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SIMULATION TO REALITY 
TRANSFER IN ROBOTIC LEARNING
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ROBOTICS AT NVIDIA

Photos courtesy Dieter Fox and others
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Drive breakthrough robotics research and development

Enable the next-generation of robots that safely work alongside humans, 

transforming industries such as 

• manufacturing, 

• logistics, 

• healthcare, 

• and more

Photo: Courtesy of Charlie Kemp/Georgia Tech Slide courtesy Dieter Fox

OUR MISSION
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Navigation for fulfillment, delivery, assembly

Applications focus on 

• getting from A to B without collision

• following specific trajectory

Slide courtesy Dieter Fox

CURRENT STATE OF ROBOTICS TECHNOLOGY
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HOW DO WE GET

FROM TO ?

Better perception?

Tactile sensing?

Cheaper H/W?

Planning algorithms?

Compliant motion?
Natural user interfaces?

End-to-end learning?

Dexterous hands?
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DEEP LEARNING REVOLUTION

Already 
happening

Big 

data

Fast 

compute

Advanced

algorithms

Variations 
on theme

Where are 
we?
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VISION DATASETS

ImageNet
14M images

1M bounding boxes

CIFAR
120k images

COCO
200k images

Pascal 3D+
30k images

ObjectNet3D
90k images

RBO
90k images

T-LESS
50k images FlyingThings3D

20k images

Sintel
50k images

…
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ROBOTICS DATASETS

KITTI

SLAM

Robobarista
1k demonstrations

2D-3D-S

ScanNet RoboTurk
2k demonstrations

MIT Push
1M datapoints

iCubWorld
USF Manipulation

2k trials

Penn Haptic 
Texture Toolkit

100 models

MPII Cooking

UNIPI Hand
114 grasps
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SIMULATED ACTIONABLE ENVIRONMENTS

AI2-THORGibson

OpenAI Gym

Arcade Learning 
Environment

SURREALRoboschool

AirSim
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SIMULATION

Three possibilities:

1. Simulation will never be good enough to be used
“Software simulations are doomed to succeed.” — Rod Brooks

2. Without simulation, interesting robotics problems cannot be solved

3. Eventually, simulation will mature to the point where

1. Robotics will benefit from it (accelerate training, validate solutions, etc.)

2. Some problems may require it due to their complexity

Will simulation be the key that unlocks robot potential?

Simulation generates massive data with high consistency
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AN ANALOGY

Then Now(Leslie Jones Collection/Boston Public Library) (Public domain)
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Design

SupportTraining
(Photo by SuperJet International. CC BY-SA 2.0)

(Photo by Prana Fistianduta. CC BY-SA 3.0)

(Photo by Marian Lockhart / Boeing)

AN ANALOGY

https://creativecommons.org/licenses/by-sa/2.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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DEMOCRATIZATION
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PROBLEM STATEMENT

actions

agentenvironment

observations

p : o → aTrain Apply

Simulation Reality

Photorealistic Physically realistic
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LONG WAY TO GO

Today’s robot simulators:

• Not photorealistic

• Not physically realistic

Early flight simulator
1983

Early robot simulator
2017

[Tobin et al. 2017]



16/60

BUT PROGRESSING FAST

Physical realism
PhysX 4.0

Photorealism
RTX ray tracing
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REALITY GAP

Reality gap – discrepancy between simulated data and real data

Three ways to bridge reality gap:

1. Increase fidelity of simulator

1. Photo-realism (light, color, texture, material, scattering, …; 
also tactile sensors, …)

2. Physical realism (dimensions, forces, friction, collisions, …)

2. Learn mapping to bridge the gap

Domain adaptation

3. Make controller robust to imperfections

Domain randomization, add noise during training, stochastic policy

[Dundar et al., 2018]
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SIM-TO-REAL SUCCESS

[Tan et al., 2018]

[Hwangbo et al., 2019; 
Lee et al., 2019]

[James et al., 2017; Matas et al., 2018]

[Bousmalis et al., 2018] [Sadeghi et al. 2017]

Locomotion Grasping / Manipulation Quadrotor flight

[Molchanov et al. 2019]
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SIM-TO-REAL AT NVIDIA

Vision Closed-loop control

Navigation

Manipulation
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SIM-TO-REAL AT NVIDIA
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DOMAIN RANDOMIZATION

Domain randomization – Generate non-
realistic randomized images

Idea – If enough variation is seen at training 
time, then real world will just look like another 
variation

Randomize:

• Object pose

• Lighting / shadows

• Textures

• Distractors 

• Background
Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization

J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To, E. Cameracci, S. Boochoon, S. Birchfield. CVPR WAD 2018
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STRUCTURED DOMAIN RANDOMIZATION (SDR)

Structured Domain Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data

A. Prakash, S. Boochoon, M. Brophy, D. Acuna, E. Cameracci, G. State, O. Shapira, S. Birchfield. ICRA 2019

SDR – Generate randomized images with 
variety (as in DR) but with realistic structure

scenario

global
parameters

context
splines

objects



24/60

SDR IMAGES

Not photorealistic, but structurally realistic



25/60

SDR RESULTS

Reality gap is large

Domain gap between real datasets 
is also large

SDR 25k outperforms:

• DR 25k (synthetic)

• Sim 200k (photorealistic synthetic) 

• VKITTI 21k (photorealistic synthetic with same content)

• BDD100K (real)
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SDR RESULTS

KITTI Cityscapes

Network has never seen a real image!
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DRIVE SIM AND CONSTELLATION

DRIVE Sim creates the virtual world DRIVE Constellation runs simulation



30/60

SIM-TO-REAL AT NVIDIA

Vision Closed-loop control

Navigation

Manipulation



31/60
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32/60[Human-Readable Plans from Real-World Demonstrations, Tremblay et al., 2018]
Synthetically Trained Neural Networks for Learning Human-Readable Plans from Real-World Demonstrations
J. Tremblay, T. To, A. Molchanov, S. Tyree, J. Kautz, S. Birchfield.  ICRA 2018

“Place the car on yellow.”

LEARNING HUMAN-READABLE PLANS



33/60

DETECTING HOUSEHOLD OBJECTS
Does the technique generalize?

YCB objects [Calli et al. 2015]; subset of 21 used by PoseCNN [Xiang et al. 2018]

Baxter gripper
• parallel jaw
• 4 cm travel dist.
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Design goals:

1. Single RGB image

2. Multiple instances of each object type

3. Full 6-DoF pose

4. Robust to pose, lighting conditions, camera intrinsics

DEEP OBJECT POSE ESTIMATION (DOPE)

https://github.com/NVlabs/Deep_Object_Pose
Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects
J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, S. Birchfield.  CoRL 2018

https://github.com/NVlabs/Deep_Object_Pose
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- Data exporter using UE4

- Near photorealistic

- Domain randomization tool set

- Tutorial and documentation

- Export:

• 2D bounding box

• 3D pose

• Keypoint location

• Segmentation 

• Depth

https://github.com/NVIDIA/Dataset_Synthesizer

NDDS DATA SET SYNTHESIZER

https://github.com/NVIDIA/Dataset_Synthesizer
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Falling Things: A Synthetic Dataset for 3D Object Detection and Pose Estimation., Tremblay et al. 2018

MIXING DR + PHOTOREALISTIC

Together, these bridge the reality gap
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ACCURACY MEASURED BY AREA UNDER THE CURVE

DOPE

Accuracy needed 
by our gripper
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Cracker Sugar Soup Mustard Meat Mean

DR 10.37 63.22 70.20 24.28 24.84 36.90

Photo 16.94 52.73 49.72 58.36 34.95 40.62

Photo+DR 55.92 75.79 76.06 81.94 39.38 65.87

PoseCNN (syn) 0 2.82 23.16 6.23 10.05 8.45

PoseCNN 51.51 68.53 66.07 79.70 59.55 65.07

Area under the curve for average distance threshold

RESULTS ON YCB-VIDEO

DOPE trained only on synthetic data outperforms 
leading network trained on syn + real data

PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes

Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, Dieter Fox.  RSS 2018
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DOPE IN THE WILD
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TRADITIONAL APPROACH

Input Result

Pose 

Estimation

Inverse 

Kinematics 

+ Motion 

Planning

Open-Loop



43/60

DOPE FOR ROBOTIC MANIPULATION
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[Geometry-Aware Semantic Grasping of Real-World Objects: From Simulation to Reality, submitted]

DOPE ERRORS
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CLOSED-LOOP GRASPING

Input Result

Traditional

Pre-Grasp

Learned

Controller

Feedback loop corrects errors in estimation / calibration

Closed-Loop
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Geometry-Aware Semantic Grasping of Real-World Objects: From Simulation to Reality.

S. Iqbal, J. Tremblay, T. To, J. Cheng, E. Leitch, D. McKay, S. Birchfield. Submitted to IROS 2019

ARCHITECTURE

Trained via DDQN
(double deep Q-network)
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SIMULATED ROBOT FARM
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SIMULATED ROBOT FARM
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RESULTS

Simulation Reality
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5

0

Simulation Reality

LEARNING INVERSE DYNAMICS

Videos courtesy David Hoeller
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5

1 REAL-TO-SIM

Video courtesy David Hoeller
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BAYES SIM

Training learns distribution of parameters After training

BayesSim: Adaptive domain randomization via probabilistic inference for robotics simulators

F. Ramos, R. C. Possas, D. Fox.  Under review, 2019
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CLOSING THE SIM-TO-REAL LOOP
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Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience
Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, D. Fox.  ICRA 2019

CLOSING THE SIM-TO-REAL LOOP
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5

7

Simulation Reality

CLOSING THE SIM-TO-REAL LOOP



58/60

5

8 SIM-TO-REAL LANDSCAPE
p
h
o
to

re
a
li
sm

physical realism

large-scale grasping

mobile manipulation

machine tending

in-hand manipulation

object state changes

non-rigid objects

liquids

fast movement

tactile sensing

generalization
…

…
…

?
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Simulation will be key for robotics in 

• Generating large amounts of labeled training data

• Quantitatively verifying policies / algorithms

5

9 CONCLUSION

Authoring content?

Model verification?

Tactile sensors?

Scaling?
Adaptation?

Soft contact modeling?

Super-real-time training?

Photorealism and physical realism are almost here

Many open problems:
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