf{y}_{s,n}^{\top} \log(\mathbf{p}_{n}(\mathbf{w}, \mathbf{I}_{s})) - \sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{c=1}^{C} \left[\hat{y}_{t,n}^{(c)} \log(p_{n}(c | \mathbf{w}, \mathbf{I}_{t})) + k_{c} \hat{y}_{t,n}^{(c)} \right]$$

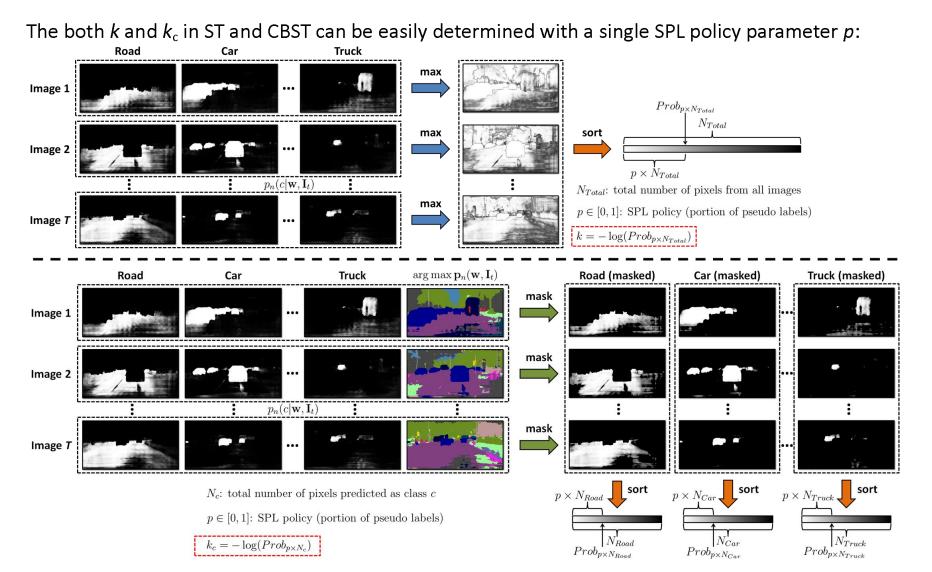
s.t.
$$\hat{\mathbf{y}}_{t,n} = [\hat{y}_{t,n}^{(1)}, ..., \hat{y}_{t,n}^{(C)}] \in \{\{\mathbf{e}^{(i)} | \mathbf{e}^{(i)} \in \mathbb{R}^C\} \cup \mathbf{0}\}, \forall t, n$$

 $k_c > 0, \forall c$

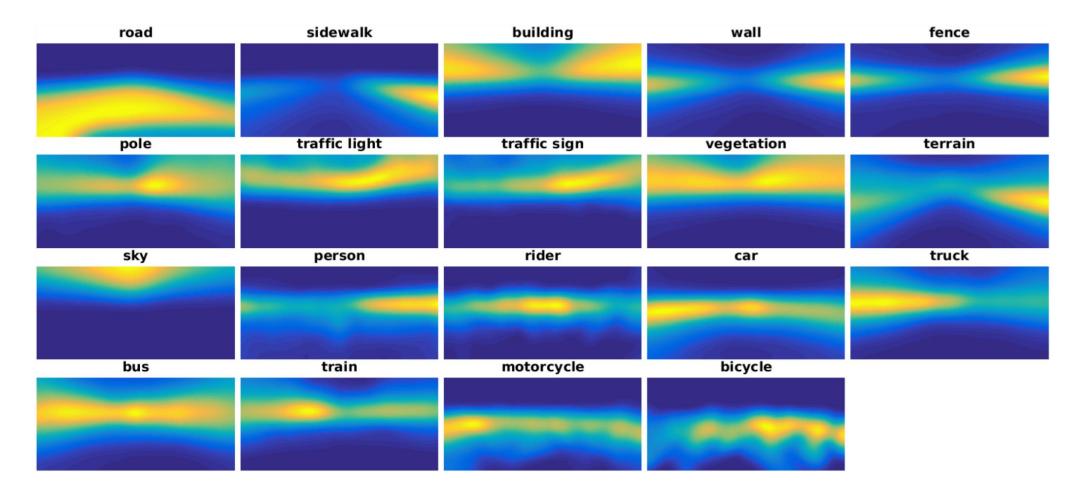
Again using mixed integer programming, one obtains the following solution:



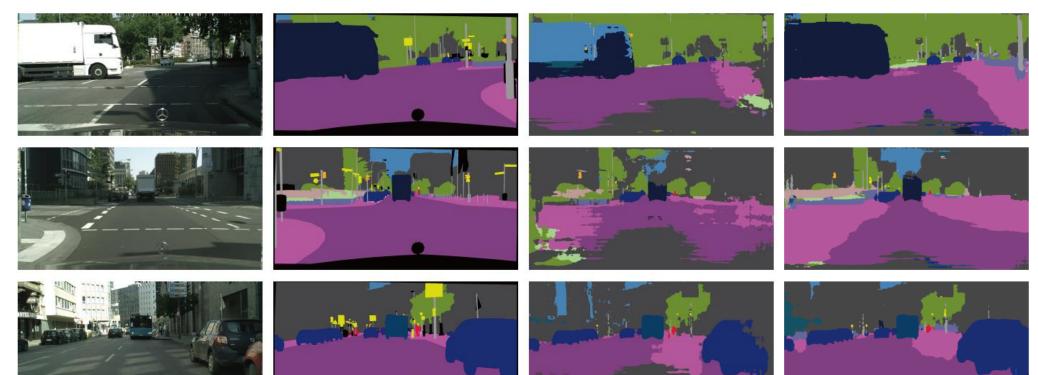
Self-Paced Learning Policy Design



Incorporating Spatial Priors



Experiment: GTA to Cityscapes



Original Image

Ground Truth

Source Model

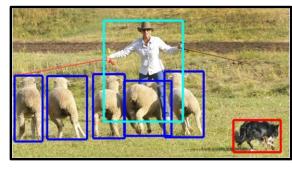
CBST-SP

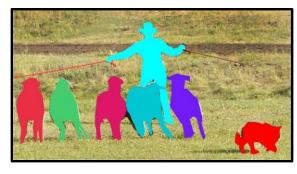
Experiment: GTA to Cityscapes

Method	Base Net	Road	SW	Build	Wall	Fence	Pole	TL	TS	Veg.	Terrain	Sky	\mathbf{PR}	Rider	Car	Truck	Bus	Train	Motor	Bike	mIoU
Source only [18]	Dilation-Frontend	31.9	18.9	47.7	7.4	3.1	16.0	10.4	1.0	76.5	13.0	58.9	36.0	1.0	67.1	9.5	3.7	0.0	0.0	0.0	21.2
FCN wild $[18]$	[43]	70.4	32.4	62.1	14.9	5.4	10.9	14.2	2.7	79.2	21.3	64.6	44.1	4.2	70.4	8.0	7.3	0.0	3.5	0.0	27.1
Source only [45]	FCN8s-VGG16	18.1	6.8	64.1	7.3	8.7	21.0	14.9	16.8	45.9	2.4	64.4	41.6	17.5	55.3	8.4	5.0	6.9	4.3	13.8	22.3
Curr. DA $[45]$	[21]	74.9	22.0	71.7	6.0	11.9	8.4	16.3	11.1	75.7	13.3	66.5	38.0	9.3	55.2	18.8	18.9	0.0	16.8	16.6	28.9
Source only [17]	FCN8s-VGG16	26.0	14.9	65.1	5.5	12.9	8.9	6.0	2.5	70.0	2.9	47.0	24.5	0.0	40.0	12.1	1.5	0.0	0.0	0.0	17.9
CyCADA [17]	[21]	85.2	37.2	76.5	21.8	15.0	23.8	22.9	21.5	80.5	31.3	60.7	50.5	9.0	76.9	17.1	28.2	4.5	9.8	0.0	35.4
Source only [17]	Dilated ResNet-26	42.7	26.3	51.7	5.5	6.8	13.8	23.6	6.9	75.5	11.5	36.8	49.3	0.9	46.7	3.4	5.0	0.0	5.0	1.4	21.7
CyCADA [17]	[44]	79.1	33.1	77.9	23.4	17.3	32.1	33.3	31.8	81.5	26.7	69.0	62.8	14.7	74.5	20.9	25.6	6.9	18.8	20.4	39.5
Source only [30]	ResNet-50	64.5	24.9	73.7	14.8	2.5	18.0	15.9	0	74.9	16.4	72.0	42.3	0.0	39.5	8.6	13.4	0.0	0.0	0.0	25.3
ADR [30]	[16]	87.8	15.6	77.4	20.6	9.7	19.0	19.9	7.7	82.0	31.5	74.3	43.5	9.0	77.8	17.5	27.7	1.8	9.7	0.0	33.3
Source only [24]	DenseNet	67.3	23.1	69.4	13.9	14.4	21.6	19.2	12.4	78.7	24.5	74.8	49.3	3.7	54.1	8.7	5.3	2.6	6.2	1.9	29.0
I2I Adapt [24]	[19]	85.8	37.5	80.2	23.3	16.1	23.0	14.5	9.8	79.2	36.5	76.4	53.4	7.4	82.8	19.1	15.7	2.8	13.4	1.7	35.7
Source only [36]	DeepLab-v2	75.8	16.8	77.2	12.5	21.0	25.5	30.1	20.1	81.3	24.6	70.3	53.8	26.4	49.9	17.2	25.9	6.5	25.3	36.0	36.6
MAA [36]	[19]	86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
Source only	FCN8s-VGG16	64.0	22.1	68.6	13.3	8.7	19.9	15.5	5.9	74.9	13.4	37.0	37.7	10.3	48.2	6.1	1.2	1.8	10.8	2.9	24.3
ST	[18]	83.8	17.4	72.1	14.3	2.9	16.5	16.0	6.8	81.4	24.2	47.2	40.7	7.6	71.7	10.2	7.6	0.5	11.1	0.9	28.1
CBST		66.7	26.8	73.7	14.8	9.5	28.3	25.9	10.1	75.5	15.7	51.6	47.2	6.2	71.9	3.7	2.2	5.4	18.9	32.4	30.9
CBST-SP		90.4	50.8	72.0	18.3	9.5	27.2	28.6	14.1	82.4	25.1	70.8	42.6	14.5	76.9	5.9	12.5	1.2	14.0	28.6	36.1
Source only	ResNet-38	70.0	23.7	67.8	15.4	18.1	40.2	41.9	25.3	78.8	11.7	31.4	62.9	29.8	60.1	21.5	26.8	7.7	28.1	12.0	35.4
ST	[41]	90.1	56.8	77.9	28.5	23.0	41.5	45.2	39.6	84.8	26.4	49.2	59.0	27.4	82.3	39.7	45.6	20.9	34.8	46.2	41.5
CBST		86.8	46.7	76.9	26.3	24.8	42.0	46.0	38.6	80.7	15.7	48.0	57.3	27.9	78.2	24.5	49.6	17.7	25.5	45.1	45.2
CBST-SP		88.0	56.2	77.0	27.4	22.4	40.7	47.3	40.9	82.4	21.6	60.3	50.2	20.4	83.8	35.0	51.0	15.2	20.6	37.0	46.2
CBST-SP+MST		89.6	58.9	78.5	33.0	22.3	41.4	48.2	39.2	83.6	24.3	65.4	49.3	20.2	83.3	39.0	48.6	12.5	20.3	35.3	47.0

Learning with Inexact Supervision

Learning Instance Det/Seg with Image-Level Labels





Previous Method (WSDDN)

Our Proposed Method

Work in progress with Zhongzheng Ren, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz et al.

Conclusions and Future Works

Conclusions and Future Works

Conclusions

- WSL methods are useful in a wide range of tasks, such as Autonomous Driving, IVA, AI City, Robotics, Annotation, Web Video Analysis, Cloud Service, Advertisements, etc.
- Impact from a fundamental research perspective towards achieving AGI.

Future works

- A good WSL platform that can handle a variety of weak grounding signals and tasks.
- Models with better designed self-sup/meta-sup/structured info/priors/normalization.
- Large-scale weakly and unsupervised learning from videos.
- Weak grounding signal with combination to robotics and reinforcement learning.

Thanks You!