SIMULATION TO REALITY TRANSFER IN ROBOTIC LEARNING

Stan Birchfield, Principal Research Scientist
Jonathan Tremblay, Research Scientist

GTC San Jose, March 2019
ROBOTICS AT NVIDIA

Photos courtesy Dieter Fox and others
OUR MISSION

Drive breakthrough robotics research and development

Enable the next-generation of robots that safely work alongside humans, transforming industries such as
- manufacturing,
- logistics,
- healthcare,
- and more
Navigation for fulfillment, delivery, assembly
Applications focus on
• getting from A to B without collision
• following specific trajectory
HOW DO WE GET

FROM

Better perception?
Tactile sensing?
Cheaper H/W?

TO

Compliant motion?
Planning algorithms?

Natural user interfaces?
End-to-end learning?
Dexterous hands?
DEEP LEARNING REVOLUTION

Already happening

Fast compute

Big data

Where are we?

Variations on theme

Advanced algorithms
VISION DATASETS

- **ImageNet**: 14M images, 1M bounding boxes
- **CIFAR**: 120k images
- **COCO**: 200k images
- **Pascal 3D+**: 30k images
- **Pascal 3D+**: 30k images
- **ObjectNet3D**: 90k images
- **RBO**: 90k images
- **T-LESS**: 50k images
- **FlyingThings3D**: 20k images
- **Sintel**: 50k images

[ImageNet examples]

[Sample images from ImageNet]

[Sample images from CIFAR]

[Sample images from COCO]

[Sample images from Pascal 3D+]

[Sample images from ObjectNet3D]

[Sample images from RBO]

[Sample images from T-LESS]

[Sample images from FlyingThings3D]

[Sample images from Sintel]
ROBOTICS DATASETS

- KITTI
- iCubWorld
- MPII Cooking
- Robobarista 1k demonstrations
- USF Manipulation 2k trials

- ScanNet
- RoboTurk 2k demonstrations
- UNIPI Hand 114 grasps

- Penn Haptic Texture Toolkit 100 models
- MIT Push 1M datapoints
SIMULATED ACTIONABLE ENVIRONMENTS

Arcade Learning Environment
Gibson
AI2-THOR
AirSim

OpenAI Gym
Roboschool
SURREAL
SIMULATION

Will simulation be **the key** that unlocks robot potential?

Three possibilities:

1. Simulation will *never be good enough* to be used
 “Software simulations are doomed to succeed.” — Rod Brooks

2. Without simulation, interesting robotics problems *cannot be* solved

3. Eventually, simulation will mature to the point where
 1. Robotics will *benefit* from it (accelerate training, validate solutions, etc.)
 2. Some problems may *require* it due to their complexity

Simulation generates massive data with high consistency
AN ANALOGY

Then
(Leslie Jones Collection/Boston Public Library)

Now
(Public domain)
AN ANALOGY

Design

Training

Support

(Photo by SuperJet International. CC BY-SA 2.0)

(Photo by Prana Fistianduta. CC BY-SA 3.0)

(Photo by Marian Lockhart / Boeing)
DEMOCRATIZATION
PROBLEM STATEMENT

Environment

Photorealistic

Agent

Physically realistic

Observations

Actions

Simulation

Train

Reality

Apply

$\pi : o \rightarrow a$
LONG WAY TO GO

Today’s robot simulators:
- Not photorealistic
- Not physically realistic

Early flight simulator 1983
Early robot simulator 2017 [Tobin et al. 2017]
BUT PROGRESSING FAST

Photorealism
RTX ray tracing

Physical realism
PhysX 4.0
REALITY GAP

Reality gap - discrepancy between simulated data and real data

Three ways to bridge reality gap:

1. Increase fidelity of simulator
 1. *Photo-realism* (light, color, texture, material, scattering, ...; also tactile sensors, ...)
 2. *Physical realism* (dimensions, forces, friction, collisions, ...)

2. Learn mapping to bridge the gap
 Domain adaptation

3. Make controller robust to imperfections
 Domain randomization, add noise during training, stochastic policy

[Dundar et al., 2018]
SIM-TO-REAL SUCCESS

Locomotion

Grasping / Manipulation

Quadrotor flight

[Tan et al., 2018]

[James et al., 2017; Matas et al., 2018]

[Molchanov et al. 2019]

[Hwangbo et al., 2019; Lee et al., 2019]

[Bousmalis et al., 2018]

[Sadeghi et al. 2017]
SIM-TO-REAL AT NVIDIA

Navigation

Manipulation

Vision

Closed-loop control
SIM-TO-REAL AT NVIDIA

Navigation

Manipulation

Vision

Closed-loop control
Domain randomization - Generate non-realistic randomized images

Idea - If enough variation is seen at training time, then real world will just look like another variation

Randomize:

• Object pose
• Lighting / shadows
• Textures
• Distractors
• Background
STRUCTURED DOMAIN RANDOMIZATION (SDR)

SDR - Generate randomized images with variety (as in DR) but with realistic structure

Structured Domain Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data
A. Prakash, S. Boochoon, M. Brophy, D. Acuna, E. Cameracci, G. State, O. Shapira, S. Birchfield. ICRA 2019
Not photorealistic, but structurally realistic
SDR RESULTS

Reality gap is large

Domain gap between real datasets is also large

SDR 25k outperforms:

- *DR* 25k (synthetic)
- *Sim 200k* (photorealistic synthetic)
- *VKITTI 21k* (photorealistic synthetic with same content)
- *BDD100K* (real)
Network has never seen a real image!
SIM-TO-REAL AT NVIDIA

Navigation

Manipulation

Vision

Closed-loop control
SIM-TO-REAL AT NVIDIA

Navigation

Manipulation

Vision

Closed-loop control
DRIVE SIM AND CONSTELLATION

DRIVE Sim creates the virtual world

DRIVE Constellation runs simulation
SIM-TO-REAL AT NVIDIA

Navigation

Manipulation

Vision

Closed-loop control
SIM-TO-REAL AT NVIDIA

Navigation

Manipulation

Vision

Closed-loop control
LEARNING HUMAN-READABLE PLANS

“Place the car on yellow.”

Synthetically Trained Neural Networks for Learning Human-Readable Plans from Real-World Demonstrations
J. Tremblay, T. To, A. Molchanov, S. Tyree, J. Kautz, S. Birchfield. ICRA 2018
DETECTING HOUSEHOLD OBJECTS

Does the technique generalize?

YCB objects [Calli et al. 2015]; subset of 21 used by PoseCNN [Xiang et al. 2018]

Baxter gripper
• parallel jaw
• 4 cm travel dist.
Design goals:
1. Single RGB image
2. Multiple instances of each object type
3. Full 6-DoF pose
4. Robust to pose, lighting conditions, camera intrinsics

DEEP OBJECT POSE ESTIMATION (DOPE)

https://github.com/NVlabs/Deep_Object_Pose
NDDS DATA SET SYNTHESIZER

- Data exporter using UE4
- Near photorealistic
- Domain randomization tool set
- Tutorial and documentation
- Export:
 • 2D bounding box
 • 3D pose
 • Keypoint location
 • Segmentation
 • Depth

https://github.com/NVIDIA/Dataset_Synthesizer
MIXING DR + PHOTOREALISTIC

Together, these bridge the reality gap
 Accuracy needed by our gripper

Accuracy measured by area under the curve
RESULTS ON YCB-VIDEO

<table>
<thead>
<tr>
<th></th>
<th>Cracker</th>
<th>Sugar</th>
<th>Soup</th>
<th>Mustard</th>
<th>Meat</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR</td>
<td>10.37</td>
<td>63.22</td>
<td>70.20</td>
<td>24.28</td>
<td>24.84</td>
<td>36.90</td>
</tr>
<tr>
<td>Photo</td>
<td>16.94</td>
<td>52.73</td>
<td>49.72</td>
<td>58.36</td>
<td>34.95</td>
<td>40.62</td>
</tr>
<tr>
<td>Photo+DR</td>
<td>55.92</td>
<td>75.79</td>
<td>76.06</td>
<td>81.94</td>
<td>39.38</td>
<td>65.87</td>
</tr>
<tr>
<td>PoseCNN (syn)</td>
<td>0</td>
<td>2.82</td>
<td>23.16</td>
<td>6.23</td>
<td>10.05</td>
<td>8.45</td>
</tr>
<tr>
<td>PoseCNN</td>
<td>51.51</td>
<td>68.53</td>
<td>66.07</td>
<td>79.70</td>
<td>59.55</td>
<td>65.07</td>
</tr>
</tbody>
</table>

Area under the curve for average distance threshold

DOPE trained only on synthetic data outperforms leading network trained on syn + real data
DOPE IN THE WILD

PoseCNN

DOPE (ours)
SIM-TO-REAL AT NVIDIA

Navigation

Manipulation

Vision

Closed-loop control
SIM-TO-REAL AT NVIDIA

Navigation

Manipulation

Vision

Closed-loop control
TRADITIONAL APPROACH

Input: Pose Estimation

Open-Loop

Inverse Kinematics + Motion Planning

Result:
DOPE FOR ROBOTIC MANIPULATION

Hand camera not used
DOPE ERRORS
CLOSED-LOOP GRASPING

Feedback loop corrects errors in estimation / calibration

ARCHITECTURE

Trained via DDQN
(double deep Q-network)
SIMULATED ROBOT FARM
SIMULATED ROBOT FARM

Policy is trained entirely in simulation
RESULTS

Closed loop policy grasping object
LEARNING INVERSE DYNAMICS

Simulation

Reality

Videos courtesy David Hoeller
REAL-TO-SIM

Video courtesy David Hoeller
SIM-TO-REAL AT NVIDIA

Navigation

Manipulation

Vision

Closed-loop control
SIM-TO-REAL AT NVIDIA

Navigation

Manipulation

Vision

Closed-loop control
BAYES SIM

Training learns distribution of parameters

After training

BayesSim: Adaptive domain randomization via probabilistic inference for robotics simulators

F. Ramos, R. C. Possas, D. Fox. Under review, 2019
CLOSING THE SIM-TO-REAL LOOP

Swing-peg-in-hole
Simulated environment
CLOSING THE SIM-TO-REAL LOOP

Swing-peg-in-hole
Simulated environment

Swing-peg-in-hole
Real robot: SimOpt Iteration 0

Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience
CLOSING THE SIM-TO-REAL LOOP

Simulation

Reality
SIM-TO-REAL LANDSCAPE

- large-scale grasping
- mobile manipulation
- machine tending
- in-hand manipulation
- tactile sensing
- object state changes
- non-rigid objects
- liquids
- fast movement
- generalization

...
CONCLUSION

Simulation will be key for robotics in

- Generating large amounts of labeled training data
- Quantitatively verifying policies / algorithms

Photorealism and physical realism are almost here

Many open problems:

- Tactile sensors?
- Authoring content?
- Model verification?
- Super-real-time training?
- Soft contact modeling?
- Scaling?
- Adaptation?
ACKNOWLEDGMENTS

Artem Molchanov
Shariq Iqbal
Thang To
Jia Cheng
Duncan McKay
Kirby Leung
Stephen Tyree
Jan Kautz
Dieter Fox

Ankur Handa
David Hoeller
Aayush Prakash
David Auld
Zvi Greenstein
Adam Moravanszky
Kier Storey
Nikolai Smolyanskiy
Alexei Kamenev

Vijay Baiyya
Jeffrey Smith
Johnny Costello
and many others

https://github.com/NVIDIA/Dataset_Synthesizer
https://github.com/NVlabs/Deep_Object_Pose