
ImageNet in 18 minutes
for the masses



Motivation
- training was fast in Google

- no technical reason it can't be fast outside of Google

- many things are easier procedurally

share your jupyter servers, run any code, collaborate with anyone



Stanford Dawn Competition
Stanford: 13 days on g3 instance (Oct)

Yuxin Wu: 21 hours on Pascal DGX-1 (Dec)

diux: 14 hours on Volta DGX-1 (Jan)

Intel: 3 hours on 128 c5.18xlarge (April)

fast.ai: 2:57 on p3.16xlarge (April)

Google: 30 mins on TPU pod (April)

this result: 18 minutes on 16 p3.16xlarge



Overview
Part 1: How to train ImageNet in 18 minutes

Part 2: Democratization of large scale training

Part 3: What's next



Part 1: ImageNet in 18 minutes
How to train fast?

Step 1: Find a good single machine model

Step 2: Use 16 machines to train with 16x larger batch size 

Step 3: Solve administrative/engineering challenges



Step 1: finding good model
Google's "High Performance Models" -- synthetic data only + only 1k im/sec

tf.Estimator? Nope

Google's "slim" repo -- used internally but external repo unmaintained

TensorPack. Worked + 2k im/sec. Original DAWN submission 14 hours

fast.ai PyTorch model with fp16: 5k-10k im/sec. 3 hours



Step 1: finding good model
Want model which:

a. Has high training throughput (5.5k images/second is good)

    5x difference in throughput between best and "official" implementation 

b. Has good statistical efficiency (32 epochs instead of 100)

     2.5x difference in number of epochs between best tuned and typical



Step 1: finding good model: throughput tricks
ImageNet has a range of scales + convolutions don't care about image-size, so 
can train on smaller images first

2x smaller image = 4x faster

Throughput:

 17k -> 5.8k -> 3.3k

Result: 33 epochs < 2 hours on 1



Step 1: finding good model: statistical efficiency
Good SGD schedule = less epochs needed.

Best step length depends on:

1. Batch size

2. Image size

3. All the previous steps



Step 2: split over machines



Step 2: split over machines
Linear scaling:

compute k times more gradients=
reduce number of steps k times



Synchronizing gradients



Synchronizing gradients: better way



Synchronizing gradients: compromise

Use 4 NCCL rings instead of 1



Synchronizing gradients
16 machine vs 1 machine. In the end 85% efficiency (320 ms compute, 40 ms sync)



Step 3: challenges
Amazon Limits

Account had $3M

dedicated rep

weeks of calls/etc



Amazon limits
New way



how to handle data?
ImageNet is 150 GB, need to stream it at 500MB/s for each machine, how?

- EFS?

- S3?

- AMI?

- EBS?



how to handle data?
ImageNet is 150 GB, need to stream it at 500MB, how?



how to handle data?

Solution: bake into AMI, use high perf root volume
First pull adds 10 mins



How to keep track of results?

http://18.208.163.195:6006/

http://18.208.163.195:6006/


how to share with others?
1 machine: "git clone …; python train.py"

2 machines: ???



how to share with others?
1 machine: "git clone …; python train.py"

2 machines: ???

Setting up security groups/VPCs/subnets/EFS/mount points/placement groups



how to share with others?
Automate distributed parts into a library (ncluster)

import ncluster

task1 = ncluster.make_task(instance_type='p3.16xlarge')

task2 = ncluster.make_task(instance_type='p3.16xlarge')

task1.run('pip install pytorch')

task1.upload('script.py')

task1.run(f'python script.py --master={task2.ip}')



how to share with others?
Automate distributed parts into a library (ncluster)

import ncluster

task1 = ncluster.make_task(instance_type='p3.16xlarge')

task2 = ncluster.make_task(instance_type='p3.16xlarge')

task1.run('pip install pytorch')

task1.upload('script.py')

task1.run(f'python script.py --master={task2.ip}')

pip install -r requirements.txt
aws configure
python train.py  # pre-warming
python train.py 

https://github.com/diux-dev/imagenet18



Part 2: democratizing large scale training
- Need to try many ideas fast



Part 2: democratizing large scale training
Ideas on MNIST-type datasets often don't transfer, need to scale up research.

- Academic datasets: dropout helps

- Industrial datasets: dropout hurts



Part 2: democratizing large scale training
Research in industrial labs introduces a bias

Google: make hard things easy

      easy things impossible

10k CPUs vs Alex Krizhevsky 2 GPUs

async for everything



Part 2: democratizing large scale training
Linear scaling + per-second billing = get result faster for same cost

Training on 1 GPU for 1 week = train on 600 GPUs for 16 minutes

Spot instances = 66% cheaper



Part 2: democratizing large scale training
DGX-1 costs 150k, 10 DGX-1's cost 1.5M

You can use 1.5M worth of hardware for $1/minute

import ncluster

job = ncluster.make_job(num_tasks=10, instance_type="p3.16xlarge")

job.upload('myscript.py')

job.run('python myscript.py')



Part 3: what's next

Synchronous SGD: bad if any machine stops or fails to come up

Happens for 16, will be more frequent for more machines.

MPI comes from HPC, but need to specialize for the cloud.



Part 3: what's next
18 minutes too slow. Schedule specific to ImageNet

Should be: train any network in 5 minutes.

- Used batch size 24k, but 64k is possible (Tencent's ImageNet in 4 minutes)

- Only using 25% of available bandwidth

- Larger model = larger critical batch size (explored in 
https://medium.com/south-park-commons/otodscinos-the-root-cause-of-slow-neur
al-net-training-fec7295c364c)

https://medium.com/south-park-commons/otodscinos-the-root-cause-of-slow-neural-net-training-fec7295c364c
https://medium.com/south-park-commons/otodscinos-the-root-cause-of-slow-neural-net-training-fec7295c364c


Machine Learning is new alchemy -- "round towards zero" to "round to even" error 
rate went from 25% to 99%

Tuning is too hard. 1. SGD only gives direction, but not step length. Hence need 
schedule tuning

2. SGD not robust -- drop the D. Hence need other 
hyperparameter tuning

100k of AWS credits spent on "graduate 
student descent" 



Part 3: what's next
SGD hits critical batch size too early



Part 3: what's next
Scalable second order methods in last 2 years:

Should address both robustness and schedule elements of SGD.

KFAC, Shampoo, scalable Gauss-Jordan, KKT, Curveball

Mostly tested on toy datasets. Need to try them out out and find which works on 
large scale.



Part 3: what's next
https://github.com/diux-dev/ncluster


