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Motivation — Internet of Things
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Source: https://tinyurl.com/yagpsakm

Figure adopted from: https://www.axis.com/blog/secure-insights/internet-of-things-reshaping-security/



Motivation — Current Inspection in SHM




Motivation — Deep Neural Networks
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Deep Convolutional Neural Network for SHM
> Specialized Architecture?
- Needs a lot of data
» Transfer Learning?
- Not efficient for edge computing



Network Pruning — Inspiration from Biology

Figure adopted from Hong etal. (2013),” Decreased Functional Brain Connectivity in Adolescents with Internet Addiction.”



Existing Pruning Algorithms

» Magnitudes of filter weights

» Magnitudes of activation values

»> Mutual information between activations and predictions
» Regularization-based approaches

> Taylor-expansion based approach

Molchanovet al. (2017), “Pruning Convolutional Neural Networks for Resource Efficient
Inference”, arXiv:1611.06440v?2.



Network Pruning with Filter Importance Ranking
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Crack and Corrosion Datasets

Corrosion (training: 28,083, testing:
4,956 )

Non-corrosion (training: 29,026, testing:
5,122 )
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Result —

Transfer Learning without Pruning

> VGG16 (Simonyan and Zisserman, 2014)
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Classifier | Model size (MB) | Inference time on Server (sec) | Inference time on Edge (sec) | Accuracy
KNN 3277.000 96.09 587.58 0.9460
SVC 163.000 124.59 417.65 0.8928
SVMH 0.032 29.47 234.84 0.8553

Simonyan and Zisserman (2014),

*Inference time: the total time required to classify 3,720 image patches of size 224x224.

Image Recognition”, arXiv:1409.1556v6.

“Very Deep Convolutional Networks for Large-Scale
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Result — VGG16 with Pruning
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» Pruning is conducted on the server device.

» Accuracy remains descent after pruning followed by fine-tuning.
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Distribution of Pruned Convolution Kernels
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» Early layers are pruned less, indicating the importance of low-level features.

» Similar numbers of pruned kernels in layers between the pooling layers are
observed. 12



Sensitivity Analysis — Number of Fine-tuning Epochs
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»> The accuracy is not sensitive to the number of fine-tuning epochs used in
each pruning iteration.
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Sensitivity Analysis — Number of Fine-tuning Epochs

Pruned Network - (84% Filters Pruned) Pruned Network - (84% Filters Pruned)
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»> The accuracy is not sensitive to the number of fine-tuning epochs used in
each pruning iteration.
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Pruning Time Required on the Server
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»> When using only 1 fine-tuning epoch, the total pruning time is reduced to
1.5(hr), which is approximately 4.6 times faster than using 10 fine-tuning
epochs. .



Result — ResNetl18 (He et al., 2015) with Pruning
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Result — ResNetl18 (He et al., 2015) with Pruning
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» Pruning is conducted on the server device.
» Accuracy remains descent after pruning followed by fine-tuning.

» Pruning is sensitive to the network configurations.
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Inference Time Required for Pruned VGG16
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*Inference time: the total time required to classify 3,720 image patches of size 224x224.

> Server (TITANX): 13.1 (s) is reduced to 4.0 (s) for crack data; 13.2 (s) is
reduced to 3.7 (s) for corrosion data. Reduction factor: 3.5

> Edge (TX2): 279.7 (s) is reduced to 31.6 (s) for crack data; 275.7 (s) is reduced

to 30.6 (s) for corrosion data. Reduction factor: 9 .
1



Inference Time on Edge Device: VGG16 VS ResNet18
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*Inference time: the total time required to classify 3,720 image patches of size 224x224.

» Inference time
> VGG16: 279.7 (s) to 31.6 (s); reduction factor: 8.9
> ResNetl18: 36.8 (s) to 8.9 (s); reduction factor: 4.1
> Memory:
> VGG16: 525 (MB) to 125 (MB), 80% reduction

> ResNet18: 44 (MB) to 2 (MB), 95% reduction -



Five-fold Cross Validation Test on VGG16
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» Mean accuracy of 5-fold cross validation test is conducted on server.

> Network fine-tuning is necessary to enhance the accuracy.
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Five-fold Cross Validation Test on VGG16 (Cont.)

Pruned u (%) o (%) Pruned u (%) o (%)

filters (%) before after before after filters (%) before after before after
0 999 999 [0.11 0.11 0 997 99.7 (028 | 0.28
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97 50.3 847 052 19.86 97 495 960 0.74 0095

Crack Corrosion

»> The variance in the accuracy after fine-tuning is very small. However,
when pruning 97% of the filters, the variance increases and the
accuracy after fine-tuning drops.

> The pruning is stopped when the accuracy after fine-tuning drops more
than 3%. 21



Five-fold Cross Validation Test on VGG16 (Cont.)

Pruned u (%) o (%) Pruned u (%) o (%)

filters (%) before after before after filters (%) before after before after
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»> The variance in the accuracy after fine-tuning is very small. However,
when pruning 97% of the filters, the variance increases and the
accuracy after fine-tuning drops.

> The pruning is stopped when the accuracy after fine-tuning drops more
than 3%. 22



Five-fold Cross Validation Test on VGG16 (Cont.)
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»> The variance in the accuracy after fine-tuning is very small. However,
when pruning 97% of the filters, the variance increases and the
accuracy after fine-tuning drops.

> The pruning is stopped when the accuracy after fine-tuning drops more
than 3%. 23



Five-fold Cross Validation Test on VGG16 (Cont.)
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»> The variance in the accuracy after fine-tuning is very small. However,
when pruning 97% of the filters, the variance increases and the
accuracy after fine-tuning drops.

> The pruning is stopped when the accuracy after fine-tuning drops more
than 3%. 24



» Network pruning combined with transfer learning can achieve efficient
inference when there is limited training data and computing power.

» By network pruning, the inference time on edge device is nine and four
times faster than the original VGG16 and ResNet18. The network size is
reduced by 80% and 95% for the VGG16 and ResNetl8 networks,

respectively.

» Different network configurations exhibit different behaviors with respect
to pruning.

» Sensitive analysis shows that pruning can be achieved by using a smaller
number of fine-tuning without losing detection performance.

» The computation gain on the edge device is more prominent than the gain
on the server device.
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