GTC March 18, 2019

Learning from Limited Data

The University of Tokyo / RIKEN AIP Tatsuya Harada

Deep Neural Networks for Visual Recognition

Applications

cellphone

Deep Neural Networks

Tasks in the visual recognition field

- Object class recognition
- Object detection
- Image caption generation
- Semantic and instance segmentation
- Image generation
- Style transfer
- DNNs becomes an indispensable module.
- A large amount of labeled data is needed to train DNNs.
- Reducing annotation cost is highly required.

laptop

A yellow train on the tracks near a train station.

Can we learn Deep Neural Networks from limited Supervised Information?

Topics

Recent progresses in our team (MIL, the University of Tokyo) for learning from limited data

Between-class learning (BC learning)

Unsupervised domain adaptation

□Close domain adaptation

□Open set domain adaptation

□Adaptive Object Detection

Learning from Limited Data

Between-class Learning

Yuji Tokozume, Yoshitaka Ushiku, Tatsuya Harada

Learning from Between-class Examples for Deep Sound Recognition ICLR 2018

Between-class Learning for Image Classification CVPR 2018

Y. Tokozume

Y. Ushiku

T. Harada

Standard Supervised Learning

- 1. Select one example from training dataset
- 2. Train the model to output 1 for the corresponding class and 0 for the other classes

Between-class (BC) Learning

Proposed method

- 1. Select two training examples from different classes
- 2. Mix those examples with a random ratio

On test phase, we input a single example into the network.

3. Train the model to output the mixing ratio and mixing classes

- Merits

□Generate infinite training data from limited data

Learn more discriminative feature space than standard learning

Results of Sound Recognition

2 Various datasets

				Error rate (%)) on
	Model	Learning	ESC-50	ESC-10	UrbanSound8K
	EnvNet (Tokozume & Harada, 2017)	Standard BC (ours)	$29.2 \pm 0.1 \\ 24.1 \pm 0.2$	$12.8 \pm 0.4 \\ 11.3 \pm 0.6$	33.7 28.9
1) Various models	SoundNet5 (Aytar et al., 2016)	Standard BC (ours)	$33.8 \pm 0.2 \\ 27.4 \pm 0.3$	$\begin{array}{c} 16.4\pm0.8\\ 13.9\pm0.4\end{array}$	$\begin{array}{c} 33.3\\ 30.2 \end{array}$
\prec	M18 (Dai et al., 2017)	Standard BC (ours)	$31.5 \pm 0.5 \\ 26.7 \pm 0.1$	$18.2 \pm 0.5 \\ 14.2 \pm 0.9$	$\begin{array}{c} 28.8\\ 26.5\end{array}$
	Logmel-CNN (Piczak, 2015a) + BN	Standard BC (ours)	$27.6 \pm 0.2 \\ 23.1 \pm 0.3$	$\begin{array}{c} 13.2\pm0.4\\ \textbf{9.4}\pm\textbf{0.4} \end{array}$	25.3 23.5
l	EnvNet-v2 (ours)	Standard BC (ours)	$25.6 \pm 0.3 \\ \mathbf{18.2 \pm 0.2}$	$\begin{array}{c} 14.2 \pm 0.8 \\ 10.6 \pm 0.6 \end{array}$	30.9 23 .4
-{	EnvNet-v2 (ours) + strong augment	Standard BC (ours)	$\begin{array}{c} 21.2 \pm 0.3 \\ \textbf{15.1} \pm \textbf{0.2} \end{array}$	$\begin{array}{c} 10.9\pm0.6\\ \textbf{8.6}\pm\textbf{0.1} \end{array}$	24.9 21.7
3 Compatible with	SoundNet8 + Linear SVM (Aytar et Human (Piczak, 2015b)	al., 2016)	25.8 18.7	$7.8 \\ 4.3$	-
strong data augmentation		_		\	
			④ Surpa	ss the h	uman level
We can impro	ove recognition performanc	e for an	y sound ne	tworks,	

if we apply the BC learning.

Results on CIFAR

Our preliminary results were presented in ILSVRC2017 on July 26, 2017.

		Error rate (%) on								
Model	Learning	CIFAR-10	CIFAR-100							
11-layer CNN	Standard BC (ours) BC+ (ours)	6.07 ± 0.04 5.40 ± 0.07 5.22 ± 0.04	$26.68 \pm 0.09 \\ 24.28 \pm 0.11 \\ \textbf{23.68} \pm \textbf{0.10}$							
ResNet-29 [†] [28]	Standard BC (ours) BC+ (ours)	$4.24 \pm 0.06 / 4.39 [28]$ 3.75 ± 0.04 3.55 ± 0.03	20.18 ± 0.07 19.56 ± 0.10 19.41 ± 0.07							
ResNeXt-29 $(16 \times 64d)^{\dagger}$ [28]	Standard BC (ours) BC+ (ours)	3.54 ± 0.04 / 3.58 [28] 2.79 ± 0.06 2.81 ± 0.06	$\begin{array}{c} 16.99 \pm 0.06 / 17.31 [28] \\ 18.21 \pm 0.12 \\ 17.93 \pm 0.09 \end{array}$							
DenseNet-BC $(k = 40)^{\dagger}$ [13]	Standard BC (ours) BC+ (ours)	$3.61 \pm 0.10 / 3.46 [13]$ 2.68 ± 0.03 2.57 ± 0.06	$17.28 \pm 0.12 / 17.18 [13]$ 16.36 ± 0.10 16.23 ± 0.07							
Shake-Shake Regularization [9]	Standard BC (ours) BC+ (ours)	$2.86 [9] 2.38 \pm 0.04 2.26 \pm 0.01 $	$\begin{array}{c} \textbf{15.85 [9]} \\ 15.90 \pm 0.06 \\ 16.00 \pm 0.10 \end{array}$							

How BC Learning Works

Less discriminative

More discriminative

Class A distribution rA+(1-r)Bdistribution Class B distribution **Small Fisher's criterion** \rightarrow Overlap among distributions \rightarrow Large BC learning loss

Class A distribution rA+(1-r)B distribution

Class B distribution

Large Fisher's criterion

 \rightarrow No overlap among distributions \rightarrow Small BC learning loss

How BC Learning Works

Image by GraphicMama-team on Pixabay

Domain Adaptation (DA)

DProblems

■Supervised learning model needs many labeled examples ■Cost to collect them in various domains

□Goal

- Transfer knowledge from source (rich supervised data) to target (small supervised data) domain
- Classifier that works well on target domain.

Unsupervised Domain Adaptation (UDA)

- Labeled examples are given only in the source domain.
- There are no labeled examples in the target domain.

Distribution Matching for Unsupervised Domain Adaptation

Distribution matching based method

- Match distributions of source and target features
 - Domain Classifier (GAN) [Ganin et al., 2015]
 - Maximum Mean Discrepancy [Long et al., 2015]

Adversarial Domain Adaptation

Tzeng, Eric, et al. Adversarial discriminative domain adaptation. CVPR, 2017.

- Training the feature generator in a adversarial way works well!
- Category classifier, domain classifier, feature extractor

DProblems

 Whole distribution matching
 Ignorance of category information in source domain

Unsupervised Domain Adaptation using Classifier Discrepancy

Kuniaki Saito¹, Kohei Watanabe¹, Yoshitaka Ushiku¹, Tatsuya Harada^{1, 2} 1: The University of Tokyo, 2: RIKEN CVPR 2018, oral presentation

K. Saito

K. Watanabe

Y. Ushiku

T. Harada

Proposed Approach

Considering class specific distributions

□Using decision boundary to align distributions

Key Idea

Maximizing discrepancy by learning two classifiersMinimizing discrepancy by learning feature space

Network Architecture and Training

Improving by Dropout

Adversarial Dropout Regularization Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, Kate Saenko ICLR 2018

Why Discrepancy Method Works Well?

Theorem [Ben et al., 2010]

Let H be the hypothesis class. Given two domains \mathcal{S} and \mathcal{T} , we have

Object Classification

□Synthetic images to Real images (12 Classes)

□Finetune pre-trained ResNet101 [He et al., CVPR 2016] (ImageNet)

■Source:images, Target:images

Source (Synthetic images)

Target (Real images)

Method	plane	bcycl	bus	car	hrs	knf	mcycl	prsn	plnt	sktbrd	trn	trck	mean
Source Only	55.1	53.3	61.9	59.1	80.6	17.9	79.7	31.2	81.0	26.5	73.5	8.5	52.4
MMD [Long et al., ICML 2015]	87.1	63.0	76.5	42.0	90.3	42.9	85.9	53.1	49.7	36.3	85.8	20.7	61.1
DANN [Ganin et al., ICML 2015]	81.9	77.7	82.8	44.3	81.2	29.5	65.1	28.6	51.9	54.6	82.8	7.8	57.4
Ours $(n = 4)$	87.0	60.9	83.7	64.0	88.9	79.6	84.7	76.9	88.6	40.3	83.0	25.8	71.9

Semantic Segmentation

□ Simulated Image (GTA5) to Real Image (CityScape)

□ Finetuning of pre-trained VGG, Dilated Residual Network [Yu et al., 2017] (ImageNet)

- Calculate discrepancy pixel-wise
- □ Evaluation by mean IoU (TP/(TP+FP+FN))

GTA 5 (Source)

CityScape(Target)

Network	Method	mIoU
VGG-16	Source Only	21.2
	FCN Wld [Hoffman et al., Arxiv 2017]	27.1
VGG-16	Source Only	22.3
	$\operatorname{CrrclmDA}$ (I) [Zhang el al., ICCV 2017]	23.1
VGG-16	Source Only	24.9
	Ours	28.8
DRN-105	Source Only	22.2 -
	Ours	39.7

Qualitative Results

Open Set Domain Adaptation (OSDA)

- Source and target completely share classes in domain adaptation.
- Target examples are unlabeled. Open set situation is more realistic.
- Open set ••• Target contains unknown category.

Distribution Matching for Open Set DA

Close set domain adaptation: match distributions of source and target features

Before adaptation

Source Target Decision boundary Target **Open set DA** Before adaptation Adapted Source Source Target Decision boundary Target Examples of unknown categories

Source

Adapted

□Problem in open set

- Examples of unknown category are also aligned with the distributions of known categories.
- Examples of unknown category are classified into known categories.

Open Set Domain Adaptation by Backpropagation

Kuniaki Saito¹, Shohei Yamamoto¹, Yoshitaka Ushiku¹, Tatsuya Harada^{1, 2} 1: The University of Tokyo, 2: RIKEN ECCV 2018

K. Saito

S. Yamamoto

Y. Ushiku

T. Harada

Idea

- Separation of examples of unknown category from these of known categories in target domain
- Alignment between the distribution of known category in target domain and the distribution of source domain
- The feature generator should have option to align target examples with source distribution or to reject target examples as the unknown category.

Proposed Method

Classifier *C*

- minimize classification loss to correctly categorize source examples
- maximize adversarial loss ($P(y = K + 1 | \mathbf{x}_t) = 1/2$) for target examples
- \Box Feature generator G
 - minimize adversarial loss to deceive the classier for target examples
 - is trained to output $P(y = K + 1 | \mathbf{x}_t) = 1$ or 0

Adversarial loss

1/2

0

1

Ladv

Experimental Results for Office Dataset

digital SLR camera

low-cost camera, flash

amazon.com

consumer images

11 categories classification

•The dataset consists of 31 classes, and 10 classes were selected as shared classes. 21-31 classes are used as unknown samples in the target domain.

• BP, MMD are distribution matching based method.

	-				I	Adap	tatio	n Sce	enari	0				
	A-	-D	A-	W	D-	-A	D-W		W-A		W-D		AV	/G
	OS	OS*	OS	OS*	OS	OS*	OS	OS*	OS	OS*	OS	OS*	OS	OS*
Method w/ u	nkno	wn c	lasses	s in s	ourc	e doi	main	(Ale	xNet	t)				la La
BP [4]	78.3	77.3	75.9	73.8	57.6	54.1	89.8	88.9	64.0	61.8	98.7	98.0	77.4	75.7
ATI- λ [2]	79.8	79.2	77.6	76.5	71.3	70.0	93.5	93.2	76.7	76.5	98.3	99.2	82.9	82.4
Method w/o u	inkno	wn o	lasse	s in	sourc	ce do	main	ı (Ale	exNe	t)	2	22 24	i.	
OSVM	59.6	59.1	57.1	55.0	14.3	5.9	44.1	39.3	13.0	4.5	62.5	59.2	40.6	37.1
MMD + OSVM	47.8	44.3	41.5	36.2	9.9	0.9	34.4	28.4	11.5	2.7	62.0	58.5	34.5	28.5
BP+OSVM	40.8	35.6	31.0	24.3	10.4	1.5	33.6	27.3	11.5	2.7	49.7	44.8	29.5	22.7
$\text{ATI-}\lambda[2] + \text{OSVM}$	72.0	<u></u>	65.3	-	66.4	82	82.2		71.6	8 1 3	92.7	2	75.0	<u> -</u>
Ours	76.6	76.4	74.9	74.3	62.5	62.3	94.4	94.6	81.4	81.2	96.8	96.9	81.1	80.9
Method w/o u	nkno	wn c	lasse	s in s	sourc	e do	main	(VG	GNe	et)				
OSVM	82.1	83.9	75.9	75.8	38.0	33.1	57.8	54.4	54.5	50.7	83.6	83.3	65.3	63.5
MMD + OSVM	84.4	85.8	75.6	75.7	41.3	35.9	61.9	58.7	50.1	45.6	84.3	83.4	66.3	64.2
BP+OSVM	83.1	84.7	76.3	76.1	41.6	36.5	61.1	57.7	53.7	49.9	82.9	82.0	66.4	64.5
Ours	85.8	85.8	85.3	85.1	88.7	89.6	94.6	95.2	83.4	83.1	97.1	97.3	89.1	89.4

Table 1. Accuracy (%) of each method in 10 shared class situation. A, D and W correspond to Amazon, DSLR and Webcam respectively.

•OS* is measured only for known class.

Experimental Results for VisDA Dataset

other 6 categories as the unknown class.

Table 4. Examples of recognition results on VisDA dataset.

Experimental Results on Digits Dataset

	S	VHN-	MNIS	ST	U	SPS-	MNIS	ST	N	INIST	r-USI	PS	Average				
Method	OS	OS*	ALL	UNK	OS	OS*	ALL	UNK	OS	OS*	ALL	UNK	OS	OS*	ALL	UNK	
OSVM	54.3	63.1	37.4	10.5	43.1	32.3	63.5	97.5	79.8	77.9	84.2	89.0	59.1	57.7	61.7	65.7	
MMD+OSVM	55.9	64.7	39.1	12.2	62.8	58.9	69.5	82.1	80.0	79.8	81.3	81.0	68.0	68.8	66.3	58.4	
BP+OSVM	62.9	75.3	39.2	0.7	84.4	92.4	72.9	0.9	33.8	40.5	21.4	44.3	60.4	69.4	44.5	15.3	
Ours	63.0	59.1	71.0	82.3	92.3	91.2	94.4	97.6	92.1	94.9	88.1	78.0	82.4	81.7	84.5	85.9	

Table 5. Accuracy (%) of experiments on digits datasets.

Blue: Source Known, Red: Target Known, Green: Target Unknown

BP aligns target unknown with source known whereas ours rejects the target unknown.

Unsupervised Domain Adaptation for Object Detection

- Can we realize object detection using domain matching method?
- Source: w/ category and bounding box
- Target: w/o category and bounding box

Strong Global Distribution Alignment

Strong Instance Distribution Alignment

Problems of UDA for Object Detection

- Global distribution alignment
 - Strong global distribution alignment is not appropriate for object detection.
- Instance distribution alignment
 - Strong instance distribution alignment might be appropriate.
 - However, it is hard to obtain good region proposals in the target domain, because there are no ground truth bounding boxes in the target domain.

Strong-Weak Distribution Alignment for Adaptive Object Detection

Kuniaki Saito¹, Yoshitaka Ushiku², Tatsuya Harada^{2, 3}, Kate Sanenko¹ 1: Boston University, 2: The University of Tokyo, 3: RIKEN To be appeared in CVPR 2019

K. Saito

Y. Ushiku

T. Harada

K. Sanenko

Key Idea

- Weak Global Alignment ----- High Level Feature (Category)
- Strong Local Alignment Low Level Feature (Texture, Color)

Proposal: Strong Local Alignment

- Domain invariant local features
- Extraction of local feature from each receptive field in low-level layer

Proposal: Weak Global Alignment

- Alignment of high level-features by force degrades DA performance.
- Partial alignment of high-level features

Proposal: Weak Global Alignment

- Similar examples for each domain are hard-to-classify examples with domain classifier.
- Objective of domain classifier
 - Higher weight on hard examples
 - Lower weight on easy examples

Experiment 1: Adaptation Between Dissimilar Domains

• Pascal VOC to Clipart and Watercolor

Experiment 1: Adaptation Between Dissimilar Domains

• Pascal VOC to Clipart and Watercolor

Results on Clipart

G: Global Alignment, I: Instance, CTX: Context Vector, L: Local, P: Pixel

Method	G I	СТΣ	ΚL	P	aero	bcycle	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	hrs	bike	prsn	plnt	sheep	sofa	train	tv	MAP
Faster RCNN					35.6	52.5	24.3	23.0	20.0	43.9	32.8	10.7	30.6	11.7	13.8	6.0	36.8	45.9	48.7	41.9	16.5	7.3	22.9	32.0	27.8
BDC-Faster	\checkmark				20.2	46.4	20.4	19.3	18.7	41.3	26.5	6.4	33.2	11.7	26.0	1.7	36.6	41.5	37.7	44.5	10.6	20.4	33.3	15.5	25.6
DA-Faster	\checkmark	•			15.0	34.6	12.4	11.9	19.8	21.1	23.2	3.1	22.1	26.3	10.6	10.0	19.6	39.4	34.6	29.3	1.0	17.1	19.7	24.8	19.8
	\checkmark				30.5	48.5	33.6	24.8	41.2	48.9	32.4	17.2	34.5	55.0	19.0	13.6	35.1	66.2	63.0	45.3	12.5	22.6	45.0	38.9	36.4
			\checkmark		19.8	50.7	25.4	21.7	30.2	47.2	27.1	8.5	33.5	26.8	14.0	11.7	31.5	62.0	49.9	39.6	9.1	23.8	39.5	38.4	30.5
Proposed	\checkmark	\checkmark			31.7	55.2	30.9	26.8	43.4	47.5	40.0	7.9	36.7	50.0	14.3	18.0	29.2	68.1	62.3	50.4	13.4	24.5	54.2	45.8	37.5
	\checkmark	\checkmark	\checkmark		26.2	48.5	32.6	33.7	38.5	54.3	37.1	18.6	34.8	58.3	17.0	12.5	33.8	65.5	61.6	52.0	9.3	24.9	54.1	49.1	38.1
	\checkmark	\checkmark	\checkmark	\checkmark	31.1	53.7	28.9	24.9	40.3	49.0	38.1	14.6	41.9	43.8	15.3	7.2	27.9	75.5	57.3	41.8	6.7	23.3	48.5	44.1	35.7

Strong global alignments (BDC-Faster (27.8 -> 25.6 %), DA-Faster (27.8 -> 19.8 %)) degrade performance.
 Weak global alignment improves performance 9.8 % (25.6 -> 36.4 %).

□ Strong local alignment improves performance 2.7 % (27.8 -> 30.5 %).

The method with weak global alignment, strong local alignment and context vector is the best (38.1 %).
Pascal VOC
Clipart

Results on Watercolor

	10	υı	\mathbf{U} I.	I (C)	ullo	UII		att		1.					
							AP	on a	targe	et do	main				
Method	G	Ι	CTZ	ΧLΙ	P bil	te b	ird	car	cat	dog	prsn	MAP)		
Faster RCNN	İ				68	.8 4	6.8	37.2	32.7	21.3	60.7	44.6			
BDC- Faster	\checkmark				68	.6 4	8.3	47.2	26.5	21.7	60.5	45.5			
DA-Faster		\checkmark			75	.2 4	0.6	48.0	31.5	20.6	60.0	46.0			
	\checkmark				66	.4 5	3.7	43.8	37.9	31.9	65.3	49.8			
				\checkmark	79	.4 54	4.8	47.2	37.1	31.5	62.4	52.1	-	•	Local-level was effective
Proposed			\checkmark		71	.3 52	2.0	46.6	36.2	29.2	67.3	50.4			
	$ \checkmark$		\checkmark	\checkmark	82	.3 5	5.9	46.5	32.7	35.5	66.7	53.3			
	\checkmark		\checkmark	\checkmark	/ 90	.5 54	4.8	49.4	38.6	38.8	67.9	56.7	+		Oracle-level performance
Oracle					83	.6 5	9.4	50.7	43.7	39.5	74.5	58.6			•

Table 1. Results on Watercolor

Weak global alignment improves performance 4.3 % (45.5 -> 49.8 %).

Strong local alignment improves performance 7.5 % (44.6 -> 52.1 %).

The method with weak global alignment, strong local alignment, context vector and pixel level alignment is the best (38.1 %). Pascal VOC

Watercolor

Ours (Weak Global Alignment Only) (MAP: 36.4)

Baseline DC Method (MAP: 25.6)

- The results of adaptation between dissimilar domains (from pascal to clipart).
- Blue: source examples, Red: target examples

Global-Weak Alignment

nn56445724 www.pograph.com

Experiment 2: Adaptation Between Similar Domains

Cityscape to FoggyCityscape

Person Person Car Car Car Car

G: Global Alignment, I: Instance, CTX: Context Vector, L: Local

Table 1:

							AP	on a	targe	t dom	ain		
Method	G	Ι	CTX	L	bus	bcycle	car	bike	prsn	rider	train	truck	MAP
Faster RCNN					22.3	26.5	34.3	15.3	24.1	33.1	3.0	4.1	20.3
BDC-Faster	\checkmark				25.0	31.0	40.5	22.1	35.3	20.2	20.0	27.1	27.6
DA-Faster	\checkmark	\checkmark			33.1	23.3	25.5	15.6	23.4	29.0	10.9	19.6	22.5
	\checkmark				33.5	33.3	42.7	22.2	27.1	40.3	11.6	22.3	29.1
Dropoad				\checkmark	34.3	32.2	36.2	23.7	27.5	39.3	5.4	24.4	27.9
Floposed	\checkmark		\checkmark		38.0	31.2	41.8	20.7	26.6	37.6	19.7	20.5	29.5
	\checkmark		\checkmark	\checkmark	36.2	35.3	43.5	30.0	29.9	42.3	32.6	24.5	34.3
Oracle					50.0	36.2	49.7	34.7	33.2	45.9	37.4	35.6	40.3

Experiment 3: Adaptation from Synthetic to Real

G: Global Alignment, I: Instance, CTX: Context Vector, L: Local, P: Pixel

GTA

Cityscape

	Table 1: .											
	Method	G	Ι	CTX	L	Р	AP on Car					
	Faster RCNN						34.6					
	BDC-Faster	\checkmark					31.8					
	DA-Faster	\checkmark	\checkmark				34.2					
		\checkmark					36.4					
					\checkmark		40.2					
						\checkmark	40.0					
	$\blacksquare \qquad											
		\checkmark		\checkmark	\checkmark		40.1					
		\checkmark		\checkmark		\checkmark	41.5					
9		\checkmark		\checkmark	\checkmark	\checkmark	40.7					
	Proposed	Meth	nod w	ith diffe	erent	paran	neters					
 Pixel-level, local level adaptation are good. 	EFL	\checkmark		\checkmark			38.7					
 Combining pixel-level and our adaptation is better. 	FL ($\gamma = 3$)	\checkmark		\checkmark			42.3					
EFL performs better than baselines	FL $(\gamma = 3)^*$	\checkmark		\checkmark		\checkmark	47.7					
Weak global alignment is effective !	Oracle						53.1					

Visualization of Domain Evidence

evidence of the target domain

evidence of the source domain

- Visualization of the evidence for the global-level domain classifier's prediction using Grad-cam
- Evidence for why the domain classifier thinks the image comes from the source or the target
- The feature extractor seems to focus on cars to deceive the domain classifier.

Take Home Messages

- Learning from Limited Data
 - **D** Knowledge Transfer
 - Domain Adaptation
 - **D** Between-class learning
- Between-class learning (BC learning)
 - Mix two training examples with a random ratio
 - Train the model to output the mixing ratio
 - **D** Simple to implement
- Unsupervised domain adaptation
 - Considering class specific distribution matching and adversarial training are effective for unsupervised domain adaptation.

Open set domain adaptation

- Giving an option for the feature extractor to select known or unknown patterns is practical in the open set domain adaptation.
- Adaptive Object Detection
 - Weak global feature alignment and strong local feature alignment are effective for adaptive object detection.