ImageNet in 18 minutes

for the masses

Motivation

- training was fast in Google
- no technical reason it can't be fast outside of Google

- many things are easier procedurally

share your jupyter servers, run any code, collaborate with anyone

Stanford Dawn Competition

Stanford: 13 days on g3 instance (Oct)

Yuxin Wu: 21 hours on Pascal DGX-1 (Dec)

diux: 14 hours on Volta DGX-1 (Jan)

Intel: 3 hours on 128 ¢5.18xlarge (April)

fast.ai: 2:57 on p3.16xlarge (April) /
Google: 30 mins on TPU pod (April)

this result: 18 minutes on 16 p3.16xlarge

Overview

Part 1: How to train ImageNet in 18 minutes
Part 2: Democratization of large scale training

Part 3: What's next

Part 1: ImageNet in 18 minutes

How to train fast?
Step 1: Find a good single machine model
Step 2: Use 16 machines to train with 16x larger batch size

Step 3: Solve administrative/engineering challenges

Step 1: finding good model

Google's "High Performance Models" -- synthetic data only + only 1k im/sec

tf.Estimator? Nope
Google's "slim" repo -- used internally but external repo unmaintained
TensorPack. Worked + 2k im/sec. Original DAWN submission 14 hours

fast.ai PyTorch model with fp16: 5k-10k im/sec. 3 hours

Step 1: finding good model

Want model which:
a. Has high training throughput (5.5k images/second is good)

5x difference in throughput between best and "official" implementation
b. Has good statistical efficiency (32 epochs instead of 100)

2.5x difference in number of epochs between best tuned and typical

Step 1: finding good model: throughput tricks

ImageNet has a range of scales + convolutions don't care about image-size, so
can train on smaller images first

2x smaller image = 4x faster

times/8gpu_images_per_sec

Throughput: i
17k -> 5.8k -> 3.3k 1.2000+4 |
Result: 33 epochs < 2 hours on 1 £.000+3

0.C00 10.00M 20.00M 30.00M 40.00M

Step 1: finding good model: statistical efficiency

Good SGD schedule = less epochs needed.

Best step length depends on:

sizes/Ir si.

1. Batch size 6.00

4.00 —

2. Image size

3. All the previous steps - /\\

00 10C00M 20.00M 30.00M 40.00M

Step 2: split over machines

L=>1,
G:Zigi
G=g1+g92+93+ -+ gn

— N\ N\ —
T T T

Gl G2 G3

Step 2: split over machines

Go
o G \G

time

(V)
«4+—— machines

Linear scaling:

compute k times more gradients=
reduce number of steps k times

Synchronizing gradients

compute

compute

sync

50MB

sync

Synchronizing gradients: better way

Ao

B,] | | |

— b} b l— b ——b

Synchronizing gradients: compromise

Use 4 NCCL rings instead of 1

compute sync compute sync
sync sync
sync sync
sync sync

Synchronizing gradients

16 machine vs 1 machine. In the end 85% efficiency (320 ms compute, 40 ms sync)

times/1gpu_images_per_sec

w

[1+]

.
Slet

no

D
(o]

o
£

n

+

00e+3

\S]

1.80e+3

1.60e+3

1.40e+3
oo

1.20e+3

1.00e+3

800

0.000 8.000M 10.00M 15.00M 20.00M 25.00M 30.00M 35.00M 40.0CM

Step 3: challenges

Amazon Limits

Account had $3M
dedicated rep

weeks of calls/etc

Hello,

I’'m sorry; but the service team were unable to process the limit increase you requested for EC2
instances at this time.

These limits are put in place to help you gradually ramp up activity and decrease the likelihood of large
bills due to sudden, unexpected spikes. Once we have a broader window of usage on your account to

review, we are happy to reassess any requests.

If you'd like to appeal this decision, please reply to this case with as much detail of your use case as
possible to expedite review of your request.

| hope that helps, but please let me know if you have any questions.
Best regards,

Fabricio S.
Amazon Web Services

Am aZO n I I m ItS Yaroslav Bulatov <yaroslavwb@gmail.com>

to Chetan ~

No problem, here's the info

account number: 331439827203

ideally limits would match limits on old account number (316880547378), ie
for p3.16xlarge

New way

us-east-1: 32
us-east-2: 16
us-west-2: 16

“ee

Kapoor, Chetan
tome ~

Done. New limits will be effective in about 20 mins.

Thanks,
-Chetan

how to handle data?

ImageNet is 150 GB, need to stream it at 500MB/s for each machine, how?
- EFS?

- S37?

- AMI?

- EBS?

how to handle data?

ImageNet is 150 GB, need to stream it at 500MB, how?

how to handle data?

Solution: bake into AMI, use high perf root volume
First pull adds 10 mins

io2

s3

AMI
10k IOPS

v

io2

io2

How to keep track of results?

T
>

EFS ——»

tensorboard

http://18.208.163.195:6006/

5

http://18.208.163.195:6006/

how to share with others?

1 machine: "git clone ...; python train.py"

2 machines; ???

how to share with others?

1 machine: "git clone ...; python train.py"
2 machines: ??7?

Setting up security groups/VPCs/subnets/EFS/mount points/placement groups

£ diux-dev / cluster

<> Code Issues 18 Pull requests 1 Projects 0 Wiki Insights
train on AWS
Add topics
{D 880 commits 2 7 branches © 0 release
Branch: master v New pull request Create new {

bearpelican Using wrong learning rate, but going to use the schedule anyways

s henchmarke initial commit of henchmark renrn

how to share with others?

Automate distributed parts into a library (ncluster)

import ncluster

taskl = ncluster.make_task(instance_type="'p3.16xlarge")
task2 = ncluster.make_task(instance_type="'p3.16xlarge")
taskl.run('pip install pytorch")

taskl.upload('script.py")

taskl.run(f'python script.py --master={task2.ip}')

how to share with others?

Automate distributed parts into a library (ncluster)

import ncluster

taskl = ncluster.make_task(instance_type="'p3.16xlarge')
task2 = ncluster.make_task(instance_type="'p3.16xlarge")
taskl.run('pip install pytorch")

taskl.upload('script.py')

taskl.run(f'python script.py --master={task2.ip}")

https://github.com/diux-dev/imagenet18

pip install -r requirements.txt
aws configure

python train.py # pre-warming
python train.py

Part 2. democratizing large scale training

- Need to try many ideas fast

ILSVRC top-5 error on ImageNet

22.5
15

7.5

2010 201 2012 2013 2014 Human ArXiv 2015

Part 2. democratizing large scale training

Ideas on MNIST-type datasets often don't transfer, need to scale up research.
- Academic datasets: dropout helps

- Industrial datasets: dropout hurts

Part 2. democratizing large scale training

Research in industrial labs introduces a bias
Google: make hard things easy

easy things impossible

10k CPUs vs Alex Krizhevsky 2 GPUs

async for everything

Part 2. democratizing large scale training

Linear scaling + per-second billing = get result faster for same cost

Training on 1 GPU for 1 week = train on 600 GPUs for 16 minutes

Spot instances = 66% cheaper

Part 2. democratizing large scale training

DGX-1 costs 150k, 10 DGX-1's cost 1.5M

You can use 1.5M worth of hardware for $1/minute

import ncluster

job = ncluster.make_job(num_tasks=10, instance type="p3.16xlarge")
job.upload(‘'myscript.py')

job.run('python myscript.py')

Part 3: what's next

Synchronous SGD: bad if any machine stops or fails to come up
Happens for 16, will be more frequent for more machines.

MPI comes from HPC, but need to specialize for the cloud.

Part 3: what's next

18 minutes too slow. Schedule specific to ImageNet

Should be: train any network in 5 minutes.

- Used batch size 24k, but 64k is possible (Tencent's ImageNet in 4 minutes)
- Only using 25% of available bandwidth

- Larger model = larger critical batch size (explored in
https://medium.com/south-park-commons/otodscinos-the-root-cause-of-slow-neur
al-net-training-fec7295c364c)

https://medium.com/south-park-commons/otodscinos-the-root-cause-of-slow-neural-net-training-fec7295c364c
https://medium.com/south-park-commons/otodscinos-the-root-cause-of-slow-neural-net-training-fec7295c364c

Tuning is too hard. 1. SGD only gives direction, but not step length. Hence need
schedule tuning

2. SGD not robust -- drop the D. Hence need other

hyperparameter tuning

Machine Learning is new alchemy -- "round towards zero" to "round to even" error
rate went from 25% to 99%

100k of AWS credits spent on "graduate
student descent"

Part 3: what's next

SGD hits critical batch size too early

Loss

SVHN, train + extra

110
K-FAC, bz 256
K-FAC, bz 1024
105 SGD, bz 256
~—— SGD, bz 1024
—— SGD, bz 4096
100
095
090
085
080
075 -
070

50 100
Number of Epochs

150 200

Part 3: what's next

Scalable second order methods in last 2 years:
Should address both robustness and schedule elements of SGD.
KFAC, Shampoo, scalable Gauss-Jordan, KKT, Curveball

Mostly tested on toy datasets. Need to try them out out and find which works on
large scale.

Part 3: what's next

https://github.com/diux-dev/ncluster

