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AI in Retail



Note
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Deep Learning

Machine Learning

Artificial Intelligence



“Just Walk Out”
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Source: SounderBruce – Creative Commons Attribution-Share Alike 4.0 International license.

December 5, 2016

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Retail Apocalypse!

Amazon is killing retail…



Successful retailers will…

• feature exclusive products.
• resurrect the art of selling.
• deliver a satisfying experience.
• challenge the fundamental

assumptions of commerce.
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Retail Technology Hype Cycle
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Source: Gartner

https://www.gartner.com/doc/3883976


Observations at NRF
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§ Smart shelves
§ People tracking
§ Item detection
§ Fraud / shrink detection & prevention
§ Smart carts
§ Age verification



Frictionless Consumer Experience
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Mr. Merchant Video to demonstrate the journey
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Real World 
Challenges



Business and Operational Challenges
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Consumer 
Experience

§ Frictionless, SCO,
and assisted 
checkout

§ Opt-in vs. Opt-out

Store 
Redesign

§ Aisles
§ Power &

networking
§ Minimize 

occlusion

Privacy

§ Always on 
camera?

§ Children on
camera?

§ Right to be 
forgotten?

RoI

§ Cost/Benefit 
of frictionless

§ Ways to drive 
value without 
increased 
cost?

§ Empower
over curated?



14

Technical 
Challenges 



Technical Challenges
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§ People detection and tracking
‾ How can I track people who appear to be very similar? (twins, uniformed, etc.)
‾ How do I differentiate between shoppers and employees
‾ How do I handle multiple shoppers with a shared cart?
‾ Shoppers with children.

§ Item detection, recognition, and tracking
‾ New items, small items, similar items
‾ Carts vs. bags

§ Other obstacles
‾ Occlusion of people and items
‾ Real-time & latency
‾ Consequences of false positives, false negatives, etc.
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Inference
at the Shelf

casestudy



Not our first rodeo
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Problem Statement
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One approach to offering a frictionless shopping experience is to recognize 

items removed from a retail shelf and automatically add them to a shopper’s 

virtual cart in real-time.



Detection 
failures result in 

giving items 
away for free.

Cart-to-person 
mismatches 

result in 
freebies and 
erroneous 
charges.

Recognition 
failures result in 
charging for the 

wrong items.

Sub real-time 
processing 

misses add to & 
remove from 
cart events.

Key Requirements
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Approach
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Use computer vision and deep learning for object detection and classification 

and NVIDIA GPUs to accelerate inference to achieve real-time performance.



Motivation
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A deep neural network trained on thousands of low resolution images with 

a distribution resembling the validation set is more likely to have high detection 

and recognition accuracy as well as perform real-time inference at a high 

frame rate.



Assembling a well-distributed 
dataset

§ How many samples per class are 
needed?

§ In retail, appearance changes 
frequently

§ Annotation cost
§ Annotation time
§ Manual or automated data 

acquisition -> labeling pipeline?

Practical Challenges
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Selecting a neural network 
architecture for this use case

§ Complex discussion beyond the 
scope of this talk

Practical Challenges
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Performing inference in real-time

§ Experiment with smaller image 
resolutions to improve FPS

§ Test different GPUs
§ Edge vs. centralized processing

Practical Challenges
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Achieving accuracy suitable for the 
use case

§ Connects back to the key 
requirements we discussed 
previously

§ Missing or incorrectly classifying 
items has serious implications in 
retail

Practical Challenges
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Cameras

§ Sensor types
§ Lenses
§ Mounting height
§ Field of view
§ Pixels per inch (PPI)

Practical Challenges
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Experimental Variables



Experimental Variables
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§ Which combination is best and why? 

§ Experiment evaluates varying the dataset size, image resolution, and 
hardware processing unit.



Experimental Variables
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§ Data Collection
‾ 50 images per class
‾ 250 images per class
‾ 1,000 images per class

§ Data Set Size for 10 classes
‾ 500 samples
‾ 2,500 samples
‾ 10,000 samples



Experimental Variables
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§ Image and network resolution
‾ Input shape and image resolution are the same
‾ Down-sampled from an original capture resolution of 1500x1500 pixels

§ Experimental results for:
‾ “720p”: 736x736
‾ “360p”: 384x384
‾ “240p”: 256x256



Experimental Variables
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§ Evaluated centralized vs. edge processing:
‾ Jetson AGX Xavier Developer Kit
‾ NVIDIA Tesla V100 16GB
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Fixed Parameters



Fixed Parameters
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§ YOLOv2
§ Real-time object detection system



Fixed Parameters
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§ TensorRT 5.0
‾ Dramatically increases inference speed
‾ Small reduction in accuracy without further tweaks
‾ Used INT8 precision



Fixed Parameters
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§ Mounted 9 feet high
§ Axis 5MP fisheye camera
§ Used 1500x1500 center patch
§ 48 cameras



Visualization Reference
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Ground Truth

Prediction



Validation Dataset
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§ 10 videos, 250 frames
§ Small dataset for this

experiment
§ Due to size missing a few

frames dramatically impacts 
metrics
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Key Performance Indicators (KPI)



KPIs
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§ Precision:
‾ How many items labeled as Sprite were Sprite.
‾ Doesn’t tell you about the Sprites you missed.

§ Recall:
‾ Out of all Sprites, how many you labeled as Sprite.
‾ Doesn’t tell you about 7-Up incorrectly labeled Sprite.

Source: Walber – CCA-SA 4.0 license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en


KPIs
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§ IoU of 0.5
‾ Measures overlap between 2 regions.
‾ How good is our prediction relative to ground truth?



KPIs
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§ How should we evaluate the trade-off between inference speed and model 
“accuracy”?

§ It’s a balance between:
‾ Model can accurately detect and recognize objects but slow
‾ Model does a poor job of detecting and recognizing objects but is fast



KPIs
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§ Precision given missed frames
‾ Same calculation as precision except that we penalize for missing detections in 

unprocessed frames
‾ Account for mis-classification of items.

§ Recall given missed frames
‾ Same calculation as recall except that we penalize for missing detections in 

unprocessed frames
‾ Account for missed detection of items.
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Hardware Performance Results



TensorRT Acceleration for 1 Camera
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§ 6x improvement in FPS
§ Without TensorRT, multi-camera edge solution is infeasible.



48 Cameras: 12 Xaviers vs. V100
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§ 4 cams per Xavier
§ 48 cams per V100
§ Cost approx. equivalent
§ < 5fps would likely be 

too choppy but does the 
data prove this?
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Model Performance Results



Relationship Between Resolution and mAP
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§ No surprise that 
mAP of 720p is 
highest

§ FPS and mAP graphs 
look like mirror 
images.

§ Trade-off between 
speed and accuracy.



YOLOv2 Performance on NCR vs. COCO Dataset 
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§ Comparison of mAP
compared to YOLOv2 
trained on COCO dataset.

§ COCO is a large-scale object 
detection, segmentation, 
and captioning dataset. 



Precision Given Missed Frames on the Xavier
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§ Which is the best model?

§ 0.43 indicates 43% as precise 
as the most precise model.

§ Note: Values are normalized 
to the model with the highest 
mAP given no real-time 
constraints.



Precision Given Missed Frames on the V100
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§ Proportionally similar to 
Xavier.

§ Reduced precision due to high 
number of cameras.



Recall Given Missed Frames on the Xavier
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§ Similar ratios to the precision 
results.

§ Recall this is, “Out of all 
Sprites, how many you 
labeled as Sprite.”



Recall Given Missed Frames on the V100
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§ No surprises here.
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Visual Comparison



Best Xavier Model (360p / 1,000 samples)
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Best V100 Model (360p / 1,000 samples)
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XAVIER V100

DATASET SIZE 1,000 images 1,000 images

INPUT RESOLUTION 360p 360p

INFERENCE SPEED 12 fps 6 fps

REAL-TIME PRECISION 0.19 0.12

REAL-TIME RECALL 0.08 0.05

Solution Comparison
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§ Decentralized wins out 
given similar budget.
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FUTURE AREAS 
OF RESEARCH



Opportunities for Research and Experimentation
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§ Larger dataset
§ Multi-stage approach for localization and classification.
§ Explore alternative model architectures.
§ Incorporate depth.
§ Sensor fusion.

§ NVIDIA T4 GPU for inference.
§ DeepStream SDK 3.0 or 4.0?
§ Further optimize model architecture for TensorRT & GPU microarchitecture 

(e.g., SIDNet).
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THANK YOU


