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Deep Neural Networks for Visual Recognition

Deep Neural Networks

Appllcatlons A yellow train on the tracks
near a train station.
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Tasks in the visual recognition field
» Obiject class recognition

Object detection

Image caption generation

Semantic and instance segmentation

Image generation

Style transfer

DNNs becomes an indispensable module.
A large amount of labeled data is needed to train DNNSs.
Reducing annotation cost is highly required.



Can we learn Deep Neural Networks
from limited Supervised Information?



Topics

ORecent progresses in our team (MIL, the University of Tokyo) for
learning from limited data

OBetween-class learning (BC learning)

OUnsupervised domain adaptation
OClose domain adaptation
OOpen set domain adaptation

OAdaptive Object Detection



Learning from Limited Data

Between-class Learning

Yuji Tokozume, Yoshitaka Ushiku, Tatsuya Harada

Learning from Between-class Examples for Deep Sound Recognition
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Standard Supervised Learning

1. Select one example from training dataset

2. Train the model to output 1 for the corresponding class and 0 for the other classes
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Between-class (BC) Learning

- Proposed method

.

1. Select two training examples from different classes

2. Mix those examples with a random ratio

On test phase, we input a
single example into the network.

3. Train the model to output the mixing ratio and mixing classes

~
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OGenerate infinite training data from limited data

OlLearn more discriminative feature space than standard learning



BC learning for sounds

0\

® Two training examples (x1, t1), (x2, t2) ﬂoo
® Random ratio r ~ U (0, 1) =~

‘ Dog: 1 O Dog: 0
Cat: 0 Cat: 1
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(O Bird: 0 (O Bird: 0
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where p = =
1 + 107 =20

G4, G,: sound pressure level of x;, x,[dB]
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Results of Sound Recognition

2 Various datasets

(1) Various models

A
r Y
Error rate (%) on
Model Learning ESC-50 ESC-10 UrbanSound8K

( Standard  29.2+0.1 128404 33.7
EnvNet (Tokozyme & Harada, 2017)  poconrey a4 09 118506 28.9
Standard ~ 33.8+0.2 16.4+0.8 33.3
soundiets (agtar et al., 2016) BC (ours) 27.4+0.3 13.9-+0.4 30.2
. Standard ~ 31.5+0.5 182405 28.8
~ MiI8 (Daietal, 2017) BC (ours) 26.7+0.1 14.2+0.9 2.5
. Standard  27.6+£0.2 132404 25.3
Logmel-CNN (Piczak, 20152) + BN = p o) 231403 9.4+0.4 23.5
EnvNet-v2 (ours) Standard ~ 25.6+0.3 14.24+0.8 30.9
Ebaade BC (ours) 18.24+0.2 10.6-+0.6 23.4
tandard  21.24+0.3 10.940. 24.9
EEYINSIV2 (GOTS) - S ANEEnT ggn(o?lrrs) 15,1 & ?).?é 8969:l: (? .f 21.7

SoundNet8 + Linear SVM (Aytar et al., 2016) 25.8 7.8 -

Human (Piczak, 2015b) 4.3 £

3 Compatible with

strong data augmentation

We can improve recognition performance for any sound networks,

if we apply the BC learning.

@ Surpass the human level



Results on CIFAR

Qur preliminary results were presented
in ILSVRC2017 on July 26, 2017.

Error rate (%) on

Model Learning CIFAR-10 CIFAR-100

Standard 6.07 + 0.04 26.68 £ 0.09
11-layer CNN BC (ours) 5.40 £ 0.07 24.28 +£0.11

BC+ (ours) 5.22 + 0.04 23.68 +0.10

Standard 4.24 4+ 0.06 / 4.39 [28] 20.18 £ 0.07
ResNet-297 [24] BC (ours) 3.75 £ 0.04 19.56 £ 0.10

BC+ (ours) 3.55+0.03 19.41 + 0.07

Standard 3.541+0.04/3.58[2%] 16.99+0.06/17.31[2¥]
ResNeXt-29 (16 x 64d)Jr [28] BC (ours) 2.79 + 0.06 18.21 +£0.12

BC+ (ours) 2.81 + 0.06 17.93 + 0.09

Standard 3.61+0.10/3.46[13] 17.28+0.12/17.18[173]
DenseNet-BC (k = 40) [11] BC (ours) 2.68 + 0.03 16.36 + 0.10

BC+ (ours) 2.57 1+ 0.06 16.23 + 0.07

Standard 2.86 [Y] 15.85 (]
Shake-Shake Regularization [*] BC (ours) 2.38 £ 0.04 15.90 £ 0.06

BC+ (ours) 2.26 + 0.01 16.00 £+ 0.10

10
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How BC Learning Works

Less discriminative More discriminative
ClaSS A ClaSS A
distribution diStribUtiO@
rA+(1-r)B
distr(ibuiion 'A+(1-1)B
distributior@
Class B
distributio Class B
distribution
Small Fisher’s criterion Large Fisher’s criterion
— Overlap among distributions — No overlap among distributions

— Large BC learning loss — Small BC learning loss



How BC Learning Works

In the classification, the distributions must be
uncorrelated because the teaching signal is discrete.

Large correlation Small correlation

rA+(1-r)B
B rA+(1-r)B
B
Decisiorn Decisioh
boundary boundary
Large correlation among classes Small correlation among classes
— Mixing class of A and B may — Mixing class of Aand B is
be classified into class C. not classified into class C.

— Large BC learning loss — Small BC learning loss



Knowledge Transfer -

Learning

From picture books

Domain Adaptation

<a href="https://pixabay.com/ja/photos/%E5%AD%9I0%E7%8A%AC-%E3%82%BA%E3%83%BCW%E3%83%AB%E3%83%87%E3%83%B3-%E3%83%BB-%E3%83%AA%E3%83%88%E3%83%AA%E3%83%BCHE3%E3%I0%E3%83%BC-
1207816/">Image</a> by <a href="https://pixabay.com/ja/users/Chiemsee2016-1892688/">Chiemsee2016</a> on Pixabay

<a href="https://pixabay.com/ja/illustrations/%E7%8A%AC-%E5%8B%95%E7%89%A9-%E3%82%B3%E3%83%BCHE3%82%AEK%E3%E3%BC-%E3%83%93%E3%83%BCHE3%82%BO%E3%83%AB-1417208/">Image</a> by <a
href="https://pixabay.com/ja/users/GraphicMama-team-2641041/">GraphicMama-team</a> on Pixabay




Domain Adaptation (DA)

OProblems

OSupervised learning model needs many labeled examples
OCost to collect them in various domains

OGoal

OTransfer knowledge from source (rich supervised data) to target (small supervised data)
domain

OClassifier that works well on target domain.

OUnsupervised Domain Adaptation (UDA)
OLabeled examples are given only in the source domain.
OThere are no labeled examples in the target domain.

Source domain

-~

Synthetic images, labeled

£ %

=

Target domain

Real images, unlabeled




Distribution Matching for Unsupervised Domain Adaptation

ODistribution matching based method
» Match distributions of source and target features
* Domain Classifier (GAN) [Ganin et al., 2015]
* Maximum Mean Discrepancy [Long et al., 2015]

Before adaptation Adapted
Target T Source
(unlabeled) I

Feature
Extractor

Source
(labeled)

Decision
boundary

.. =
Decision -

boundary
Target



Adversarial Domain Adaptation

OTraining the feature generatorin a
adversarial way works well!

OCategory classifier, domain
classifier, feature extractor

OProblems

OWhole distribution matching

Olgnorance of category information
in source domain

Source ? ? ? ? ? ?
" " ? ? Domain
Domglln 8 ® . source Domain Source \Classifier
classifier ° Domain ® classifier " N
S eo classifier ~ s, Source

Category

Catego Catego Category
gory m - Jory /' Target classifier

classifier classifier classifier



Unsupervised Domain Adaptation
using Classifier Discrepancy

Kuniaki Saito!, Kohei Watanabe', Yoshitaka Ushiku?, Tatsuya Harada' 2
1: The University of Tokyo, 2: RIKEN
CVPR 2018, oral presentation
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Proposed Approach

OConsidering class specific distributions
OUsing decision boundary to align distributions

Proposed

Before adaptation

Source
&8 Source
% °
°o @
e ©
. »

— . O Previous work
u .
Decision
Target boundary Target

Adapted

Source

Target

Decision
boundary  Target

Decision
boundary

Source

Class B




Key Idea

OMaximizing discrepancy by learning two classifiers
OMinimizing discrepancy by learning feature space

Maximize discrepancy Minimize discrepancy Maximize discrepancy Minimize discrepancy
by learning classifiers by learning feature space by learning classifiers by learning feature space

Source Source Source

i Discrepancy is the example which gets different Discrepanc
Dlscrepancy predictions from two different classifiers. p y



Network Architecture and Training

G : Feature Generator

[ |
Input

X
@ [>® [> [:> Di E,lz Classifiers j D =|p;-p,| }
l T

1. Fix generator G, and find classifiers F;, F, that maximize D — (L; + L,)
2.fork=1:n
Fix classifiers F;, F,, and find feature generator G that minimizes D

Maximize D by learning classifier Minimize D by learning feature generator

Source Source




Im r Vin Dr Adversarial Dropout Regularization
p 0 g by OpOUt Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, Kate Saenko

ICLR 2018

G : Feature Generator

[
et — el e

m [>EE>E @Dﬁ F. Classifiers # D =|p;-p,| |
M

l Selecting two classifiers by dropout!

G : Feature Generator F Classifier
[ |
Input Classifier Sampling by Dropout
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Why Discrepancy Method Works Well? 22

Theorem [Ben et al., 2010]
Let H be the hypothesis class. Given two domains § and 7, we have

1
Vh € H,Rr(h) < Rs(h) + §dHAH(SaT) + A

Expected error Expected error .
in target domain in source domain A = min|Rs(h) + Rz (h)]

Hypothesis / / \ Shared error of
the ideal hypothesis

sup E Ih(x #h/ x) — E ITh(x #h/ T ‘ 5 o HLE e
[ (hoh)em2 128 (@) # W) = B, Ihiz) # 7 (@) B BT e

7 =
h(x) = F; o G(x), o
Minimal upper-bound This term is assumed to be low, . Minimize D by
if h and h’ can classify source h (x) =Fo G(x) I'\élgl)’(r;rirr]llzilgsl::%ier learning feature
samples correctly. 9 generator

ménlrrrll% CIETI[Fl o G(x) # Fy o G(x)]




Object Classification

OSynthetic images to Real images (12 Classes)

OFinetune pre-trained ResNet101 (Heetal, cver 20161 (IMageNet)

OSource:images, Target.images

Source (Synthetic images)

Target (Real images)

-, b -

- - N -

Method plane  bcycl  bus  car hrs knf  mcycl prsn plnt sktbrd trn trck | mean
Source Only 55.1  53.3 61.9 59.1 80.6 179 79.7 31.2 81.0 26.5 73.5 8.5 52.4
MMD [Long et al., ICML 2015] 87.1 63.0 76.5 420 90.3 429 85.9 53.1 497 363 85.8 20.7 | 61.1
DANN [Ganin et al., ICML 2015] || 81.9 77.7 828 443 81.2 295 651 286 519 54.6 828 7.8 57.4
Ours (n = 4) 87.0 609 83.7 64.0 889 79.6 84.7 76.9 88.6 40.3 83.0 25.8 | 71.9




Semantic Segmentation

O Simulated Image (GTAS) to Real Image (CityScape)

O Finetuning of pre-trained VGG, Dilated Residual Network rvuetal, 20171 (ImageNet)
O Calculate discrepancy pixel-wise

O Evaluation by mean loU (TP/(TP+FP+FN))

CityScape(Target)

LT R O N T

GTA 5 (Source)

-

100

Network | Method mloU o e source only |
VGG-16 | Source Only 21.2 80 1 —| ®ours —
FCN WIld [Hoffman et al., Arxiv 2017] 27.1
VGG-16 | Source Only 22.3 -
CrrclmDA (I) [Zhang el al., ICCV 2017] 23.1 2
VGG-16 | Source Only 249
Ours 28.8 4
DRN-105 | Source Only 22.2:, A A s
Ours 39.7 ggéggéﬁn%ﬁ’gﬂsﬁgéggéggg




Qualitative Results

Ground
truth

Source
only

Adapted w
(ours) R




Open Set Domain Adaptation (OSDA)

Closed Domain Adaptation Open Set Domain Adaptation
(P.P. Busto+ ICCVO07)
Source Target Source Target
: : Unknown

Aus

o e
® Al

1™ G
o e b

= N P o
. QAT & i
: Li

@ 5o
& 3
@ o

- Source and target completely share classes in domain adaptation.
- Target examples are unlabeled. Open set situation is more realistic.
- Open set - - - Target contains unknown category.




Distribution Matching for Open Set DA

OClose set domain adaptation: match distributions of source and target features

Target
(unlabeled)

J

Feature
Extractor

7
(2

Source

Domain

Classifier

Category
(labeled) E
B |

OProblem in open set
« Examples of unknown category are

also aligned with the distributions of

known categories.

« Examples of unknown category are
classified into known categories.

Before adaptation Close set DA Adapted
Source P
% 8 & Source
 3ad 8 8
" 8
= %. % OO = =
amg ® ©9,0 © a ﬁ:ﬁg
o _© o
= e E
(]
|
m g
Target g B Decision
boundary Target
_ Open set DA
Before adaptation ource Adapted
% 8 « Source
R g 8
a 2w 83 33 2353
H O n.o
B Opg g
Target O0gm ..l
- Decision
boundary Target

Examples of unknown categories



Open Set Domain Adaptation
by Backpropagation

Kuniaki Saito!, Shohei Yamamoto?, Yoshitaka Ushiku', Tatsuya Harada': 2
1: The University of Tokyo, 2: RIKEN
ECCV 2018
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Idea

OSeparation of examples of unknown category from these of known
categories in target domain

OAlignment between the distribution of known category in target
domain and the distribution of source domain

OThe feature generator should have option to align target examples
with source distribution or to reject target examples as the unknown

category.

Before adaptation

Examples of unknown categories

Source

Og

Examples of unknown categories

Adapted

Source

Target

Align target example
with source distribution
or
Reject it as unknown
category

Feature
generator classifier



Proposed Method

OClassifier C Adversarial loss
* minimize classification loss to correctly categorize source examples L, »
* maximize adversarial loss (P(y = K + 1|x;) = 1/2) for target
examples
ClFeature generator G
* minimize adversarial loss to deceive the classier for target examples
* istrainedto output P(y =K+ 1|x;) =10or0

Align target example with source
distribution Ps = C(G(we))
or
Backward Reject it as unknown category Pt = C(G(Q’H))

(K+1 dim)

I \
s e -~ @‘m — — | | = | ||—» B8 | Known label =» L (. ys)
= N

( , |
: E u H | feature Unknown _r’l’}d‘u.(fcf)
j = v = ,,

o EBR - %
| ) : Flip Gradient ! flﬂipf_ R 3
\ Target Xt Generator (G) Classifier (C) I 5( og(Ptx 1)) + (1 —t)log(1 — [\-H))l

— — ——— / | 0 <t <1, constant l

i ) . e . e o



Experimental Results for Office Dataset

A g

b Adaptation Scenario
low-cost camera, flash A-D A-W D-A D-W W-A W-D AVG
I 0SS 08* 08 08* 08 O8* 05 08* 0S8 0s* 03 08* OS5 0O&*
: : Method w/ unknown classes in source domain (AlexNet)
1 BP [4] 78.3 77.3|75.9 73.8|57.6 54.189.8 88.9|64.0 61.8|98.7 98.0|77.4 75.7
: ATI-A 2] 79.8 79.2(77.6 76.5|71.3 70.0|93.5 93.2|76.7 76.5|98.3 99.2 82,9 824
I B o Method w /o unknown classes in source domain (AlexNet)
amazon.com | consumer images OSVM 59.6 59.1|57.1 55.0|14.3 5.9 |44.1 39.3|13.0 4.5 |62.5 59.2|40.6 37.1
.11 categories classification MMD + OSVM ||47.8 44.3|41.5 36.2| 9.9 0.9 |34.4 28.4[11.5 2.7 |62.0 58.5|34.5 28.5
BP+OSVM 40.8 35.6|31.0 24.3|10.4 1.5 |33.6 27.3|11.5 2.7 |49.7 44.8|29.5 22.7
. ATI-A[2] + OSVM|72.0 - |653 - |66.4 - |822 - |71.6 - |927 - |76.0 -
*The dataset consists of 31 classes, and Ours 176.6 76.4|74.9 74.3(62.5 62.3(94.4 94.6/81.4 81.2/96.8 96.9|81.1 80.9
10 classes were selected as shared Method w/o unknown classes in source domain (VGGNet) | |
classes. 21-31 classes are used as OSVM 82.1 83.9|75.9 75.8(38.0 33.1|57.8 54.4|54.5 50.7|83.6 83.3|/65.3 63.5
unknown samples in the target domain. MMD 4 OSVM | 84.4 85.8|75.6 75.7|41.3 35.9|61.9 58.7|50.1 45.6|84.3 83.4|66.3 64.2
BP+O5VM 83.1 84.7|76.3 76.1(41.6 36.5|61.1 57.7[53.7 49.9|82.9 82.0/66.4 64.5
.BP, MMD are distribution matching Ours |85.8 85.8|85.3 85.1|88.7 89.6/94.6 95.2(83.4 83.1]97.1 97.3/89.1 89.4
based method. Table 1. Accuracy (%) of each method in 10 shared class situation. A, D and W

correspond to Amazon, DSLR and Webcam respectively.

*OS* is measured only for known class.



Experimental Results for VisDA Dataset

Ground Truth Class — Predicted Class

Known — Unknown x ‘Unknown — Known X‘ Known — Known ,/ ‘Unknown — Unknown ./

Source domain

Unknown — Motorcycle Truck — Truck Unknown — Unknown

2 = |

Labeled synthetic images

! i

Unknown — Unknown

Target domain

cle Unknown — nkncrwn
¢

- &=

Unlabeled real images

* VisDA dataset consists of 12 categories in total.
* We choose 6 categories from them and set
other 6 categories as the unknown class.




Experimental Results on Digits Dataset

Method

SVHN-MNIST
OS OS* ALL UNK

USPS-MNIST
OS OS* ALL UNK

MNIST-USPS
OS OS* ALL UNK

Average

OS OS* ALL UNK

OSVM
MMD+0O5VM
BP+OSVM

54.3 63.1 374 10.5
55.9 64.7 39.1 12.2
629 75.3 39.2 0.7

43.1 32.3 63.5 97.5
62.8 58.9 69.5 B82.1
844 92.4 729 09

79.8 77.9 B4.2 89.0
80.0 79.8 81.3 81.0
33.8 405 21.4 443

59.1 57.7 61.7 65.7
68.0 68.8 66.3 58.4
60.4 69.4 445 15.3

Ours

63.0 59.1 71.0 82.3

092.3 91.2 94.4 97.6

92.1 94.9 88.1 78.0

82.4 81.7 84.5 85.9

Table 5. Accuracy (%) of experiments on digits datasets.

(a) Source Only

(b) MMD

(d) Ours

Blue: Source Known, Red: Target Known, Green: Target Unknown

BP aligns target unknown with source known whereas ours rejects the target unknown.




Unsupervised Domain Adaptation for Object Detection

e Can we realize object detection using domain matching method?
 Source: w/ category and bounding box
 Target: w/o category and bounding box

Source | Target

| Bird: 0.91 |

No category info.
No bounding box info.




Strong Global Distribution Alignment

Similar Domains

Source

Strong global distribution alignment

Before adaptation Adapted
Source
Good S
B 8y 5 © Source
88 o0 %
8 8 ... (0] .x.“x ..
.. e o » - %8R -...
m Bm 0 o© WO
o m© O
Dissimilar Domains g B | EN g
E mpg H

Source “ Target - " Target
P | : | Target

Bad?

Layout, number and combination of objects can be different.
#35




Strong Instance Distribution Alignment

Similar Domains

Source . N . .
S R | Strong instance distribution alignment

Before adaptation Adapted

Source
Good %
B 8y % © Source
% 8 0 © 8
1) =]

How to obtain good Region - 020 o
P . m E m°-m
Dissimilar Domains | Zie]slerEl RN el e m g "™ m
HE mm =
Source “ Target - " Target
= m
Target
Good

OProblem

* To effectively conduct feature alighment, region
proposals have to precisely localize objects of interest.




Problems of UDA for Object Detection

* Global distribution alignment
* Strong global distribution alignment is not appropriate for object detection.

* Instance distribution alighnment
* Strong instance distribution alignment might be appropriate.

* However, it is hard to obtain good region proposals in the target domain,
because there are no ground truth bounding boxes in the target domain.



Strong-Weak Distribution Alignment
for Adaptive Object Detection

Kuniaki Saito', Yoshitaka Ushiku?, Tatsuya Harada? 3, Kate Sanenko’
1: Boston University, 2: The University of Tokyo, 3: RIKEN
To be appeared in CVPR 2019

WNR P
K. Saito




Key Idea

- Weak Global Alignment ——— High Level Feature (Category)

* Strong Local Alignment ——— Low Level Feature (Texture, Color)

Low-level High-level
Source | Features Features

Class
™ -’K Source
Bbox % %

Source
%
"xxd No 2 > o0
"n B " €—— | Stronglocal Weak Global > ® % o.‘. °
m m°m°0° Alignment Alignment mm B, °°
m B mme m
o

¥ .

Class
— (| — e — ) |<
Target
Bbox




Proposal: Strong Local Alignment

* Domain invariant local features
e Extraction of local feature from each receptive field in low-level layer

Source Low-level High-level Strong distribution alignment
Features Features
Before adaptation
Class Source Adapted
> > —> »]< ~
Bbox LR x‘; o Source
 / BE o0° m % g
local feature ® % oo ¢ m &y 52 "o
receptive field ° m % u% Mo
. m Sm o o 0© WO
arget o -0 0
- B omOm
Class B.m m ®H
— = > B — > |< g m  m g Target
|
Bbox u -
‘ Target
ve field local feature
receptive fie Low-level feature space



Proposal: Weak Global Alignment

* Alignment of high level-features by force degrades DA performance.
* Partial alignment of high-level features

Source LF°W;|9V9| High-level
eatures Features _
Before adaptation
Adapted
Class Source . .
— | —p > _,K . Similar to Target
3 Bbox % % e’ o Source

Target

Class "'.
—|  |—p > B ——p = |< - u
.\ |
Bbox m classifier

Target

Similar to Source
High-level feature space

—



Proposal: Weak Global Alignment

 Similar examples for each domain are hard-to-classify D Fd=1
examples with domain classifier. n=
* Objective of domain classifier — f(p) log(py) 1 —p otherwise.
* Higher weight on hard examples Focal loss (T.-Y. Lin+, ICCV17)
* Lower weight on easy examples f(p) = (1 —p)?
7
Before adaptation — CE
Adapted - - -
Source Similar to Target P 1, I:ard to- CIaSSIf;  — fy=1
- FL(y=2)
source S.. examples _~ '
% A Ss~o g —— FL(y=5)
% % 5 ; . m 'A.-.-_‘ e
R 23, R i
® ©go o ¢~ Easy-to- cIaSS|fy 1
m° 4
gl 21 S~ examples -
...... : m m .
m = WEEX  Domain - m .'. !
- m classifier 0 4 . . -
Target Target 0.0 0.2 0.4 0.6 0.8 10

probability of ground truth class of domain

Similar to



Source Faster RCNN Module

RPN — Features of Context
each region Vector

Local Feature Global Feature

~ \ [ E @: Class Object
®—>-—L E @ ) < |:> Detection
[

& BBoXx Objective

U1 Q) V2

Y Local \ 4 Source Global
GRL |:> Alignment GRL or I::> Alignment
Objective Target Objective

: e Domain prediction
GRL: Gradient Reversal Layer SIRGRENR (FTEC IE AT P
Local Domain Classifier Network Global Domain Classifier Network
Local L2 distance between /U]_

Objective (used in CycleGAN)

Alignment prediction and label. @ |:> Context Vector to stabilize adversarial training




Experiment 1: Adaptation Between Dissimilar Domains

* Pascal VOC to Clipart and Watercolor

Source domain Target domain

Pascal VOC Clipart




Experiment 1: Adaptation Between Dissimilar Domains

* Pascal VOC to Clipart and Watercolor

Person: 1.0 Bird: 0.91 |

N VY ey (e : Bird: 1.00
»
N

Cat: 0.91

" Bottle: 0.88

Person: 0.99

Bird: 1.00

Bird: 1.00




Results on Clipart

G: Global Alignment, I: Instance, CTX: Context Vector, L: Local, P: Pixel

Method !G I CTXL P !aero beycle bird boat bottle bus car cat chair cow table dog hrs bike prsn plnt sheep sofa train tv MAP

Faster RCNN| 135.6 52.5 24.323.0 20.0 43.932.810.7 30.6 11.7 13.8 6.0 36.8 45.948.741.9 16.5 7.3 22.9 32.0 27.8
BDC-Faster |/ |20.2 46.4 20.419.3 18.7 41.326.5 6.4 33.2 11.7 26.0 1.7 36.6 41.537.744.5 10.6 20.4 33.3 15.5 25.6_
DA-Faster |\/ v |15.0 346 12.411.9 19.8 21.1 23.2 3.1 22.1 26.3 10.6 10.0 19.6 39.4 34.6 29.3 1.0 17.1 19.7 24.8 19.8

% 130.5 48.5 33.624.8 41.2 48.932.4 17.2 34.5 55.0 19.0 13.6 35.1 66.2 63.0 45.3 12.5 22.6 45.0 38.9 36.4

| v [19.8 50.7 25.421.7 30.2 47.227.1 8.5 33.526.8 14.0 11.731.562.049.939.6 9.1 23.8 39.5 38.4 30.5

Proposed |v/ v 31.7 55.2 30.926.8 43.4 47.540.0 7.9 36.7 50.0 14.3 18.0 29.2 68.1 62.3 50.4 13.4 24.5 54.2 45.8 37.5

‘\/ v 7 ‘26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 17.0 12.533.8 65.5 61.6 52.0 9.3 24.9 54.1 49.1 38.1
4 v VvV V[31.1 53.7 289249 40.3 49.0 38.1 14.6 41.9 43.8 15.3 7.2 27.975.557341.8 6.7 23.348.544.1 35.7

O Strong global alignments (BDC-Faster (27.8 -> 25.6 %), DA-Faster (27.8 -> 19.8 %)) degrade performance.
O Weak global alignment improves performance 9.8 % (25.6 -> 36.4 %).
O Strong local alignment improves performance 2.7 % (27.8 -> 30.5 %).

O The method with weak global alighment, strong local alignment and context vector is the best (38.1 %).
Pascal VOC Clipart

9.8%



Results on Watercolor

Table 1: Results on Watercolor.

G: Global Alignment, I: Instance, CTX: Context Vector, L: Local, P: Pixel

‘GICTXLP

AP on a target domain

52.1 «=—— |Ocal-level was effective

56.7 «+—— QOracle-level performance

Method bike bird car cat dog prsn MAP
Faster RCNN| 168.8 46.8 37.2 32.7 21.3 60.7 44.6
BDC-Faster |v/ 168.6 48.3 47.2 26.5 21.7 60.5 45.5
DA-Faster |v' v 75.2 40.6 48.0 31.5 20.6 60.0 46.0
v 66.4 53.7 43.8 37.9 31.9 65.3 49.8
| v |79.454.8 47.237.131.5624
Proposed v v 71.3 52.0 46.6 36.2 29.2 67.3 50.4
v v v 823559 46.532.735566.7 53.3
v v v V([90.554.8 49.4 38.6 38.8 67.9
Oracle 83.6 59.4 50.7 43.7 39.5 74.5 58.6

O Weak global alignment improves performance 4.3 % (45.5 -> 49.8 %).
O Strong local alignment improves performance 7.5 % (44.6 -> 52.1 %).
O The method with weak global alignment, strong local alignment, context vector and pixel level alignment

is the best (38.1 %).

Pascal VOC

Watercolor




Ours (Weak Global Alignment Only) Baseline DC Method
(MAP: 36.4) (MAP: 25.6)
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* The results of adaptation between dissimilar domains (from pascal to clipart).
* Blue: source examples, Red: target examples




Global-Weak Alignment

* Focus on similar samples to the other domain

Source = @

Target



Experiment 2: Adaptation Between Similar Domains
* Cityscape to FoggyCityscape

G: Global Alignment, I: Instance, CTX: Context Vector, L: Local
Table 1:

AP on a target domain
Method |G I CTX L| bus bcycle car bike prsn rider train truck MAP
Faster RCNN 223 265 34315324.133.1 3.0 4.1 203
BDC-Faster 25.0 31.0 40.522.1 35.3 20.2 20.0 27.1 27.6
DA-Faster v 33.1 233 25.515.623.429.0 109 19.6 22.5
33.5 333 42.722227.1403 11.6 22.3 29.1
v1343 322 36.223.7275393 54 244 279
v 38.0 31.2 41.820.7 26.6 37.6 19.7 20.5 29.5
v v|36.2 35.3 43.530.0 299 42.3 32.6 24.5 34.3
Oracle | 150.0 36.2 49.7 34.733.2 459 37.4 35.6 40.3

Proposed
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Experiment 3: Adaptation from Synthetic to Real

G: Global Alignment, I: Instance, CTX: Context Vector, L: Local, P: Pixel

Table 1: .
Method G I CIX L P | APonCar
Faster RCNN 34.6
BDC-Faster v 31.8
DA-Faster v B v 34.2
v 36.4
v 40.2
v 40.0
Proposed (FL) | v v 38.2
v v v 40.1
v v v 41.5
v v v v 40.7
Proposed Method with different parameters
* Pixel-level, local level adaptation are good. EFL v v 38.7
* Combining pixel-level and our adaptation is better. FL (v = 3) v v 423
* EFL performs better than baselines FL(v=3)* |V v v | 477
# Weak global alignment is effective ! Oracle 53.1




Visualization of Domain Evidence

evidence of the target domain evidence of the source domain

* Visualization of the evidence for the global-level domain classifier’s prediction using Grad-cam
* Evidence for why the domain classifier thinks the image comes from the source or the target
* The feature extractor seems to focus on cars to deceive the domain classifier.



Take Home Messages

O Learning from Limited Data
O Knowledge Transfer
O Domain Adaptation
O Between-class learning

O Between-class learning (BC learning)
O Mix two training examples with a random ratio
O Train the model to output the mixing ratio
O Simple to implement

O Unsupervised domain adaptation

O Considering class specific distribution matching and adversarial training are effective for unsupervised
domain adaptation.

O Open set domain adaptation

O Giving an option for the feature extractor to select known or unknown patterns is practical in the open
set domain adaptation.

O Adaptive Object Detection

O Weak global feature alignment and strong local feature alignment are effective for adaptive object
detection.



