Real-Time Computer Vision in Retail

NVIDIA GTC 2019 Version: 8 March 2019

Agenda

- Al in Retail
- Real World Challenges
- Technical Obstacles
- Case Study: Inference at the Shelf
- Future Areas of Research

Al in Retail

Note

Artificial Intelligence

Machine Learning

Deep Learning

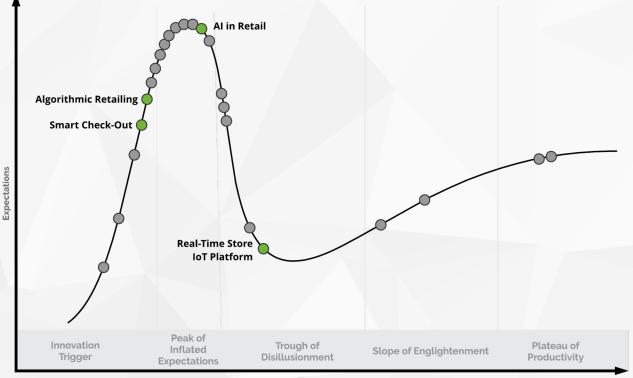
"Just Walk Out"

Source: SounderBruce – Creative Commons <u>Attribution-Share Alike 4.0 International</u> license.

Successful retailers will...

feature exclusive products.
resurrect the art of selling.
deliver a satisfying experience.
challenge the fundamental assumptions of commerce.

Retail Technology Hype Cycle



Source: Gartner

Time

Observations at NRF

- Smart shelves
- People tracking
- Item detection
- Fraud / shrink detection & prevention
- Smart carts
- Age verification

Frictionless Consumer Experience

Real World Challenges

Business and Operational Challenges

Consumer Experience	Store Redesign	Privacy	Rol
 Frictionless, SCO, and assisted checkout Opt-in vs. Opt-out 	 Aisles Power & networking Minimize occlusion 	 Always on camera? Children on camera? Right to be forgotten? 	 Cost/Benefit of frictionless Ways to drive value without increased cost? Empower over curated?

" href="<?php blog viget_favicon(); ?? Technical Challenges = fruiti-

INTER LE LE 124!--> attributes(); ?>>

ead(); ??

<7php body_class id="page-headel

\$1090_005

-rpho

stheme_options

1090_005 \$me (155et(\$theme.

if (isset(stheme.gov \$menu_pos

\$1090_P05_class \$menu_pos_cla

ponsi

\$1090_POS = esc.

•

the bloginfol "charset", content="width=device

itle('1', true, mpg.org/x) href="http://gmpg.org/xi href="http://gmpg.org/xi

John CC

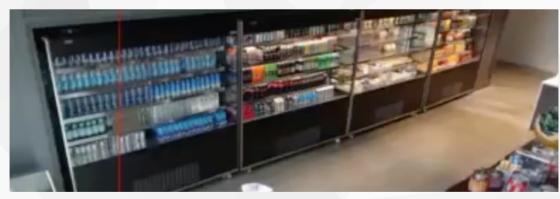
Technical Challenges

People detection and tracking

- How can I track people who appear to be very similar? (twins, uniformed, etc.)
- How do I differentiate between shoppers and employees
- How do I handle multiple shoppers with a shared cart?
- Shoppers with children.
- Item detection, recognition, and tracking
 - New items, small items, similar items
 - Carts vs. bags
- Other obstacles
 - Occlusion of people and items
 - Real-time & latency
 - Consequences of false positives, false negatives, etc.

case study

Not our first rodeo



Problem Statement

One approach to offering a frictionless shopping experience is to recognize

items removed from a retail shelf and automatically add them to a shopper's

virtual cart in real-time.

Key Requirements

Detection failures result in giving items away for free.

Cart-to-person mismatches result in freebies and erroneous charges.

Recognition failures result in charging for the wrong items.

Sub real-time processing misses add to & remove from cart events.

Key Requirements

Detection failures result in giving items away for free.

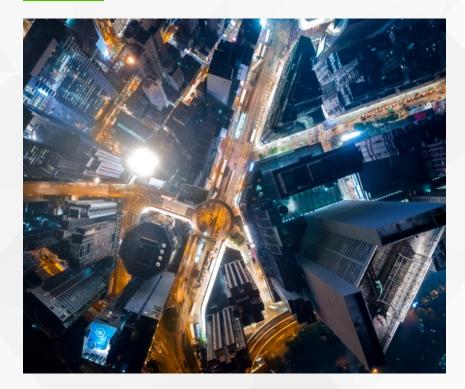
Cart-to-person mismatches result in freebies and erroneous charges.

Recognition failures result in charging for the wrong items. Sub real-time processing misses add to & remove from cart events.

Use computer vision and deep learning for object detection and classification

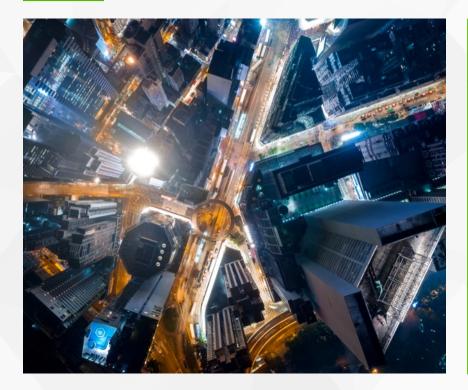
and NVIDIA GPUs to accelerate inference to achieve real-time performance.

A deep neural network trained on <u>thousands</u> of **low resolution** images with a *distribution resembling the validation set* is more likely to have high detection and recognition accuracy as well as perform real-time inference at a high frame rate.



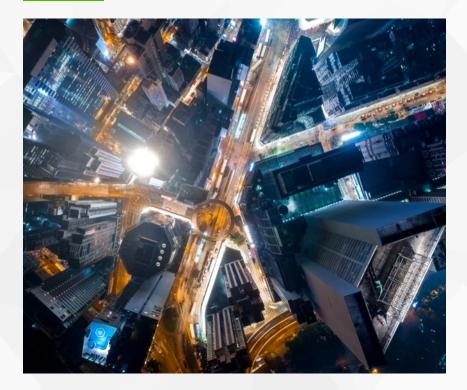
Assembling a well-distributed dataset

- How many samples per class are needed?
- In retail, appearance changes frequently
- Annotation cost
- Annotation time
- Manual or automated data acquisition -> labeling pipeline?



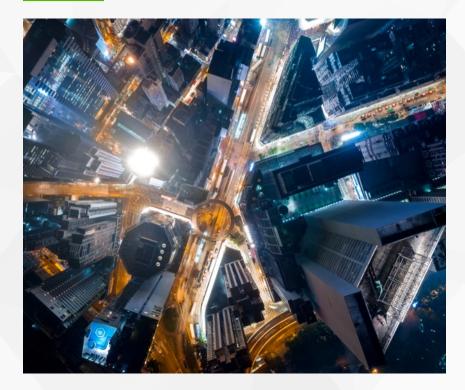
Selecting a neural network architecture for this use case

 Complex discussion beyond the scope of this talk



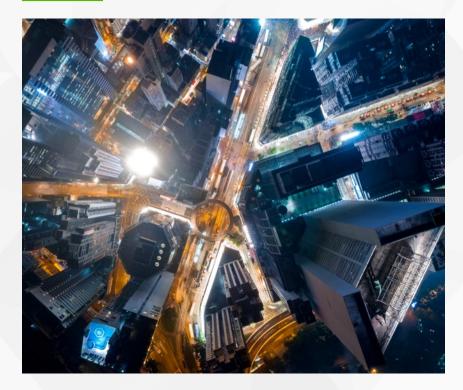
Performing inference in real-time

- Experiment with smaller image resolutions to improve FPS
- Test different GPUs
- Edge vs. centralized processing



Achieving accuracy suitable for the use case

- Connects back to the key requirements we discussed previously
- Missing or incorrectly classifying items has serious implications in retail



Cameras

- Sensor types
- Lenses
- Mounting height
- Field of view
- Pixels per inch (PPI)

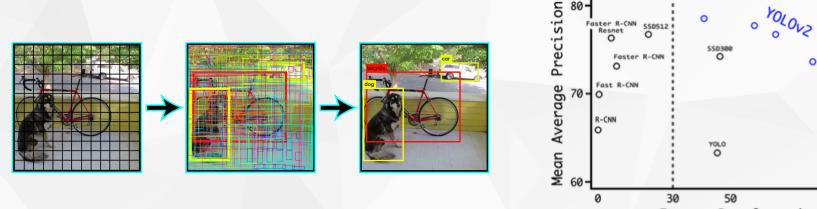
- Which combination is best and why?
- Experiment evaluates varying the dataset size, image resolution, and hardware processing unit.

- Data Collection
 - 50 images per class
 - 250 images per class
 - 1,000 images per class
- Data Set Size for 10 classes
 - 500 samples
 - 2,500 samples
 - ⁻ 10,000 samples

- Image and network resolution
 - Input shape and image resolution are the same
 - Down-sampled from an original capture resolution of 1500x1500 pixels
- Experimental results for:
 - "720p": 736x736
 - "360p": 384x384
 - "240p": 256x256

- Evaluated centralized vs. edge processing:
 - Jetson AGX Xavier Developer Kit
 - NVIDIA Tesla V100 16GB

- YOLOv2
- Real-time object detection system



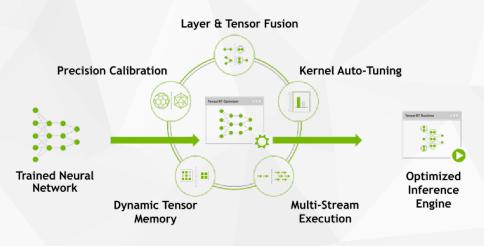
80-

Frames Per Second

0

100

- TensorRT 5.0
 - Dramatically increases inference speed
 - Small reduction in accuracy without further tweaks
 - Used INT8 precision

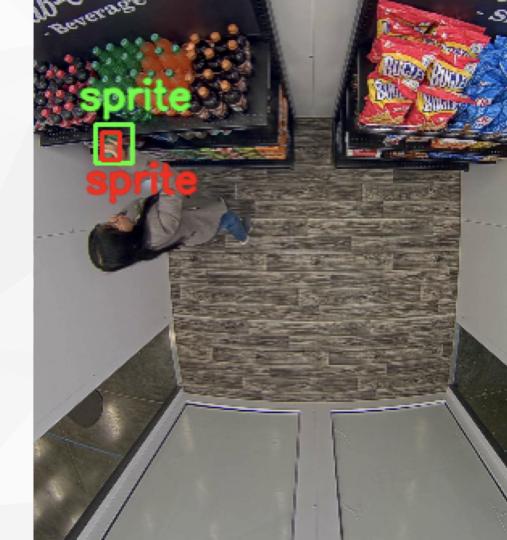


- Mounted 9 feet high
- Axis 5MP fisheye camera
- Used 1500x1500 center patch
- 48 cameras

Visualization Reference

Ground Truth

Prediction



Validation Dataset

- 10 videos, 250 frames
- Small dataset for this experiment
- Due to size missing a few frames dramatically impacts metrics

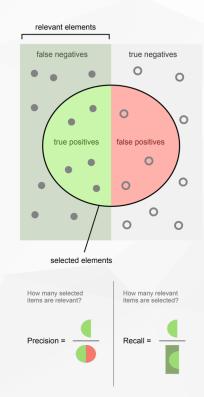
Key Performance Indicators (KPI)

Precision:

- How many items labeled as Sprite were Sprite.
- Doesn't tell you about the Sprites you missed.

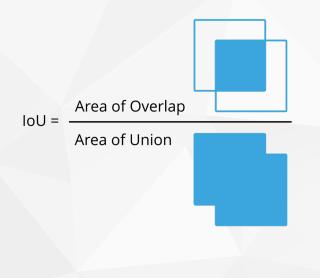
Recall:

- Out of all Sprites, how many you labeled as Sprite.
- Doesn't tell you about 7-Up incorrectly labeled Sprite.



IoU of 0.5

- Measures overlap between 2 regions.
- How good is our prediction relative to ground truth?



- How should we evaluate the trade-off between inference speed and model "accuracy"?
- It's a balance between:
 - Model can accurately detect and recognize objects but slow
 - Model does a poor job of detecting and recognizing objects but is fast

Precision given missed frames

- Same calculation as precision except that we penalize for missing detections in unprocessed frames
- Account for mis-classification of items.

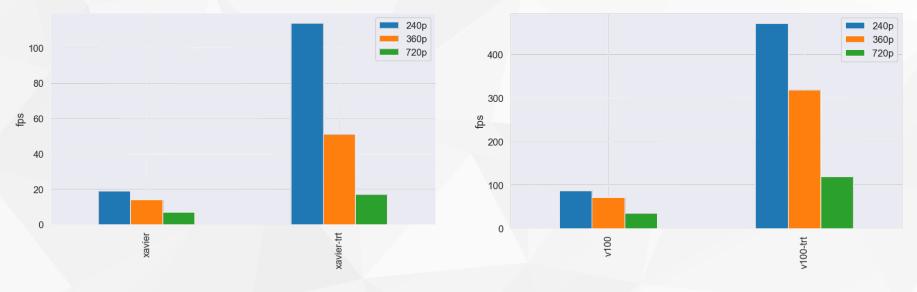
Recall given missed frames

- Same calculation as recall except that we penalize for missing detections in unprocessed frames
- Account for missed detection of items.

Hardware Performance Results

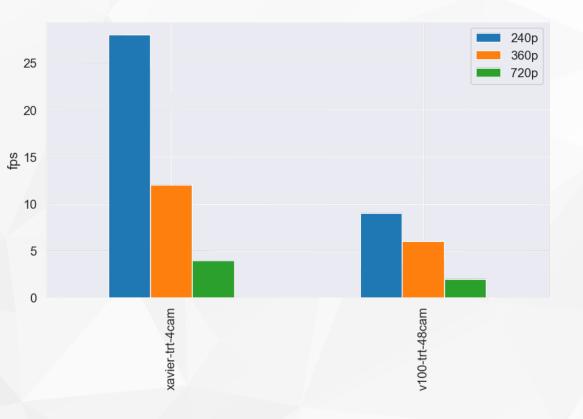
TensorRT Acceleration for 1 Camera

- 6x improvement in FPS
- Without TensorRT, multi-camera edge solution is infeasible.



48 Cameras: 12 Xaviers vs. V100

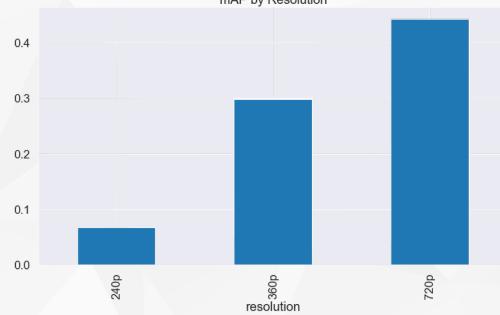
- 4 cams per Xavier
- 48 cams per V100
- Cost approx. equivalent
- < 5fps would likely be too choppy but does the data prove this?



Model Performance Results

Relationship Between Resolution and mAP

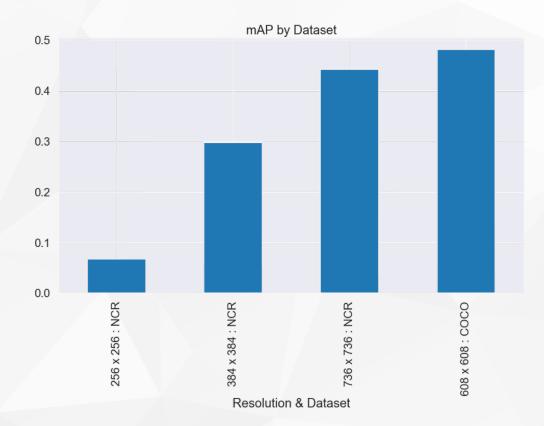
- No surprise that mAP of 720p is highest
- FPS and mAP graphs look like mirror images.
- Trade-off between speed and accuracy.



mAP by Resolution

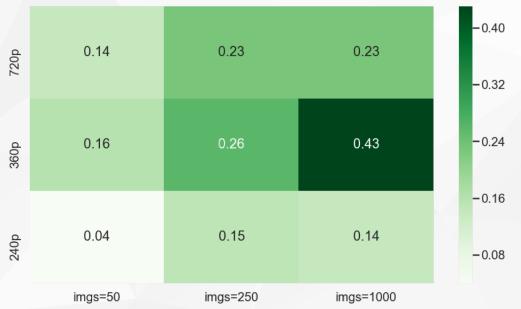
YOLOv2 Performance on NCR vs. COCO Dataset

- Comparison of mAP compared to YOLOv2 trained on COCO dataset.
- COCO is a large-scale object detection, segmentation, and captioning dataset.



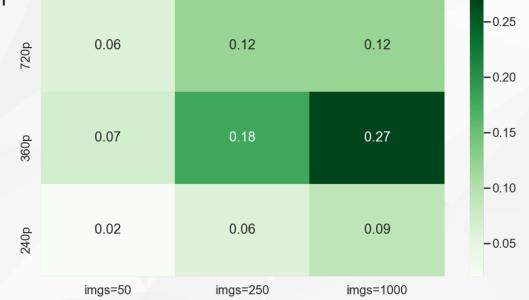
Precision Given Missed Frames on the Xavier

- Which is the best model?
- 0.43 indicates 43% as precise as the most precise model.
- Note: Values are normalized to the model with the highest mAP given no real-time constraints.



Precision Given Missed Frames on the V100

- Proportionally similar to Xavier.
- Reduced precision due to high number of cameras.



Recall Given Missed Frames on the Xavier

- Similar ratios to the precision results.
- Recall this is, "Out of all Sprites, how many you labeled as Sprite."

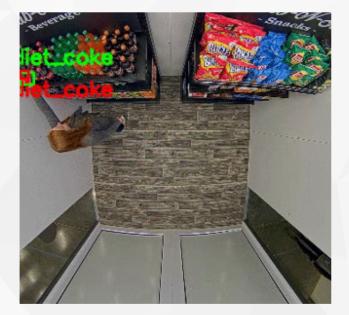


Recall Given Missed Frames on the V100

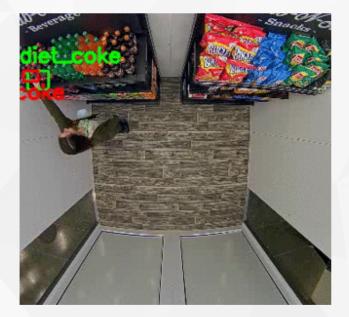
No surprises here.

Visual Comparison

Best Xavier Model (360p / 1,000 samples)



Best V100 Model (360p / 1,000 samples)



Solution Comparison

 Decentralized wins out given similar budget.

	XAVIER	V100
DATASET SIZE	1,000 images	1,000 images
INPUT RESOLUTION	360p	360p
INFERENCE SPEED	12 fps	6 fps
REAL-TIME PRECISION	0.19	0.12
REAL-TIME RECALL	0.08	0.05

FUTURE AREAS OF RESEARCH

Opportunities for Research and Experimentation

- Larger dataset
- Multi-stage approach for localization and classification.
- Explore alternative model architectures.
- Incorporate depth.
- Sensor fusion.
- NVIDIA T4 GPU for inference.
- DeepStream SDK 3.0 or 4.0?
- Further optimize model architecture for TensorRT & GPU microarchitecture (e.g., SIDNet).

THANK YOU

