© INVIDIA. SIMULATION TO REALITY TRANSFER IN ROBOTIC LEARNING

Stan Birchfield, Principal Research Scientist Jonathan Tremblay, Research Scientist

GTC San Jose, March 2019

ROBOTICS AT NVIDIA

Photos courtesy Dieter Fox and others

OUR MISSION

Drive breakthrough robotics research and development

Enable the next-generation of robots that safely work alongside humans, transforming industries such as

- manufacturing,
- logistics,
- healthcare,
- and more

lide courtesy Dieter Fox

CURRENT STATE OF ROBOTICS TECHNOLOGY

Navigation for fulfillment, delivery, assembly Applications focus on

- getting from A to B without collision
- following specific trajectory

HOW DO WE GET

TO

Better perception?

Compliant motion?

Natural user interfaces?

End-to-end learning?

Planning algorithms?

Tactile sensing?

Dexterous hands?

Cheaper H/W?

DEEP LEARNING REVOLUTION

CIFAR 120k images

VISION DATASETS

COCO 200k images

Pascal 3D+ 30k images

Sintel 50k images

14M images

T-LESS 50k images 1M bounding boxes

ObjectNet3D 90k images

FlyingThings3D 20k images

ROBOTICS DATASETS

KITTI

iCubWorld

MPII Cooking

Robobarista 1k demonstrations

USF Manipulation 2k trials Penn Haptic Texture Toolkit 100 models

SLAM

ScanNet

RoboTurk 2k demonstrations

UNIPI Hand 114 grasps

MIT Push 1M datapoints 8/60 **© IVIDIA**

SIMULATED ACTIONABLE ENVIRONMENTS

Arcade Learning

Environment

Gibson

AI2-THOR

AirSim

SURREAL

SIMULATION

Will simulation be *the key* that unlocks robot potential?

Three possibilities:

- 1. Simulation will *never be good enough* to be used "Software simulations are doomed to succeed." – Rod Brooks
- 2. Without simulation, interesting robotics problems *cannot be* solved
- 3. Eventually, simulation will mature to the point where
 - 1. Robotics will *benefit* from it (accelerate training, validate solutions, etc.)
 - 2. Some problems may *require* it due to their complexity

Simulation generates massive data with high consistency

AN ANALOGY

11/60 📀 **NVIDIA**.

AN ANALOGY

(Photo by SuperJet International. <u>CC BY-SA 2.0</u>)

(Photo by Prana Fistianduta. <u>CC BY-SA 3.0</u>) **Design**

Support

12/60

Training

DEMOCRATIZATION

PROBLEM STATEMENT

LONG WAY TO GO

Today's robot simulators:

- Not photorealistic
- Not physically realistic

Early flight simulator 1983

Early robot simulator 2017 [Tobin et al. 2017]

BUT PROGRESSING FAST

Photorealism RTX ray tracing Physical realism PhysX 4.0

REALITY GAP

Reality gap - discrepancy between simulated data and real data

Three ways to bridge reality gap:

1. Increase fidelity of simulator

1. *Photo-realism* (light, color, texture, material, scattering, ...; also tactile sensors, ...)

- 2. Physical realism (dimensions, forces, friction, collisions, ...)
- 2. Learn mapping to bridge the gap Domain adaptation

3. Make controller robust to imperfections ^[Dundar et al., 2018] Domain randomization, add noise during training, stochastic policy

SIM-TO-REAL SUCCESS

Locomotion

Grasping / Manipulation

[James et al., 2017; Matas et al., 2018]

Quadrotor flight

[Molchanov et al. 2019]

[Sadeghi et al. 2017]

[Tan et al., 2018]

[Hwangbo et al., 2019; Lee et al., 2019]

[Bousmalis et al., 2018]

Navigation		
Manipulation Vision	Closed-loop control	19/60 () () () ()

Navigation

Manipulation

Closed-loop control

20/60 📀 💿 🔁 🕺 20/60

Vision

Navigation

Manipulation

Vision

21/60 📀 **NVIDIA**.

DOMAIN RANDOMIZATION

Domain randomization - Generate nonrealistic randomized images

Idea - If enough variation is seen at training time, then real world will just look like another variation

Randomize:

- Object pose
- Lighting / shadows
- Textures
- Distractors
- Background

Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To, E. Cameracci, S. Boochoon, S. Birchfield. *CVPR WAD 2018* 22/60 **OVIDIA**

STRUCTURED DOMAIN RANDOMIZATION (SDR)

SDR - Generate randomized images with variety (as in DR) but with realistic structure

Structured Domain Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data A. Prakash, S. Boochoon, M. Brophy, D. Acuna, E. Cameracci, G. State, O. Shapira, S. Birchfield. *ICRA 2019*

SDR IMAGES

Not photorealistic, but structurally realistic

SDR RESULTS

Reality gap is large

Domain gap between real datasets is also large

SDR 25k outperforms:

- DR 25k (synthetic)
- Sim 200k (photorealistic synthetic)
- VKITTI 21k (photorealistic synthetic with same content)

AP @0.7 IOU

• **BDD100K** (real)

Car 2D box detection evaluated on KITTI (real)

SDR RESULTS

KITTI

Cityscapes

Network has never seen a real image!

Navigation

Manipulation

Closed-loop control

💿 nvidia.

Vision

Navigation

Manipulation

Vision

Closed-loop control

28/60 📀 **NVIDIA**.

DRIVE SIM AND CONSTELLATION

DRIVE Sim creates the virtual world

DRIVE Constellation runs simulation

Navigation

Manipulation

Closed-loop control

Vision

Navigation

Manipulation

Vision

Closed-loop control

31/60 📀 NVIDIA.

LEARNING HUMAN-READABLE PLANS

"Place the car on yellow."

Synthetically Trained Neural Networks for Learning Human-Readable Plans from Real-World Demonstrations 32/60 Sinvibia. J. Tremblay, T. To, A. Molchanov, S. Tyree, J. Kautz, S. Birchfield. *ICRA 2018*

DETECTING HOUSEHOLD OBJECTS

Does the technique generalize?

Baxter gripper

- parallel jaw
- 4 cm travel dist.

YCB objects [Calli et al. 2015]; subset of 21 used by PoseCNN [Xiang et al. 2018]

DEEP OBJECT POSE ESTIMATION (DOPE)

Design goals:

- 1. Single RGB image
- 2. Multiple instances of each object type
- 3. Full 6-DoF pose
- 4. Robust to pose, lighting conditions, camera intrinsics

💿 nvidia

Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects 34/60 J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, S. Birchfield. *CoRL* 2018

NDDS DATA SET SYNTHESIZER

- Data exporter using UE4
- Near photorealistic
- Domain randomization tool set
- Tutorial and documentation
- Export:
 - 2D bounding box
 - 3D pose
 - Keypoint location
 - Segmentation
 - Depth

https://github.com/NVIDIA/Dataset_Synthesizer

MIXING DR + PHOTOREALISTIC

Falling Things: A Synthetic Dataset for 3D Object Detection and Pose Estimation. Tremblay et al. 2018

Together, these bridge the reality gap

ACCURACY MEASURED BY AREA UNDER THE CURVE

RESULTS ON YCB-VIDEO

Stor		Cracker	Sugar	Soup	Mustard	Meat	Mean
	DR	10.37	63.22	70.20	24.28	24.84	36.90
	Photo	16.94	52.73	49.72	58.36	34.95	40.62
SPAM	Photo+DR	55.92	75.79	76.06	81.94	39.38	65.87
	PoseCNN (syn)	0	2.82	23.16	6.23	10.05	8.45
	PoseCNN	51.51	68.53	66.07	79.70	59.55	65.07

Area under the curve for average distance threshold

DOPE trained only on synthetic data outperforms leading network trained on syn + real data

38/60

DOPE IN THE WILD

Navigation

Manipulation

Closed-loop control

40/60 📀 NVIDIA.

Vision

Navigation

Manipulation

Vision

Closed-loop control

💿 NVIDIA.

TRADITIONAL APPROACH

DOPE FOR ROBOTIC MANIPULATION

DOPE ERRORS

CLOSED-LOOP GRASPING

Feedback loop corrects errors in estimation / calibration

ARCHITECTURE

Trained via DDQN (double deep Q-network)

Geometry-Aware Semantic Grasping of Real-World Objects: From Simulation to Reality. S. Iqbal, J. Tremblay, T. To, J. Cheng, E. Leitch, D. McKay, S. Birchfield. *Submitted to IROS 2019*

46/60 📀 NVIDIA.

SIMULATED ROBOT FARM

SIMULATED ROBOT FARM

TestSim - Unreal Edito

LEARNING INVERSE DYNAMICS

Simulation

Reality

📀 NVIDIA.

51/60

Navigation

Manipulation

Closed-loop control

Vision

Navigation

Manipulation

Vision

Closed-loop control

BAYES SIM

Training learns distribution of parameters

After training

BayesSim: Adaptive domain randomization via probabilistic inference for robotics simulators 54/60 Station F. Ramos, R. C. Possas, D. Fox. *Under review, 2019*

CLOSING THE SIM-TO-REAL LOOP

CLOSING THE SIM-TO-REAL LOOP

Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, D. Fox. *ICRA 2019*

💿 nvidia.

56/60

CLOSING THE SIM-TO-REAL LOOP

3x

Drawer opening Simulated environment

an

Drawer opening Real robot: SimOpt Iteration 0

Simulation

Reality

111

SIM-TO-REAL LANDSCAPE

large-scale grasping mobile manipulation machine tending in-hand manipulation tactile sensing object state changes non-rigid objects liquids fast movement generalization

physical realism

CONCLUSION

Simulation will be key for robotics in

- Generating large amounts of labeled training data
- Quantitatively verifying policies / algorithms

Photorealism and *physical realism* are almost here

Many open problems:

Tactile sensors?

Authoring content?

Super-real-time training?

Model verification?

Soft contact modeling?

Scaling?

Adaptation?

ACKNOWLEDGMENTS

Artem Molchanov Shariq Iqbal Thang To Jia Cheng **Duncan McKay Kirby Leung** Stephen Tyree Jan Kautz **Dieter Fox**

Ankur Handa David Hoeller Aayush Prakash David Auld Zvi Greenstein Adam Moravanszky **Kier Storey** Nikolai Smolyanskiy Alexei Kamenev

Vijay Baiyya Jeffrey Smith Johnny Costello and many others

https://github.com/NVIDIA/Dataset_Synthesizer https://github.com/NVIabs/Deep_Object_Pose

