Competitive Collaboration Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation

Anurag Ranjan Perceiving Systems

Max Planck Institute for Intelligent Systems

Varun Jampani

Deqing Sun

Jonas Wulff

Michael Black

MUU IIII I TT TIT TATT THE Tübingen, Germany

Outline

Motion and Optical Flow

Optical Flow

2D velocity for all pixels between two frames of a video sequence.

$$I(x, y, t - 1) = I(x + u, y + v, t)$$

Why do we need Optical Flow

Unsupervised Segmentation: Mahendran et al., VFX: Black et al., Motion Magnification: Liu et al., Action Recognition: Simoyan et al.

Optical Flow

2D velocity for all pixels between two frames of a video sequence.

$$I(x, y, t - 1) = I(x + u, y + v, t)$$

Estimating Optical Flow I(x, y, t - 1) = I(x + u, y + v, t)

$$\min_{u,v} \| I(x, y, t - 1) - I(x + u, y + v, t) \|$$

$$\min_{u,v} \rho(I(t-1) - warp(I(t), u, v))$$
Photometric
Loss

$$\min_{u,v} \rho(I(t-1) - warp(I(t), u, v))$$
Photometric
Loss

No prior on structure

Can we learn from data?

Optical Flow Estimation

FlowNet

FlowNetCorr

Problem

FlowNet is too big. 33 M parameters.

Needs to learn both large and small motions.

Does not perform well.

Approach

Image statistics are scale invariant.

Use an image pyramid.

Train a small network for each pyramid level.

Compute residual flow at each level.

Network captures small displacements.

Pyramid captures large displacements.

SPyNet

Spatial Pyramid Network for Optical Flow Estimation

Ranjan et al. Optical Flow estimation using a Spatial Pyramid Network. CVPR 2017.

SPyNet

FlowNet

Number of Model Parameters (in Millions)

*error metric not consistent with the benchmarks

Sintel Clean

	<u>d0-10</u>	<u>d10-60</u>	<u>d60-140</u>	<u>s0-10</u>	<u>s10-40</u>	<u>s40+</u>
SpyNet+ft	5.501	3.122	1.719	0.832	3.343	43.442
FlownetS+ft	5.992	3.561	2.193	1.424	3.815	40.098
FlownetC+ft	5.575	3.182	1.993	1.622	3.974	33.369

Sintel Final

	<u>d0-10</u>	<u>d10-60</u>	<u>d60-140</u>	<u>s0-10</u>	<u>s10-40</u>	<u>s40+</u>
SpyNet+ft	6.694	4.368	3.290	1.395	5.534	49.707
FlownetS+ft	7.252	4.610	2.993	1.873	5.826	43.236
FlownetC+ft	7.190	4.619	3.298	2.305	6.169	40.779

Distance from Motion Boundaries

Average Displacement

Problem

SPyNet[1]

[1] Ranjan et al. Optical Flow estimation using a Spatial Pyramid Network. CVPR 2017.

Why humans?

Scenes contain human actions.

- Useful for recognition problems.
- Two-stream architectures use fast classical optical flow methods.
- Deep Networks have massive GPU memory requirements.

Left Image: Delaitre et al. Recognizing human actions in still images, BMVC 2010 Right Image: Simonyan et al. Two-stream convolutional networks for action recognition in videos. NIPS 2014.

Problem

No dataset for human optical flow for training neural networks.

[1] Dosovitskiy et al. Flownet: Learning optical flow with convolutional networks. ICCV 2015.

[2] Butler et al. A naturalistic open source movie for optical flow evaluation. ECCV 2012.

[3] Geiger et al. Vision meets robotics: The KITTI dataset. International Journal of Robotics Research 32.11 (2013): 1231-1237.

Idea

Create a new dataset for human optical flow. Use it to train an existing fast and compact optical flow method.

Human Flow Dataset

Simulate and Extract Motion

[1] Ionescu et al. Human3.6m: Large scale datasets and predictive method 96% and human sensing in natural environments. IEEE PAMI 2014.
 [2] Loper et al. MoSh: Motion and Shape Capture from Sparse Markers. SIGGRAPH Asia 2014.
 [3] Yu et al. "Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop." arXiv preprint arXiv:1506.03365 (2015).

Human Flow Dataset

SPyNet

Ranjan et al. Optical Flow estimation using a Spatial Pyramid Network. CVPR 2017.

Evaluation of Optical Flow Networks

Evaluation of Optical Flow Networks

Visuals

Video

Ground Truth

Human Flow

SpyNet

Video

Ground Truth

Human Flow

Video

Ground Truth

Human Flow

Video

Human Flow

Video

Human Flow

Human Flow may not work on other parts of the scene.

Introduction to Scene Geometry

Motion of a Static Scene

For static scenes: Depth + Camera Motion = Optical

Multi-view Geometry

Static Scene and Moving Objects

How to decompose a scene?

Competitive Collaboration

Mixed Domain Learning

Competition Loss

$$E_{com} = m \cdot H(A(5), 5) + (1 - m) \cdot H(B(5), 5)$$

Collaboration Loss

$$E_{col} = E_{com} + \begin{cases} -\log(M(y) + \epsilon) & \text{if } E_A < E_B \\ -\log(1 - M(y) + \epsilon) & \text{if } E_A \ge E_B \end{cases}$$

$$E_{A} = H(A(\underline{f}_{A}, \underline{f}_{A}, \underline{$$

Accuracy

Model	Training	MNIST	SVHN	MNIST+SVHN
		Error	Error	Error
Alice	Basic	1.34	11.88	8.96
Alice	CC	1.41	11.55	8.74
Bob	CC	1.24	11.75	8.84
Alice+Bob+Mod	CC	1.24	11.55	8.70
Alice 3x	Basic	1.33	10.86	8.22

Moderator Behavior

	Alice	Bob	
MNIST	0 %	100 %	
SVHN	100 %	0 %	

Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation

Camera Motion Estimation

Zhou et al. CVPR 2017

Meister et al. AAAI '18, Janai et al. ECCV '18

Monocular Depth Prediction

Camera Motion Estimation

Zhou et al. CVPR 2017

Optical Flow Estimation

 $E_C = H(I_{||u_R - u_F|| < \lambda_c}, m)$

Best amongst Unsupervised Methods on Single View Depth Prediction Camera Motion Estimation Optical Flow

Only Network that does **Unsupervised** Motion Segmentation

Results

Static Flow Segmented Dynamic Flow Full Flow

Static Flow Segmented Dynamic Flow Full Flow

Depth Evaluation

Model	Dataset	AbsRel	SqRel	RMS	RMSlog
Eigen et al. 2014	KITTI	0.203	1.548	6.307	0.282
Zhou et al. 2017	KITTI	0.183	1.595	6.709	0.270
Geonet 2018	KITTI	0.155	1.296	5.857	0.233
DF-Net 2018	KITTI	0.150	1.124	5.507	0.223
Ours	KITTI	0.140	1.070	5.326	0.217
Zhou et al. 2017	CS+KITTI	0.198	1.836	6.565	0.275
Geonet 2018	CS+KITTI	0.153	1.328	5.737	0.232
DF-Net 2018	CS+KITTI	0.146	1.182	5.215	0.213
Ours	CS+KITTI	0.139	1.032	5.199	0.213
Godard et al.	CS+KITTI+S	0.114	0.991	5.029	0.203

[1] Zhou et al. Unsupervised learning of depth and ego-motion from video. CVPR 2017.

[2] Yin et at. Geonet: Unsupervised learning of dense depth, optical flow and camera pose. CVPR 2018..

[3] Zou et al. Df-net: Unsupervised joint learning of depth and flow using cross-task consistency. ECCV 2018.
Depth Ablation

Model	Dataset	Net D	Net F	AbsRel	SqRel	RMS	RMSlog
Basic	KITTI	DispNet	-	0.168	1.396	6.176	0.244
CC	KITTI	DispNet	FlowNetC	0.148	1.149	5.464	0.226
CC	KITTI	DispResNet	FlowNetC	0.144	1.284	5.716	0.226
CC	KITTI	DispResNet	PWC Net	0.140	1.070	5.326	0.217
CC	CS+KITTI	DispResNet	PWC Net	0.139	1.032	5.199	0.213

DispResNet > DispNet PWC Net > FlowNetC

Depth Visuals

Pose Evaluation

Model	Sequence 09	Sequence 10
ORB-SLAM	0.014 ± 0.008	0.012 ± 0.011
Zhou et al. 2017	0.016 ± 0.009	0.013 ± 0.009
Geonet 2018	0.012 ± 0.007	0.012 ± 0.009
DF-Net 2018	0.017 ± 0.007	0.015 ± 0.009
Ours	0.012 ± 0.007	0.012 ± 0.008

[1] Zhou et al. Unsupervised learning of depth and ego-motion from video. CVPR 2017.
[2] Yin et at. Geonet: Unsupervised learning of dense depth, optical flow and camera pose. CVPR 2018..
[3] Zou et al. Df-net: Unsupervised joint learning of depth and flow using cross-task consistency. ECCV 2018.

Flow Evaluation on KITTI

Model	EPE	FI	Test FI
UnFlow-CSS 2018	8.10	23.27 %	-
Back2Future 2018	6.59	24.21%	22.94%
Geonet 2018	10.81	-	-
DF-Net 2018	8.98	26.41%	25.70%
Ours	5.66	20.93%	25.27 %
PWC-Net 2018	10.35	33.67%	-
PWC-Net+ft 2018	(2.16)	(9.80%)	9.60%

Flow Visuals

GeoNet	DF-Net	Ours

What's next?

Future Goal

Image courtesy: https://ps.is.tuebingen.mpg.de/research_fields/inverse-graphics

github.com/anuragranj

Michael Black (MPI), Jonas Wulff (MIT), Timo Bolkart (MPI), Siyu Tang (MPI), Joel Janai (MPI), Deqing Sun (NVIDIA), Fatma Güney (Oxford), Varun Jampani (NVIDIA), Andreas Geiger (MPI), Clément Pinard (ENSTA), Soubhik Sanyal (MPI), Yiyi Liao (MPI), George Pavlakos (UPenn), Kihwan Kim (NVIDIA), Lukas Balles (MPI), Frederick Künstner (MPI), Dimitris Tzionas (MPI), David Hoffmann (MPI)